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Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy, largely due to the paucity of reliable biomarkers for early
detection and therapeutic targeting. Existing blood protein biomarkers for PDAC often suffer from replicability issues, arising from
inherent limitations such as unmeasured confounding factors in conventional epidemiologic study designs. To circumvent these
limitations, we use genetic instruments to identify proteins with genetically predicted levels to be associated with PDAC risk. Lever-
aging genome and plasma proteome data from the INTERVAL study, we established and validated models to predict protein levels
using genetic variants. By examining 8,275 PDAC cases and 6,723 controls, we identified 40 associated proteins, of which 16 are novel.
Functionally validating these candidates by focusing on 2 selected novel protein-encoding genes, GOLM1 and B4GALT1, we demon-
strated their pivotal roles in driving PDAC cell proliferation, migration, and invasion. Furthermore, we also identified potential drug
repurposing opportunities for treating PDAC.

Significance: PDAC is a notoriously difficult-to-treat malignancy, and our limited understanding of causal protein markers hampers
progress in developing effective early detection strategies and treatments. Our study identifies novel causal proteins using genetic
instruments and subsequently functionally validates selected novel proteins. This dual approach enhances our understanding of
PDAC etiology and potentially opens new avenues for therapeutic interventions.
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Introduction usually diagnosed in advanced stages. This results in 80-90% of

Pancreatic cancer is the seventh leading cause of cancer deaths in
industrialized countries with pancreatic ductal adenocarcinoma
(PDAC), making up over 90% of pancreatic cancer cases [1]. Ac-
cording to GLOBOCAN 2020 cancer statistics, pancreatic cancer
is the 14th most common cancer type with 495,773 new cases in
2020. There were almost the same number of deaths caused by
pancreatic cancer (466,003 deaths) in 2020, accounting for 4.7%
of all cancer-related deaths [2]. Owing to its often asymptomatic
or nonspecific symptoms during early stages, most patients are

pancreatic tumors being unresectable upon diagnosis, leading to a
dismal prognosis: a mere 9% five-year survival rate after diagnosis
[1]. Given these dire statistics, there is an urgent need to identify
effective biomarkers for screening or early detection in high-risk
populations. Equally crucial is the development of improved ther-
apeutic strategies to improve PDAC outcome.

Currently, serum cancer antigen (CA) 19-9 is the only diag-
nostic biomarker for pancreatic cancer approved by the US Food
and Drug Administration. However, elevated levels of CA 19-9 are
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related to other conditions, and its performance as a diagnostic
tool for pancreatic cancer is far from ideal [3]: it has a poor pos-
itive predictive value (0.5-0.9%), along with restricted specificity
(82-90%) and sensitivity (79-81%). Previous studies have also re-
ported several other circulating blood protein biomarkers that are
potentially associated with pancreatic cancer risk, such as CA242,
PIVKA-II, and PAM4 [4-7]. However, results from existing studies
often involving small sample sizes and findings are inconsistent.
Itis well known that the conventional epidemiologic study design
measuring levels of proteins directly may be subject to selection
bias and residual or unmeasured confounding, which could also
contribute to the inconsistent findings in the existing literature.

An alternative design of using genetic instruments may de-
crease many limitations of existing studies, due to the nature of
random assortment of alleles from parents to offspring during ga-
mete formation [8, 9]. Inspired by transcriptome-wide association
study (TWAS), one may build comprehensive genetic prediction
models for each protein to capture the prediction value of multi-
ple single-nucleotide polymorphisms (SNPs). Unlike conventional
TWAS type of methods, which typically focus solely on cis-acting
variants, our study enhanced statistical power by integrating both
cis- and trans-acting elements into our genetic prediction mod-
els. Furthermore, as TWAS or proteome-wide association study
(PWAS) results imply causality under stringent valid instrumental
variable assumptions, we further functionally validated two novel
proteins.

In the current study, we applied such a study design to iden-
tify novel proteins associated with PDAC risk. To our knowledge,
this is the first large-scale PWAS using comprehensive protein ge-
netic prediction models as instruments to assess the associations
between genetically predicted blood concentrations of proteins
and PDAC risk. We used data for 8,275 cases and 6,723 controls
of European descent from the Pancreatic Cancer Cohort Consor-
tium (PanScan) and the Pancreatic Cancer Case-Control Consor-
tium (PanC4). Beyond identifying novel proteins, we functionally
validated 2 of them. Moreover, we generated a list of drugs target-
ing the identified proteins that may serve as candidates for drug
repurposing of PDAC.

