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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignanc y, lar gely due to the paucity of reliable biomarkers for early 
detection and therapeutic targeting. Existing blood protein biomarkers for PDAC often suffer from replicability issues, arising from 

inherent limitations such as unmeasured confounding factors in conv entional e pidemiologic study designs. To circumv ent these 
limitations, we use genetic instruments to identify proteins with genetically predicted levels to be associated with PD AC risk. Lever - 
ag ing g enome and plasma proteome data from the INTERV AL study , we esta b lished and v alidated models to pr edict pr otein lev els 
using genetic variants. By examining 8,275 PDAC cases and 6,723 controls, we identified 40 associated proteins, of which 16 are novel. 
Functionall y v alidating these candidates by focusing on 2 selected nov el pr otein-encoding genes, GOLM1 and B4GALT1 , we demon- 
strated their pi v otal r oles in driving PDAC cell prolifer ation, migr ation, and invasion. Furthermore , w e also identified potential drug 
r e purposing opportunities for treating PDAC. 

Significance: PDAC is a notoriously difficult-to-treat malignancy, and our limited understanding of causal protein markers hampers 
pr ogr ess in developing effective early detection str ate gies and treatments. Our study identifies novel causal proteins using genetic 
instruments and subsequently functionally validates selected novel proteins. This dual approach enhances our understanding of 
PDAC etiology and potentially opens new av en ues for therapeutic interventions. 

Ke yw ords: biomarkers, protein, genetics, pancreatic cancer, risk 
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Introduction 

P ancr eatic cancer is the se v enth leading cause of cancer deaths in 

industrialized countries with pancreatic ductal adenocarcinoma 
(PDAC), making up over 90% of pancreatic cancer cases [ 1 ]. Ac- 
cording to GLOBOCAN 2020 cancer statistics, pancreatic cancer 
is the 14th most common cancer type with 495,773 new cases in 

2020. Ther e wer e almost the same number of deaths caused by 
pancreatic cancer (466,003 deaths) in 2020, accounting for 4.7% 

of all cancer-related deaths [ 2 ]. Owing to its often asymptomatic 
or nonspecific symptoms during early stages, most patients are 
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suall y dia gnosed in adv anced sta ges . T his results in 80–90% of
ancreatic tumors being unresectable upon diagnosis, leading to a 
ismal prognosis: a mere 9% five-year survival rate after diagnosis
 1 ]. Giv en these dir e statistics, ther e is an ur gent need to identify
ffecti ve biomark ers for scr eening or earl y detection in high-risk
opulations. Equally crucial is the development of improved ther- 
 peutic str ategies to impr ov e PDAC outcome. 

Curr entl y, serum cancer antigen (CA) 19–9 is the only diag-
ostic biomarker for pancreatic cancer a ppr ov ed by the US Food
nd Drug Administration. Ho w ever, elevated levels of CA 19–9 are
e. This is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 
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elated to other conditions, and its performance as a diagnostic
ool for pancreatic cancer is far from ideal [ 3 ]: it has a poor pos-
tiv e pr edictiv e v alue (0.5–0.9%), along with restricted specificity
82–90%) and sensitivity (79–81%). Pr e vious studies hav e also r e-
orted se v er al other circulating blood protein biomarkers that are
otentially associated with pancreatic cancer risk, such as CA242,
IVKA-II, and PAM4 [ 4–7 ]. Ho w e v er, r esults fr om existing studies
ften involving small sample sizes and findings are inconsistent.
t is well known that the conventional e pidemiologic stud y design

easuring le v els of pr oteins dir ectl y may be subject to selection
ias and residual or unmeasured confounding, which could also
ontribute to the inconsistent findings in the existing liter atur e. 

An alternative design of using genetic instruments may de-
r ease man y limitations of existing studies, due to the nature of
andom assortment of alleles from parents to offspring during ga-

ete formation [ 8 , 9 ]. Inspired by transcriptome-wide association
tudy (TWAS), one may build compr ehensiv e genetic pr ediction
odels for each protein to capture the prediction value of multi-

le single-nucleotide pol ymor phisms (SNPs). Unlike conv entional
WAS type of methods, which typically focus solely on cis -acting
ariants, our study enhanced statistical po w er b y integrating both
is - and trans -acting elements into our genetic prediction mod-
ls . Furthermore , as TWAS or proteome-wide association study
PWAS) r esults impl y causality under stringent valid instrumental
ariable assumptions, we further functionally validated two novel
roteins. 

In the current study, we applied such a study design to iden-
ify novel proteins associated with PDAC risk. To our knowledge,
his is the first large-scale PWAS using comprehensive protein ge-
etic prediction models as instruments to assess the associations
etween geneticall y pr edicted blood concentr ations of pr oteins
nd PDAC risk. We used data for 8,275 cases and 6,723 controls
f European descent from the Pancreatic Cancer Cohort Consor-
ium (PanScan) and the P ancr eatic Cancer Case-Contr ol Consor-
ium (PanC4). Beyond identifying novel proteins, we functionally
alidated 2 of them. Moreover, we generated a list of drugs target-
ng the identified proteins that may serve as candidates for drug
 epur posing of PD AC . 

ethods 

rotein genetic prediction model development 
nd v alida tion 

e le v er a ged the genome and plasma pr oteome data of healthy
uropean subjects included in the INTERVAL study to establish
subcohort 1) and validate (subcohort 2) protein genetic predic-
ion models . T he details of the INTERVAL study data have been
ublished pr e viousl y [ 10–14 ]. Briefly, participants wer e gener all y
ealthy. The SOMAscan assay was used to collect the r elativ e

e v els of 3,620 plasma proteins or complexes. Quality control
QC) was performed at both the sample and SOMAmer le v el.
ppr oximatel y ∼830,000 genetic variants were measured on the
ffymetrix Axiom UK Biobank genotyping array. Standard sam-
le and variant QC were conducted. SNPs were phased using
HAPEIT3 and imputed using a combined 1000 Genomes Phase
-UK10K r efer ence panel, whic h r esulted in ov er 87 million im-
uted variants . T he SNPs were further filtered using criteria of (i)

mputation quality of at least 0.7, (ii) minor allele count of at least
%, (iii) Hardy–Weinberg equilibrium (HWE) P ≥ 5 × 10 −6 , (iv) miss-
ng rates < 5%, and (v) presenting in the 1000 Genome Project data
or Eur opean populations. Ov er all ther e wer e 4,662,360 v ariants
assing these criteria. 
In subcohort 1 ( N = 2,481), as described else wher e [ 10 ], pr otein
oncentr ations wer e log tr ansformed and adjusted for a ge, sex,
uration between blood draw and processing, and the top 3 prin-
ipal components. For the r ank-inv erse normalized r esiduals of
ac h pr otein, w e follo w ed the TWAS/FUSION fr ame work to estab-
ish prediction models, using nearby variants (within 100 kb) of
otentially associated SNPs as candidate predictors [ 15 ]. A false
iscov ery r ate (FDR) < 0.05 was used to determine potentiall y as-
ociated SNPs in cis regions (within 1 Mb of the transcriptional
tart site [TSS] of the gene encoding the target protein of inter-
st), and P ≤ 5 × 10 −8 was used to determine potentially associ-
ted SNPs in trans regions. We only included strand unambiguous
NPs. Four methods of best linear unbiased predictor (blup), elas-
ic net, least absolute shrinkage and selection operator (LASSO),
nd top1 were used to develop the models. For each protein of in-
erest, the model showing the most significant cr oss-v alidation P
alue among those developed using the 4 methods was selected.
 

2 ≥ 0.01 was used as the threshold for selecting satisfactory pre-
iction models, which is commonly used in relevant omics inte-
ration studies [ 16–30 ]. For pr otein pr ediction models with R 

2 ≥
.01, external validation was conducted using genetic and protein
ata of subcohort 2 ( N = 820). Briefly, predicted protein expres-
ion le v els wer e estimated by a ppl ying the de v eloped pr otein pr e-
iction models to the genetic data, which were further compared
ith the measured levels for each protein of interest. Proteins with
 model prediction R 

2 of ≥0.01 in subcohort 1 and a correlation co-
fficient of ≥0.1 in subcohort 2 were selected for association anal-
sis with PDAC risk. We also estimated the genetic heritability of
lasma proteins (the proportion of the variation of protein levels
hat could be explained by potential predictors) using GCTA [ 31 ].

e compared the heritability of plasma proteins when using cis +
rans SNPs versus only cis SNPs to assess whether it could ca ptur e

ore heritability when involving trans SNPs. 

xamine associations of genetically predicted 

rotein levels with PDAC risk 

o investigate the associations between genetically predicted cir-
ulating pr otein le v els and PDAC risk, the v alidated pr otein ge-
etic prediction models were applied to the summary statistics

rom a large genome-wide association study (GWAS) of PDAC risk.
n the present w ork, w e used data from a GWAS conducted in the
 anScan and P anC4 consortia downloaded fr om the database of
enotypes and Phenotypes (dbGaP), including 8,275 PDAC cases
nd 6,723 controls of European ancestry. Detailed information on
his dataset has been included else wher e [ 17 , 20 , 32 ]. Briefly, 4
WASs (P anScan I, P anScan II, P anScan III, and P anC4) wer e geno-

yped using the Illumina HumanHa p550,610-Quad, OmniExpr ess,
nd OmniExpr essExome arr a ys , r espectiv el y. Standard QC pr oce-
ur es wer e performed according to the consortia guidelines [ 32 ].
tudy participants who were related to each other, had sex dis-
ordance, had genetic ancestry other than Europeans, had a low
all rate (less than 98% and 94% in PanC4 and P anScan, r espec-
iv el y), or had missing information on age or sex were excluded.
uplicated SNPs and those with a high missing call rate (at least
% and 6% in PanC4 and PanScan, respectively) or with violations
f HWE ( P < 1 × 10 −4 and P < 1 × 10 −7 in PanC4 and PanScan,
 espectiv el y) wer e also r emov ed. Regarding SNP data fr om P anC4,
hose with minor allele frequency < 0.005, with more than 2 dis-
ordant calls in duplicate samples, with more than 1 Mendelian
rror in HapMap control trios, and with a sex difference in al-
ele frequency > 0.2 or in heterozygosity > 0.3 for autosomes/XY
n European descendants were further removed. We performed
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genotype imputation using Minimac3 after prephasing with 

SHAPEIT fr om a r efer ence panel of the Ha plotype Refer ence Con- 
sortium (r1.1 2016) [ 33 , 34 ]. We retained imputed SNPs with an 

imputation quality of ≥0.3. The associations between individual 
genetic variants and PDAC risk were further estimated adjusting 
for age, sex, and top principal components. The TWAS/FUSION 

fr ame w ork w as used to assess the protein–PDAC risk associations 
by le v er a ging corr elations between v ariants included in the pr e- 
diction models based on the phase III 1000 Genomes Project data 
for European populations [ 15 ]. We calculated the PWAS test statis- 
tic z -score = w“Z /( w”�s,s w ) 1/2 , where the Z is a vector of standard- 
ized effect sizes of SNPs for a given protein (Wald z -scores), w is a 
vector of prediction weights for the abundance feature of the pro- 
tein being tested, and the �s,s is the linkage disequilibrium (LD) 
matrix of the SNPs estimated from the 1000 Genomes Project as 
the LD r efer ence panel. We used the FDR-corr ected P v alue thr esh- 
old of ≤0.05 to determine significant associations between genet- 
icall y pr edicted pr otein concentr ations and risk of PD AC . 

Robustness analyses 

To further examine whether the identified significant associa- 
tions from the main analyses may be robust to different strate- 
gies, 3 alternative strategies were used to test these proteins un- 
der different scenarios. First, we established prediction models 
using the bslmm method embedded in TWAS/FUSION software. 
This method was not enabled by the default parameter due to 
the intensiv e Mark ov c hain Monte Carlo (MCMC) computation, al- 
though bslmm has some adv anta ges and might increase predic- 
tion accuracy in some conditions. Second, we pruned the highly 
correlated SNPs, and only SNPs weakly correlated with each other 
were used as potential predictors. In the current analysis, we 
pruned SNPs using pruning parameters r 2 = 0.1 and distance = 

250 kb. Thir d, w e assessed the robustness of the significant asso- 
ciation results by examining different P value cutoffs for selecting 
informative trans regions ( P < 5 × 10 −7 , P < 5 × 10 −9 , and P < 5 ×
10 −10 ) as candidate predictors for model building. The association 

results with a nominal P < 0.05 and consistent effect direction 

wer e consider ed r eplicated. 

Soma tic v ariants of genes encoding associa ted 

proteins 

For each of the genes encoding the proteins that are identified to 
be associated with PDAC risk, we e v aluated potentiall y deleteri- 
ous somatic le v el m utations in 150 patients with PDAC included 

in The Cancer Genome Atlas (TCGA). The potentially deleterious 
somatic variants include missense mutations, splice site muta- 
tions , nonstop mutations , nonsense mutations , frameshift muta- 
tions, in-fr ame m utations, and tr anslation start site m utations. 