Methods

Protein genetic prediction model development
and validation

We leveraged the genome and plasma proteome data of healthy
European subjects included in the INTERVAL study to establish
(subcohort 1) and validate (subcohort 2) protein genetic predic-
tion models. The details of the INTERVAL study data have been
published previously [10-14]. Briefly, participants were generally
healthy. The SOMAscan assay was used to collect the relative
levels of 3,620 plasma proteins or complexes. Quality control
(QC) was performed at both the sample and SOMAmer level.
Approximately ~830,000 genetic variants were measured on the
Affymetrix Axiom UK Biobank genotyping array. Standard sam-
ple and variant QC were conducted. SNPs were phased using
SHAPEIT3 and imputed using a combined 1000 Genomes Phase
3-UK10K reference panel, which resulted in over 87 million im-
puted variants. The SNPs were further filtered using criteria of (i)
imputation quality of atleast 0.7, (ii) minor allele count of at least
5%, (iil) Hardy-Weinberg equilibrium (HWE) P > 5 x 10~°, (iv) miss-
ing rates <5%, and (v) presenting in the 1000 Genome Project data
for European populations. Overall there were 4,662,360 variants
passing these criteria.

In subcohort 1 (N = 2,481), as described elsewhere [10], protein
concentrations were log transformed and adjusted for age, sex,
duration between blood draw and processing, and the top 3 prin-
cipal components. For the rank-inverse normalized residuals of
each protein, we followed the TWAS/FUSION framework to estab-
lish prediction models, using nearby variants (within 100 kb) of
potentially associated SNPs as candidate predictors [15]. A false
discovery rate (FDR) <0.05 was used to determine potentially as-
sociated SNPs in cis regions (within 1 Mb of the transcriptional
start site [TSS] of the gene encoding the target protein of inter-
est), and P < 5 x 1078 was used to determine potentially associ-
ated SNPs in trans regions. We only included strand unambiguous
SNPs. Four methods of best linear unbiased predictor (blup), elas-
tic net, least absolute shrinkage and selection operator (LASSO),
and top1 were used to develop the models. For each protein of in-
terest, the model showing the most significant cross-validation P
value among those developed using the 4 methods was selected.
R? > 0.01 was used as the threshold for selecting satisfactory pre-
diction models, which is commonly used in relevant omics inte-
gration studies [16-30]. For protein prediction models with R? >
0.01, external validation was conducted using genetic and protein
data of subcohort 2 (N = 820). Briefly, predicted protein expres-
sion levels were estimated by applying the developed protein pre-
diction models to the genetic data, which were further compared
with the measured levels for each protein of interest. Proteins with
amodel prediction R? of >0.01 in subcohort 1 and a correlation co-
efficient of >0.1in subcohort 2 were selected for association anal-
ysis with PDAC risk. We also estimated the genetic heritability of
plasma proteins (the proportion of the variation of protein levels
that could be explained by potential predictors) using GCTA [31].
We compared the heritability of plasma proteins when using cis +
trans SNPs versus only cis SNPs to assess whether it could capture
more heritability when involving trans SNPs.

Examine associations of genetically predicted
protein levels with PDAC risk

To investigate the associations between genetically predicted cir-
culating protein levels and PDAC risk, the validated protein ge-
netic prediction models were applied to the summary statistics
from a large genome-wide association study (GWAS) of PDAC risk.
In the present work, we used data from a GWAS conducted in the
PanScan and PanC4 consortia downloaded from the database of
Genotypes and Phenotypes (dbGaP), including 8,275 PDAC cases
and 6,723 controls of European ancestry. Detailed information on
this dataset has been included elsewhere [17, 20, 32]. Briefly, 4
GWASs (PanScan [, PanScan II, PanScan 111, and PanC4) were geno-
typed using the Illumina HumanHap550,610-Quad, OmniExpress,
and OmniExpressExome arrays, respectively. Standard QC proce-
dures were performed according to the consortia guidelines [32].
Study participants who were related to each other, had sex dis-
cordance, had genetic ancestry other than Europeans, had a low
call rate (less than 98% and 94% in PanC4 and PanScan, respec-
tively), or had missing information on age or sex were excluded.
Duplicated SNPs and those with a high missing call rate (at least
2% and 6% in PanC4 and PanScan, respectively) or with violations
of HWE (P < 1 x 10™* and P < 1 x 10~/ in PanC4 and PanScan,
respectively) were also removed. Regarding SNP data from PanC4,
those with minor allele frequency <0.005, with more than 2 dis-
cordant calls in duplicate samples, with more than 1 Mendelian
error in HapMap control trios, and with a sex difference in al-
lele frequency >0.2 or in heterozygosity >0.3 for autosomes/XY
in European descendants were further removed. We performed



genotype imputation using Minimac3 after prephasing with
SHAPEIT from a reference panel of the Haplotype Reference Con-
sortium (r1.1 2016) [33, 34]. We retained imputed SNPs with an
imputation quality of >0.3. The associations between individual
genetic variants and PDAC risk were further estimated adjusting
for age, sex, and top principal components. The TWAS/FUSION
framework was used to assess the protein-PDAC risk associations
by leveraging correlations between variants included in the pre-
diction models based on the phase III 1000 Genomes Project data
for European populations [15]. We calculated the PWAS test statis-
tic z-score = WZ/(w”ssw)?, where the Z is a vector of standard-
ized effect sizes of SNPs for a given protein (Wald z-scores), w is a
vector of prediction weights for the abundance feature of the pro-
tein being tested, and the X is the linkage disequilibrium (LD)
matrix of the SNPs estimated from the 1000 Genomes Project as
the LD reference panel. We used the FDR-corrected P value thresh-
old of <0.05 to determine significant associations between genet-
ically predicted protein concentrations and risk of PDAC.

Robustness analyses

To further examine whether the identified significant associa-
tions from the main analyses may be robust to different strate-
gies, 3 alternative strategies were used to test these proteins un-
der different scenarios. First, we established prediction models
using the bslmm method embedded in TWAS/FUSION software.
This method was not enabled by the default parameter due to
the intensive Markov chain Monte Carlo (MCMC) computation, al-
though bslmm has some advantages and might increase predic-
tion accuracy in some conditions. Second, we pruned the highly
correlated SNPs, and only SNPs weakly correlated with each other
were used as potential predictors. In the current analysis, we
pruned SNPs using pruning parameters 1> = 0.1 and distance =
250 kb. Third, we assessed the robustness of the significant asso-
ciation results by examining different P value cutoffs for selecting
informative trans regions (P < 5 x 10~7,P <5 x 10™%,and P < 5 x
107'%) as candidate predictors for model building. The association
results with a nominal P < 0.05 and consistent effect direction
were considered replicated.

Somatic variants of genes encoding associated
proteins
For each of the genes encoding the proteins that are identified to
be associated with PDAC risk, we evaluated potentially deleteri-
ous somatic level mutations in 150 patients with PDAC included
in The Cancer Genome Atlas (TCGA). The potentially deleterious
somatic variants include missense mutations, splice site muta-
tions, nonstop mutations, nonsense mutations, frameshift muta-
tions, in-frame mutations, and translation start site mutations.
The somatic-level genetic changes were called using MuTect2
[35] and deposited to the TCGA data portal. The enrichment of
the proportion of assessed genes containing such somatic-level
genetic events compared with the proportion of all protein-coding
genes across the genome was evaluated using socscistatistics on-
line website [36].

Ingenuity Pathway Analysis and protein-protein
interaction analysis

To further assess whether genes encoding the identified PDAC-
associated proteins are enriched in specific pathways, molecular
and cellular functions, and networks, we performed the enrich-
ment analysis using Ingenuity Pathway Analysis (IPA) software
[37]. The “enrichment” score (Fisher exact test P value) that mea-
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sures overlap of observed and predicted regulated gene sets was
generated for each of the tested gene sets. The most significant
pathways and functions with an enrichment P value less than 0.05
were reported. We also built a protein-protein interaction (PPI)
network using STRING database version 11.5 with a 0.400 con-
fidence level [38]. The STRING database integrates different cu-
rated databases containing information on known and predicted
functional protein-protein associations.