The somatic-le v el genetic c hanges wer e called using MuTect2 
[ 35 ] and deposited to the TCGA data portal. The enrichment of 
the proportion of assessed genes containing such somatic-level 
genetic e v ents compar ed with the pr oportion of all pr otein-coding 
genes across the genome was evaluated using socscistatistics on- 
line website [ 36 ]. 

Ingenuity Pathway Analysis and pr otein–pr otein 

inter action anal ysis 

To further assess whether genes encoding the identified PDAC- 
associated pr oteins ar e enric hed in specific pathwa ys , molecular 
and cellular functions, and netw orks, w e performed the enrich- 
ment analysis using Ingenuity Pathway Analysis (IPA) software 
[ 37 ]. The “enric hment” scor e (Fisher exact test P v alue) that mea- 
ur es ov erla p of observ ed and pr edicted r egulated gene sets was
ener ated for eac h of the tested gene sets . T he most significant
athways and functions with an enrichment P value less than 0.05
er e r eported. We also built a pr otein–pr otein inter action (PPI)
etwork using STRING database version 11.5 with a 0.400 con-
dence le v el [ 38 ]. The STRING database integr ates differ ent cu-
ated databases containing information on known and predicted 

unctional pr otein–pr otein associations. 

rug repurposing analysis 

or the identified proteins, we further assessed whether there 
s an y e vidence supporting their potential roles in PDAC by us-
ng the OpenTargets [ 39 ]. Focusing on those showing a poten-
ial r ele v ance, we further mined e vidence of their tar geting drugs
sing the DrugBank [ 40 ] database. We also conducted molecu-

ar docking analysis for the identified proteins and correspond- 
ng candidate drug agents [ 41 ]. Specifically, w e do wnloaded the
-dimensional structure of targeted proteins from the Protein 

ata Bank (PDB) [ 42 ] with source code 1CPB, 3CDZ, 1IGR, 3DFK,
NO06, and drug a gents fr om the PubChem database [ 43 ]. We fur-
her worked out molecular docking between each of the proteins
nd the corresponding meta-drug agents to calculate the binding 
ffinity scores (kcal/mol) for each pair of proteins and drugs. 

n vitro functional v alida tion of genes encoding 

elected associated novel proteins 

ell lines and culture condition 

uman pancreatic cancer cell lines PANC-1 and SU.86.86 were 
btained from ATCC (American Type Culture Collection). All 
ells wer e cultur ed in vitro in Dulbecco’s modified Eagle medium
DMEM) high-glucose medium (Gibco) supplemented with 10% 

v/v) fetal bovine serum (FBS) (Gibco). Cells were incubated at 37 ◦C
ith 5% CO 2 . 

ene expression and survival analysis with TCGA database 
he examination of GOLM1 and B4GALT1 gene expressions in pan-
reatic adenocarcinoma (PAAD) was conducted using the Gene Ex- 
r ession Pr ofiling Inter activ e Anal ysis (GEPIA). The platform, ac-
essible at [ 44 ], facilitated analysis with a dataset consisting of
79 tumor samples and 171 normal controls . T he focus of survival
nalysis was exclusively on PAAD, leveraging TCGA data through 

he GEPIA web server. 
Customized gene selection, normalization, and survival 

ethodologies were implemented to suit the unique c har acteris-
ics of PAAD. Cohort thresholds were defined, restricting dataset 
election to PAAD, and survival plots wer e gener ated. These
easur es wer e designed to pr ecisel y identify the corr elation

etween gene expression and survival outcomes specific to this 
ype of cancer. 

estern blotting 

ost 72-hour silencing, we pr ocessed contr ol, B4GALT1-silenced,
nd GOLM1-silenced cells for Western blotting. Cells were lysed 

sing RIP A buffer , and equal pr otein amounts wer e separ ated
n 10% or 12% SDS polyacrylamide gels, then transferred onto
VDF membr anes. To pr e v ent nonspecific antibody binding, mem-
r anes wer e bloc ked with 5% milk in TBS with 0.1% Tween
or an hour. They were then probed with anti-B4GALT1, anti-
OLM1, and anti-GAPDH antibodies, follo w ed b y their r espectiv e
orser adish per oxidase–conjugated secondary antibodies. Sig- 
al detection was performed using Pierce ECL Western Blotting 
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ubstr ate, and ima ges wer e ca ptur ed and anal yzed using Od ysse y
C and ImageStudio software. 

uantitative real-time PCR 

otal RN A w as extr acted fr om cells using TRNzol r ea gent accord-
ng to the manufacturer’s protocol. The concentration of RNA
as determined using a UV spectr ophotometer. Subsequentl y,
 mg total RN A w as r e v erse tr anscribed into complementary
N A (cDN A) using the iScript cDNA Synthesis Kit. Quantitative
CR (qPCR) analysis was performed on the CFX96 Real-Time PCR
etection System using the iTaq Univ ersal SYBR Gr een Super-
ix. The aim was to detect the expression levels of 3 genes:

4GALT1, GOLM1, and GAPDH messenger RN As (mRN As). Spe-
ific primer pairs were used for each gene. For B4GALT1, the for-
 ar d sequence was GT A TTTTGGAGGTGTCTCTGCTC, and the re-

erse sequence was GGGCGAGA T A T AGACA TGCCTC. For GOLM1,
he forw ar d sequence w as ATC ACC AC AGGTGAGAGGCTC A, and
he r e v erse sequence was A CTTCCTCTCCA GGTTGGTCTG . For the
ousek ee ping gene GAPDH, the forw ar d sequence w as GTCTC-
TCTGA CTTCAA CA GCG , and the r e v erse sequence was A CCA CC-
TGTTGCTGTAGCC AA. During the qPCR analysis , melting curves
er e gener ated to detect primer–dimer formation and confirm the

pecificity of the gene-specific peaks for each target. To ensure ac-
urate quantification, the expression data were normalized to the
mount of GAPDH mRNA expressed. 