Drug repurposing analysis

For the identified proteins, we further assessed whether there
is any evidence supporting their potential roles in PDAC by us-
ing the OpenTargets [39]. Focusing on those showing a poten-
tial relevance, we further mined evidence of their targeting drugs
using the DrugBank [40] database. We also conducted molecu-
lar docking analysis for the identified proteins and correspond-
ing candidate drug agents [41]. Specifically, we downloaded the
3-dimensional structure of targeted proteins from the Protein
Data Bank (PDB) [42] with source code 1CPB, 3CDZ, 1IGR, 3DFK,
S5NOO6, and drug agents from the PubChem database [43]. We fur-
ther worked out molecular docking between each of the proteins
and the corresponding meta-drug agents to calculate the binding
affinity scores (kcal/mol) for each pair of proteins and drugs.

In vitro functional validation of genes encoding
selected associated novel proteins

Cell lines and culture condition

Human pancreatic cancer cell lines PANC-1 and SU.86.86 were
obtained from ATCC (American Type Culture Collection). All
cells were cultured in vitro in Dulbecco’s modified Eagle medium
(DMEM) high-glucose medium (Gibco) supplemented with 10%
(v/v) fetal bovine serum (FBS) (Gibco). Cells were incubated at 37°C
with 5% CO5.

Gene expression and survival analysis with TCGA database
The examination of GOLM1 and B4GALT1 gene expressions in pan-
creatic adenocarcinoma (PAAD) was conducted using the Gene Ex-
pression Profiling Interactive Analysis (GEPIA). The platform, ac-
cessible at [44], facilitated analysis with a dataset consisting of
179 tumor samples and 171 normal controls. The focus of survival
analysis was exclusively on PAAD, leveraging TCGA data through
the GEPIA web server.

Customized gene selection, normalization, and survival
methodologies were implemented to suit the unique characteris-
tics of PAAD. Cohort thresholds were defined, restricting dataset
selection to PAAD, and survival plots were generated. These
measures were designed to precisely identify the correlation
between gene expression and survival outcomes specific to this
type of cancer.

Western blotting

Post 72-hour silencing, we processed control, B4AGALT1-silenced,
and GOLM1-silenced cells for Western blotting. Cells were lysed
using RIPA buffer, and equal protein amounts were separated
on 10% or 12% SDS polyacrylamide gels, then transferred onto
PVDF membranes. To prevent nonspecific antibody binding, mem-
branes were blocked with 5% milk in TBS with 0.1% Tween
for an hour. They were then probed with anti-B4GALT1, anti-
GOLM1, and anti-GAPDH antibodies, followed by their respective
horseradish peroxidase-conjugated secondary antibodies. Sig-
nal detection was performed using Pierce ECL Western Blotting
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Substrate, and images were captured and analyzed using Odyssey
FC and ImageStudio software.

Quantitative real-time PCR

Total RNA was extracted from cells using TRNzol reagent accord-
ing to the manufacturer’'s protocol. The concentration of RNA
was determined using a UV spectrophotometer. Subsequently,
2 mg total RNA was reverse transcribed into complementary
DNA (cDNA) using the iScript cDNA Synthesis Kit. Quantitative
PCR (qPCR) analysis was performed on the CFX96 Real-Time PCR
Detection System using the iTaq Universal SYBR Green Super-
mix. The aim was to detect the expression levels of 3 genes:
B4GALT1, GOLM1, and GAPDH messenger RNAs (mRNAs). Spe-
cific primer pairs were used for each gene. For B4GALT1, the for-
ward sequence was GTATTTTGGAGGTGTCTCTGCTC, and the re-
verse sequence was GGGCGAGATATAGACATGCCTC. For GOLM1,
the forward sequence was ATCACCACAGGTGAGAGGCTCA, and
the reverse sequence was ACTTCCTCTCCAGGTTGGTCTG. For the
housekeeping gene GAPDH, the forward sequence was GTCTC-
CTCTGACTTCAACAGCG, and the reverse sequence was ACCACC-
CTGTTGCTGTAGCCAA. During the gPCR analysis, melting curves
were generated to detect primer-dimer formation and confirm the
specificity of the gene-specific peaks for each target. To ensure ac-
curate quantification, the expression data were normalized to the
amount of GAPDH mRNA expressed.