ransfection of small interfering RNA 

he transfection of small interfering RN A (siRN A) w as per-
ormed using specific human siRNAs targeting GOLM1
SASI_Hs01_00,223,155), B4GALT1 (SASI_Hs01_00,080,445), and 

he MISSION siRNA uni versal negati v e contr ol, all of whic h wer e
btained fr om Sigma-Aldric h. Cells wer e seeded in 6-well plates at
 density of 1.5 × 10 5 cells per well and subsequently transfected
ith the siRNAs at a concentration of 40 nM. The transfection
r ocedur e utilized the Lipofectamine 2000 r ea gent (Invitr ogen)
ollowing the manufacturer’s recommended guidelines. Gene
ilencing at both mRNA and protein levels was typically observed
2 hours posttransfection. As such, the cells were collected
nd subjected to assays at the 72-hour time point to assess the
fficacy of gene silencing. 

ell proliferation assay 

o observe cell proliferation, cells were transfected with mock
iRNA, siGOLM1, and siB4GALT1 (40 nM). At 24 hours af-
er transfection, the cells were trypsinized and seeded into
6-well plates (Corning) at a density of 5,000 cells/well in
00 μL media. The plates were incubated in a 37 ◦C hu-
idified incubator. Cell pr olifer ation was monitor ed dail y by

he [3-(4,5-dimethylthiazol-2-yl)-5-(3-carbo xymetho xyphenyl)-2- 
4-sulfophen yl)-2H-tetr azolium] (MTS) assay. 

n vitro invasion assay 

ell invasion was assessed following transfection with mock
iRNA, siGOLM1, and siB4GALT1 (40 nM). A modified Boyden
hamber method was employed. Matrigel (BD Biosciences) was
oated on the upper chamber of Transwell inserts (Corning, 8- μm
ore size) at a concentration of 300 μg/mL, allowing gel forma-
ion for 2 hours at 37 ◦C. Cells (5 × 10 4 ) were then suspended in
00 μL serum-free medium and added to the upper chamber. The
o w er chamber contained 600 μL medium with 10% FBS, acting
s a c hemoattr actant. Following 24 hours of incubation at 37 ◦C,
oninvading cells on the upper membrane surface were gently
 emov ed using a cotton swab. Cells that invaded the lo w er mem-
rane surface were fixed with 4% paraformaldehyde and stained
ith 0.1% crystal violet. Invasion was quantified by counting the

tained cells on the underside of the membrane using a light
icr oscope (10 r andom fields at 200 × ma gnification). All exper-

ments were performed in triplicate to ensure robustness of the
ndings. 

ound scratch assay 

fter 24 hours of transfection with mock siRNA, siGOLM1, and
iB4GAL T1, P ANC-1 and SU.86.86 cells were cultured in a 96-well
late to form a monolayer. Using BioTek’s AutoScr atc h Wound
aking Tool, straight scratches were carefully created on the cell
onolayer to mimic wounds, following the equipment manual’s

nstructions. Time-la pse ima ges of the scr atc hes wer e ca ptur ed
t specific intervals (e.g., 0 hours, 12 hours, 24 hours, etc.) using
he Cytation 5 Cell Imaging Multi-Mode Reader. Subsequently, im-
 ge anal ysis softwar e w as emplo y ed to quantify the closure of the
ounds at each time point. Statistical analysis was performed to

ompare the wound closure rates at different time points, and the
 esults wer e pr esented gr a phicall y. 

esults 

 he o v er all w orkflo w of this study is sho wn in Fig. 1 . Of the pro-
eins assessed, we were able to develop prediction models for
,864 proteins with a prediction performance R 

2 ≥ 0.01. In the
xternal validation step, 1,389 of them further demonstrated a
orrelation coefficient of ≥0.1 for predicted expression and mea-
ur ed expr ession le v els . T he heritability of the pr oteins r anged
rom 0.001 to 0.87, with an av er a ge v alue of 0.14. Of suc h pr o-
eins, we observed significant associations between genetically
r edicted expr ession le v els of 40 pr oteins and PDAC risk at an FDR
 value of ≤0.05 (Fig. 2 , Tables 1 and 2 ). Of the associated proteins,
6 are novel ones that have not been reported in previous stud-
es (Table 1 ). Positive associations were observed for 10 of these
roteins , and in verse associations were observed for 6 proteins

Table 1 ). The other 24 associated proteins have been previously
eported in our study using pQTL as instruments [ 45 ] (Table 2 ).
hese include 10 that demonstrated positive associations and 14
hat sho w ed in verse associations . 

For the other proteins that were reported in our previous
tudy using pQTL as instruments [ 45 ], while did not show a sig-
ificant association after FDR correction in the current study
 Supplementary Table S1 ), except for sTie-2, the directions of ef-
ect were consistent in the current study compared with those
n the published work. Among them, for 8 proteins, their associ-
tions were at P < 0.05 in the current work using protein genetic
rediction models as instruments ( Supplementary Table S1 ). 

We compared the heritability of the prediction models estab-
ished using cis + trans and cis -only predictors strategies . Here , we
ocused on the 490 models established using both cis and trans
NPs in the main analysis . T he results sho w ed that 250 out of
he 490 (51.02%) models have higher estimated heritability with
he cis + trans strategy ( Supplementary Table S2 ), and 215 pro-
eins (43.88%) sho w ed the same estimated heritability between cis
 trans and cis -only strategies ( Supplementary Table S2 ). Only 25
roteins (5.10%) sho w ed lo w er estimated heritability when using
he cis + trans strategy ( Supplementary Table S2 ). These results
ho w ed that trans SNPs could in general increase heritability of
he prediction models. 

The r obustness anal ysis sho w ed that all the 40 PDAC-
ssociated proteins had the same effect directions
 Supplementary Table S3 ). A total of 39 proteins could be tested

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
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4,662,360 variants 3,620 proteins 

subcohort 1 
N = 2,481 

subcohort 2
N = 820 

1,389 validated protein 
prediction models 

GWAS summary 
statistics of PDAC risk

40 proteins associated
 with PDAC risk

Mutations 

IPA

PPI

Candidate drugs

1,864 protein prediction
 models (R2 ≥ 0.01) 

① Establish protein prediction models

② Proteome-wide association study (PWAS)

③ Downstream analysis

Figur e 1: T he o v er all design of this study. 
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Figure 2: Manhattan plot of 40 identified proteins associated with PDAC risk. Proteins in blue represent those identified in our previous work using 
pQTL as instruments, and proteins in red represent novel ones identified in the current study. 

 

 

A  

a  

r
 

s
P  

v  

3
T  
using the bslmm method and 37 out of the 39 (94.87%) could be 
re plicated (exce pt for SEMA6A and CHST11 proteins). When we 
r emov ed highl y corr elated SNPs and onl y weakl y corr elated SNPs 
were used for establishing prediction models, a total of 39 pre- 
diction models were established. The association results sho w ed 

that associations of 38 out of the 39 (97.44%) proteins could be 
replicated ( Supplementary Table S3 ). In addition, 3 different P 
v alue thr esholds ( P < 5 × 10 −7 , P < 5 × 10 −9 , and P < 5 × 10 −10 ) for
selecting trans SNPs were examined ( Supplementary Table S3 ).
ll the association results were consistent with those in our main
nalysis . T he abo ve results sho w ed the robustness of our main
esults. 

Based on a comparison of exome-sequencing data of tumor tis-
ue and tumor-adjacent normal tissue obtained from 150 TCGA 

DAC patients, the somatic-le v el c hanges of potentiall y functional
 ariants/m utations wer e observ ed in at least 1 patient for 10 of the
9 genes encoding identified associated proteins ( Supplementary 
able S4 ). This proportion (10/39 = 25.64%) is significantly higher

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
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CPB1

LAMA1

INSR

MET

LIFR

STOM

SELP

SEMA6A

GLCE

ALPI

SELE

ADH1B

LRPAP1
IL6ST

ABO

TPST2

QSOX2

CTRB1

IL23R

CHST11

FAM20B

ENG

ISLR2

KDR

DPEP2

KIN

THSD1 NOTCH1

DSG2

CD36

GOLM1
B4GALT1

FAM3D

TIE1

CD209

GPR116

LMAN2L

IGF1R

CHST15

Top canonical pathways
IL-15 Production, p-value = 2.19 × 10 -3

Figure 3: PPI network and canonical pathways of 40 identified proteins associated with PDAC risk. Network nodes r epr esent pr oteins, edge thic kness is 
proportional to the evidence for the PPI, and dashed lines represent the interaction among clusters . T he enrichment of canonical pathways was 
determined using IPA software. 
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enrichment P < 0.00001) than the overall observed proportion
f potentially functional changes across the genes encoding
he proteins tested for association analyses (95/1,218 = 7.80%;
er e 1,218 r epr esents the number of the genes available in
CGA analysis as part of the genes encoding the 1,389 assessed
roteins). 

According to the IPA anal ysis, se v er al cancer-r elated functions
er e enric hed for the genes encoding our identified proteins

 Supplementary Table S5 ). The top canonical pathways identi-
ed included IL-15 production ( P = 2.21 × 10 −3 ), Heparan Sul-
ate Biosynthesis (Late Stages) ( P = 2.97 × 10 −3 ), Heparan Sulfate
iosynthesis ( P = 3.99 × 10 −3 ), Sperm Motility ( P = 7.73 × 10 −3 ),
nd Dermatan Sulfate Biosynthesis (Late Stages) ( P = 0.01) (Fig. 3 ).
mong the related networks, the top network was cell-to-cell sig-
aling and inter action, cardiov ascular system de v elopment and

unction, and or ganismal de v elopment ( Supplementary Fig. S1 ),
ollo w ed b y cancer, organismal injury and abnormalities, respi-
 atory disease, fr ee r adical scav enging, cell death and surviv al,
rganismal injury and abnormalities, carbohydrate metabolism,
mall molecule biochemistry, cell cycle, and cancer, cell-to-cell
ignaling and interaction, and cellular assembly and organization.
nteractions among identified proteins were investigated based
n STRING database (Fig. 3 ). In the netw ork, KDR w as predicted
o interact with IGF1R, NOTCH1, MET, SEMA6A, ENG, SELP, and
ELE. 

Based on interrogation using the OpenTargets and DrugBank
atabase, 10 of the identified pr oteins ar e supported to be rele-
 ant to PDAC (ov er all scor e > 0 in OpenTargets) and ar e tar gets
f existing drugs a ppr ov ed to be used to treat human conditions
Table 3 ). Our work indicates potential drug r epur posing oppor-
unities of these drug targets to other indications . T he scores of

olecular docking between each of the proteins and the corre-
ponding meta-drug agents are included in Table 3 . 

Among the 16 novel associated proteins, analysis of TGCA data
lso r e v ealed potential r ele v ance of B4GT1 and GOLM1 with tu-
or de v elopment ( Supplementary Figs. S2 and S3 ). The examina-

ion of GOLM1 and B4GALT1 gene expression in PAAD cancer was
onducted using Gene Expression Profiling Interactive Analysis
GEPIA). T he analysis in volved a dataset consisting of 179 tumor
amples and 171 normal controls . T he boxplot analysis revealed
 statistically significant increase in GOLM1 ( Supplementary Fig.
2A ) and B4GALT1 ( Supplementary Fig. S3A ) expression in the

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
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Table 3: Drug r epur posing opportunities 

Protein Protein full name 
Protein-encoding 

gene 

OpenTargets 
information 

(o ver all score) Drugbank ID Drug name 
Molecular 

action 
Molecular docking 

score ∗

sTie-1 Tyr osine-pr otein 
kinase receptor Tie-1, 

soluble 

TIE1 0 .006 DB12010 Fostamatinib Inhibitor −6.1 

Carbo xype ptidase B1 Carbo xype ptidase B CPB1 0 .159 DB04272 Citric acid NA −3.9 
Chymotrypsin Chymotrypsinogen B CTRB1 0 .078 DB06692 Aprotinin NA MDNA 

sE-Selectin E-selectin SELE 0 .023 DB01136 Carvedilol Inhibitor −6.9 
P-Selectin P-Selectin SELP 0 .008 DB01109 Heparin Inhibitor −4.9 

DB08813 Nadroparin Inhibitor −4.9 
DB06779 Dalteparin Inhibitor −4.9 
DB15271 Crizanlizumab Inhibitor 3DSNA 

VEGF sR2 Vascular endothelial 
gr owth factor r eceptor 

2 

KDR 0 .367 DB06589 Pazopanib Inhibitor −6.3 

DB08896 Regorafenib Inhibitor −6.5 
DB09079 Nintedanib Inhibitor −5.8 
DB14840 Ripretinib Inhibitor −6.6 
DB00398 Sorafenib Antagonist −6.6 
DB01268 Sunitinib Inhibitor −5.6 
DB06595 Midostaurin Antagonist 

inhibitor 
−5.1 

DB06626 Axitinib Inhibitor −6.0 
DB08875 Cabozantinib Antagonist −7.0 
DB08901 Ponatinib Inhibitor −6.9 
DB09078 Lenvatinib Inhibitor −6.1 
DB05578 Ramucirumab Antagonist 3DSNA 

DB12010 Fostamatinib Inhibitor −5.3 
DB12147 Erdafitinib Substrate −5.5 
DB15822 Pralsetinib Inhibitor −6.9 
DB11800 Tivozanib Inhibitor −6.4 

ADH1B Alcohol 
dehydrogenase 1B 

ADH1B 0 .001 DB00898 Ethanol Substrate −2.8 

DB09462 Glycerin NA −3.7 
DB00157 NADH Substrate −9.6 
DB01213 Fomepizole Inhibitor −3.9 

Met Hepatoc yte gro wth 
factor receptor 

MET 0 .304 DB08865 Crizotinib Inhibitor −8.1 

DB08875 Cabozantinib Antagonist −8 
DB12267 Brigatinib Inhibitor −8.2 
DB12010 Fostamatinib Inhibitor −6.7 
DB11791 Capmatinib Inhibitor −8.7 
DB15133 Tepotinib Inhibitor −8.3 
DB11800 Tivozanib Inhibitor −8.2 
DB16695 Amivantamab Antagonist 

antibody 
3DSNA 

IGF-I sR Insulin-like growth 
factor 1 receptor 

IGF1R 0 .099 DB00071 Insulin pork NA MDNA 

DB00046 Insulin lispro Activator MDNA 

DB01307 Insulin detemir Activator MDNA 

DB00047 Insulin glargine Activator MDNA 

DB01306 Insulin aspart Activator MDNA 

DB01309 Insulin glulisine Activator MDNA 

DB09564 Insulin degludec Activator MDNA 

DB14751 Mecasermin 
rinfabate 

Agonist MDNA 

DB09456 Insulin beef Activator MDNA 

DB08804 Nandrolone 
decanoate 

Inducer −5.8 

DB01277 Mecasermin Agonist 3DSNA 

DB00030 Insulin human Activator MDNA 

DB06343 Tepr otum umab Binder, 
antibody 

3DSNA 

DB12267 Brigatinib Inhibitor −5.7 
IR Insulin receptor INSR 0 .013 DB00047 Insulin glargine Agonist MDNA 

DB00071 Insulin pork Binder MDNA 

DB01307 Insulin detemir Agonist MDNA 

DB00046 Insulin lispro Agonist MDNA 

DB01306 Insulin aspart Agonist MDNA 

DB01309 Insulin glulisine Agonist MDNA 

DB09564 Insulin degludec Agonist MDNA 

DB09129 Chr omic c hloride Activator MDNA 

DB14751 Mecasermin 
rinfabate 

NA MDNA 

DB09456 Insulin beef Agonist MDNA 
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Table 3: ( Continued ) 

Protein Protein full name 
Protein-encoding 

gene 

OpenTargets 
information 

(o ver all score) Drugbank ID Drug name 
Molecular 

action 
Molecular docking 

score ∗

DB00030 Insulin human Agonist MDNA 

DB01277 Mecasermin NA 3DSNA 

DB12267 Brigatinib Binding −8.4 
DB12010 Fostamatinib Inhibitor −7.5 

∗A score of ≤−7 represents a good interaction between the protein and corresponding drug agent and is bolded. 
MDNA: molecular docking not applicable; 3DSNA: 3D structure not a vailable . 
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umor samples as compared with the normal control group.
EPIA, accessible thr ough [ 44 ], serv ed as the platform for this in-
 estigation. The surviv al anal ysis of GOLM1 and B4GALT1 gene
xpression in PAAD cancer was conducted using GEPIA. Survival
lots r e v ealed a significant decr ease in ov er all surviv al (OS) and
isease-fr ee surviv al (DFS) among tumor samples exhibiting ele-
ated GOLM1 or B4GALT1 expression ( n = 89) compared with those
ith low expression ( n = 89). Employing the log-rank test for hy-
othesis testing, our findings emphasize a noteworthy correla-
ion between heightened gene expression and reduced OS and
FS in the PAAD cancer cohort ( Supplementary Fig. S2B, C and
upplementary Fig. 3B, C ). Consequently, these 2 proteins were
elected as the targets for experimental validation to further in-
estigate their potential roles in PDAC development. Two gene-
pecific siRNAs (siGOLM1 and siB4GALT1) were employed for post-
ranscriptional gene silencing of GOLM1 and B4GALT1 , resulting in
he knockdown of these 2 genes. As depicted in Fig. 4 A, qPCR anal-
sis demonstrated a significant reduction in the mRNA expression
f GOLM1 and B4GALT1 in PANC-1 and SU.86.86 cells at 72 hours
fter transfection with siGOLM1 or siB4GALT1 (40 nM) when com-
ared with the untreated control group ( P < 0.05). No significant
ifference was observed between the negative control group (NC,
oc k-siRNA tr ansfection) and the control groups (Fig. 4 A). This

rend was also consistent in the Western blot analysis (Fig. 4 B)
n comparison with the qPCR assay, indicating that siGOLM1
nd siB4GALT1 effectiv el y r educe the expr ession of GOLM1 and
4GALT1 at both mRNA and protein levels in PANC-1 and SU.86.86
ells. 

To assess the biological impact of GOLM1 and B4GALT1 silenc-
ng in PANC-1 and SU.86.86 cells, cell pr olifer ation was exam-
ned using the MTS assa y o ver a span of 5 consecutive da ys . As
hown in Fig. 4 C and D, transfection of siGOLM1 and siB4GALT1
nhibited cell pr olifer ation in both PANC-1 and SU.86.86 cells
ompared with the control (untransfected) and NC (mock-siRNA
r ansfected) gr oups. Furthermor e, a wound-healing assay demon-
trated that at 12 and 24 hours postscratch treatment, the open
ound area in GOLM1 and B4GALT1 siRNA-transfected cells was

ignificantl y lar ger than that in moc k siRNA-tr ansfected or un-
ransfected cells (Fig. 4 D, E), implying that knockdown of GOLM1
nd B4GALT1 in PANC-1 and SU.86.86 cells effectiv el y inhibited
ell migration in vitro . To investigate whether the downregula-
ion of GOLM1 and B4GALT1 affects the inv asiv e ca pabilities of
ANC-1 and SU.86.86 cells , a Trans w ell analysis w as performed.
he results revealed a significant inhibition of cell invasion in
ANC-1 and SU.86.86 cells upon GOLM1 or B4GALT1 silencing.
he number of siGOLM1- or siB4GALT1-transfected cells invad-

ng through the membrane was markedly lo w er than that of
ontr ol-siRNA tr ansfected cells (Fig. 4 F, P < 0.05). Together, our
ndings suggest that GOLM1 and B4GT1 play crucial roles in
DAC cell pr olifer ation, migr ation, and inv asion, and their sup-
r ession could potentiall y serv e as a ther a peutic str ategy for
D AC . 
v  
iscussion 

his is the first PWAS study using compr ehensiv e pr otein genetic
rediction models to assess the associations between genetically
r edicted circulating pr otein concentr ations and PDAC risk. Ov er-
ll, we identified 40 proteins that were significantly associated
ith PDAC risk after FDR correction, including 16 novel proteins

hat have not been previously reported. Our results suggest new
nowledge on the genetics and etiology of PD AC , and the ne wl y
dentified proteins could serve as candidate blood biomarkers for
isk assessment of PD AC , a highly fatal malignancy. We also iden-
ified potential drug r epur posing opportunities targeting the iden-
ified pr oteins, whic h warr ant further inv estigations. 

In pr e vious studies, blood concentr ations of specific proteins
uch as CA242, PIVKA-II, PAM4, S100A6, OPN, RBM6, EphA2, and
PG have been reported to be potentially associated with PDAC

isk [ 4–7 ]. In the INTERVAL dataset, proteins S100A6 and OPG
er e ca ptur ed, and w e w er e able to de v elop satisfactory pr e-
iction models for their le v els in blood [ 17 ]. We observed a sig-
ificant association with the same direction for OPG ( P = 0.03,
 score = 2.23) but not for S100A6 ( P = 0.93) with PDAC risk. Such
nconsistent findings with pr e vious studies might be explained by
otential biases in pr e vious epidemiological studies and warrant
urther exploration. 

In this large study, we identified 16 nov el pr oteins that wer e as-
ociated with PDAC risk. Pr e vious studies hav e suggested potential
oles for some of the novel proteins in pancreatic tumorigenesis.
ie1 deficiency is reported to induce endothelial–mesenchymal
r ansition (EndMT) and pr omote a motile phenotype [ 46 ]. EndMT
s known to present in human pancreatic tumors [ 46 ]. Another
tud y re ports that TNF- α, whic h is abundantl y pr esent in PD AC ,
nduces EndMT and acts at least partially through TIE1 regulation
n murine pancreatic tumors [ 47 ]. For CPB1, immunohistochem-
stry of tissue micr oarr ay fr om patients with PDAC sho w ed that
t was significantly downregulated in pancreatic tumor compared
ith adjacent normal pancreatic tissues [ 48 ]. This aligns with the
egative association between genetically predicted levels of car-
o xype ptidase B1 and PDAC risk observed in this study. In another
tud y, it was re ported that mutations in CPB1 were associated with
ancreatic cancer [ 49 ]. Regarding GOLM1, 1 study supported that

ong noncoding RNA TP73-AS1 could promote pancreatic can-
er pr ogr ession thr ough GOLM1 upr egulation by competitiv el y
inding to miR-128–3p [ 50 ]. Further inv estigations ar e warr anted
o clarify roles of the identified proteins in pancreatic cancer
e v elopment. 

Based on drug r epur posing anal yses, we prioritized se v er al
rugs that may serve as promising candidates for treating PD AC ,
uch as crizotinib , cabozantinib , brigatinib , capmatinib , tepotinib ,
nd tivozanib targeting Hepatoc yte gro wth factor receptor (Met).
r e vious r esearc h has supported potential link between these
rugs and PD AC . For example, earlier r esearc h found that crizo-
inib and cabozantinib could decrease PDAC cell line viability in
itro [ 51 ]. Cabozantinib together with photodynamic ther a py had

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data


Pr edicted pr otein biomarkers for pancr eatic cancer | 11 

Figur e 4: T he anal ysis of cell pr olifer ation, migr ation, and inv asion on P ANC-1 and SU.86.86 cells with siB4GAL T1 and siGOLM1 transfection. The 
quantitativ e r eal-time PCR (qPCR) assa y and the Western blot assa y (A) were used to in vestigate the RNAi effect of siB4GALT1 and siGOLM1 (40 nM, 
72h) in PANC-1 and SU.86.86 cells. GAPDH was used as an internal control for qPCR analyses and Western blot analyses, respectively. (B, C) The effect 
of transfection with siB4GALT1 and siGOLM1 (40 nM) on cell proliferation. The cells were detected by MTS 
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carbo xymetho xyphen yl)-2-(4-sulfophen yl)-2H-tetr azolium] assay on each day for 5 consecutive days. (D, E) Silencing 
of B4GALT1 and GOLM1 inhibited migration of PANC-1 and SU.86.86 cells. Re presentati ve images of wound scratch assay were performed to evaluate 
the motility of cells after silencing B4GALT1 and GOLM1 . After transfection, a scr atc h was made on the cell monolayer and was monitored with 
micr oscopy e v ery 12 hours (0, 12, and 24h). Bar gr a phs sho w normalized w ound area, calculated using Gen 5. Re presentati ve images of invasion assay. 
Data are represented as mean ± SD from triplicate samples, where ∗P < 0.01 compared to the control. (F) Effect of siB4GALT1 and siGOLM1 
transfection on the invasion of PANC-1 and SU.86.86 cells. After siB4GALT1 and siGOLM1 transfection for 48h, the invasive ability of PANC-1 and 
SU.86.86 cells were identified by Transwell assay. ∗∗P < 0.01 compared with the control cells; ## P < 0.01 compared with the mock cells; data are 
expressed as the mean ± SD, n = 3. 
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een shown to ac hie v e local contr ol and decrease in tumor metas-
ases in preclinical PDAC models [ 52 ]. A translational mathemat-
cal modeling study r e v ealed that tepotinib at a dose selection of
00 mg once daily could be effective for PDAC [ 53 ]. Further work
s needed to assess potential efficacy of these drug candidates in
DAC treatment. 

Ther e ar e se v er al str engths of this study for detecting pr oteins
ssociated with PDAC risk. We de v eloped compr ehensiv e pr otein
enetic prediction models as instruments, which not only poten-
ially minimize biases commonly encountered in conventional ob-
ervational study design but also bring impr ov ed statistical po w er
ompared with the design of only using pQTLs as instruments.
o w e v er, se v er al limitations of this study need to be recognized
hen inter pr eting our findings. First, our r esults may still be sus-

eptible to potential pleiotropic effects and may not necessar-
ly infer causality. Similar to the design of the TWAS, our PWAS
hould be useful for prioritizing causal proteins; ho w ever, w e can-
ot completely exclude the possibility of false-positive findings

or some of the identified associations [ 54 ]. Se v er al likel y r easons
ay induce these, such as correlated protein expression across

articipants, corr elated geneticall y pr edicted pr otein expr ession,
nd shared genetic variants [ 54 ]. Future functional investigation
ill better c har acterize whether the identified pr oteins play a

ausal role in PDAC development. Second, since in this work, the
eneticall y r egulated components of plasma protein levels were
tudied but not the ov er all measur ed le v els, the utility of the iden-
ified proteins as risk biomarkers for PDAC remains unclear. Ad-
itional work for measuring circulating pr otein le v els in pr edia g-
ostic blood samples is needed to e v aluate the prediction role of
hese proteins in PDAC risk. Third, for our current model develop-

ent design, the candidate predictors for each protein of interest
er el y r el y on the potentially associated SNPs at a specific sta-

istical threshold. A small proportion of proteins were excluded
or downstream model construction because of the lack of such
NPs. Future work considering additional potential predictors be-
ond such statistics-based selection would be needed to impr ov e
he ability to e v aluate additional pr oteins. Fourth, pr e vious work
as supported that covariates of smoking and body mass index
r e r elated to blood pr otein le v els [ 55 , 56 ]. In the curr ent study us-
ng INTERVAL resour ces, w e w ere not able to adjust for these co-
ariates during model construction. Further study is thus needed
o validate our results. Lastly, the current study largely focuses on
uropeans for both protein genetic prediction model development
nd downstream association analyses with PDAC risk. Future re-
earch is warranted to study proteins associated with PDAC risk
n other non-European ancestries. 

Our TGCA data analysis has revealed potential relevance of
4GT1 and GOLM1 in tumorigenesis and tumor pr ogr ession.
4GT1 (beta-1,4-galactosyl tr ansfer ase 1) is an enzyme primar-

l y r esponsible for catal yzing the galactose tr ansfer to specific
eceptor molecules within organisms [ 57 ]. Its significance lies in
ts involvement in various essential biological processes, such
s intercellular communication and cell adhesion. Furthermore,
lterations in the expression level of B4GT1 have been observed
n certain cancers, suggesting its potential implication in tumor
nitiation and de v elopment [ 58 ]. This intriguing finding has led
s to select B4GT1 as a priority target for further exploration
f its role in PDAC using experimental techniques. Similarly,
ur attention was drawn to GOLM1 (Golgi membrane protein
), a membr ane pr otein pr edominantl y located in the Golgi
 ppar atus, whic h plays a pivotal role in cellular secretion and
r ansport pr ocesses . Recent in vestigations ha ve demonstrated
n upregulation of GOLM1 expression in multiple cancer types,
ncluding liver cancer, lung cancer, and pancr eatic cancer. Suc h
 vidence str ongl y suggests that GOLM1 might exert a significant
nfluence on the onset and pr ogr ession of these malignancies
 59 ]. Consequently, we selected GOLM1 as an additional focus for
erification to gain deeper insights into its involvement in PD AC .
y utilizing RNA interference (RNAi) technology to silence these
enes, our experimental r esults corr obor ated the critical roles of
OLM1 and B4GT1 in driving PDAC cell pr olifer ation, migr ation,
nd invasion. Subduing these genes holds promise as a potential
her a peutic a ppr oac h for PDAC tr eatment. 

In summary, using protein genetic prediction models, we iden-
ified 16 novel protein biomarker candidates for which the ge-
eticall y pr edicted circulating le v els wer e significantl y associated
ith PDAC risk. Future work is needed to better c har acterize the
otential roles of these proteins in the etiology of PDAC develop-
ent, assess the pr edictiv e r ole of suc h markers in risk assess-
ent of PD AC , and e v aluate whether the potential drug r epur pos-

ng opportunities we identified may impr ov e PDAC outcomes. 

dditional Files 

upplementary Fig. S1. The top networks identified by IPA. (A)
etwork 1 and (B) network 2. The nodes marked with red indi-
ate proteins associated with pancreatic cancer risk. A solid line
 epr esents a dir ect inter action between 2 nodes, and a dotted line
ndicates an indirect interaction. 
upplementary Fig. S2. (A) Boxplot analysis of GOLM1 gene ex-
ression in PAAD cancer using GEPIA. The plot compares expres-
ion le v els between tumor ( n = 179) and normal control ( n = 171)
amples . T he analysis was conducted based on RNA sequencing
ata from TCGA and GTEx projects ( ∗P < 0.01). (B, C) Survival anal-
sis of GOLM1 gene expression in PAAD cancer using GEPIA. The
urviv al plot compar es the ov er all surviv al (OS) (B) and disease-
r ee surviv al (DFS) (C) between tumor samples with high GOLM1
xpression ( n = 89) and low GOLM1 expression ( n = 89). The anal-
sis utilized the log-rank test for hypothesis testing, with a signif-
cant finding indicating a shorter OS and DFS in the high GOLM1
xpr ession gr oup compar ed with the low GOLM1 expr ession gr oup.
ohort thresholds and expression cutoffs were set based on user-
efined parameters in the GEPIA platform. 
upplementary Fig. S3. (A) Boxplot analysis of B4GALT1 gene ex-
ression in PAAD cancer using GEPIA. The plot compares expres-
ion le v els between tumor ( n = 179) and normal control ( n = 171)
amples . T he analysis was conducted based on RNA sequencing
ata from TCGA and GTEx projects ( ∗P < 0.01). (B, C) Survival
nalysis of B4GALT1 gene expression in PAAD cancer using GEPIA.
he survival plot compares the overall survival (OS) (A) and the
isease-fr ee surviv al (DFS) (B) between tumor samples with high
4GALT1 expression ( n = 89) and low B4GALT1 expression ( n =
9). The analysis utilized the log-rank test for hypothesis testing,
ith a significant finding indicating a shorter OS and DFS in the
igh B4GALT1 expression group compared to the low B4GALT1 ex-
r ession gr oup. Cohort thr esholds and expr ession cutoffs wer e set
ased on user-defined parameters in the GEPIA platform. 
upplementary Table S1. Associations of proteins identified using
QTL as instruments but not show a significant association with
ancreatic cancer risk in the current study. 
upplementary Table S2. Comparison of heritability between
is + trans models and cis -only models. 
upplementary Table S3. Robustness analysis. 
upplementary Table S4. Somatic-le v el potentiall y deleterious
hanges of genes encoding identified proteins in TCGA pancreatic
denocarcinoma patients. 
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Supplementary Table S5. Top diseases , biofunctions , and net- 
works associated with the genes encoding identified pancreatic 
cancer risk-associated proteins. 
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