Transfection of small interfering RNA

The transfection of small interfering RNA (siRNA) was per-
formed using specific human siRNAs targeting GOLM1
(SASI_Hs01_00,223,155), B4GALT1 (SASI_Hs01_00,080,445), and
the MISSION siRNA universal negative control, all of which were
obtained from Sigma-Aldrich. Cells were seeded in 6-well plates at
a density of 1.5 x 10° cells per well and subsequently transfected
with the siRNAs at a concentration of 40 nM. The transfection
procedure utilized the Lipofectamine 2000 reagent (Invitrogen)
following the manufacturer's recommended guidelines. Gene
silencing at both mRNA and protein levels was typically observed
72 hours posttransfection. As such, the cells were collected
and subjected to assays at the 72-hour time point to assess the
efficacy of gene silencing.

Cell proliferation assay

To observe cell proliferation, cells were transfected with mock
siRNA, siGOLM1, and siB4GALT1 (40 nM). At 24 hours af-
ter transfection, the cells were trypsinized and seeded into
96-well plates (Corning) at a density of 5,000 cells/well in
200 pL media. The plates were incubated in a 37°C hu-
midified incubator. Cell proliferation was monitored daily by
the [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium| (MTS) assay.

In vitro invasion assay

Cell invasion was assessed following transfection with mock
SiRNA, siGOLM1, and siB4GALT1 (40 nM). A modified Boyden
chamber method was employed. Matrigel (BD Biosciences) was
coated on the upper chamber of Transwell inserts (Corning, 8-pum
pore size) at a concentration of 300 ug/mL, allowing gel forma-
tion for 2 hours at 37°C. Cells (5 x 10*) were then suspended in
200 pL serum-free medium and added to the upper chamber. The
lower chamber contained 600 pL medium with 10% FBS, acting
as a chemoattractant. Following 24 hours of incubation at 37°C,
noninvading cells on the upper membrane surface were gently
removed using a cotton swab. Cells that invaded the lower mem-

brane surface were fixed with 4% paraformaldehyde and stained
with 0.1% crystal violet. Invasion was quantified by counting the
stained cells on the underside of the membrane using a light
microscope (10 random fields at 200x magnification). All exper-
iments were performed in triplicate to ensure robustness of the
findings.

Wound scratch assay

After 24 hours of transfection with mock siRNA, siGOLM1, and
siB4GALT1, PANC-1 and SU.86.86 cells were cultured in a 96-well
plate to form a monolayer. Using BioTek’s AutoScratch Wound
Making Tool, straight scratches were carefully created on the cell
monolayer to mimic wounds, following the equipment manual’s
instructions. Time-lapse images of the scratches were captured
at specific intervals (e.g., 0 hours, 12 hours, 24 hours, etc.) using
the Cytation 5 Cell Imaging Multi-Mode Reader. Subsequently, im-
age analysis software was employed to quantify the closure of the
wounds at each time point. Statistical analysis was performed to
compare the wound closure rates at different time points, and the
results were presented graphically.

Results

The overall workflow of this study is shown in Fig. 1. Of the pro-
teins assessed, we were able to develop prediction models for
1,864 proteins with a prediction performance R? > 0.01. In the
external validation step, 1,389 of them further demonstrated a
correlation coefficient of >0.1 for predicted expression and mea-
sured expression levels. The heritability of the proteins ranged
from 0.001 to 0.87, with an average value of 0.14. Of such pro-
teins, we observed significant associations between genetically
predicted expression levels of 40 proteins and PDAC risk at an FDR
P value of <0.05 (Fig. 2, Tables 1 and 2). Of the associated proteins,
16 are novel ones that have not been reported in previous stud-
ies (Table 1). Positive associations were observed for 10 of these
proteins, and inverse associations were observed for 6 proteins
(Table 1). The other 24 associated proteins have been previously
reported in our study using pQTL as instruments [45] (Table 2).
These include 10 that demonstrated positive associations and 14
that showed inverse associations.

For the other proteins that were reported in our previous
study using pQTL as instruments [45], while did not show a sig-
nificant association after FDR correction in the current study
(Supplementary Table S1), except for sTie-2, the directions of ef-
fect were consistent in the current study compared with those
in the published work. Among them, for 8 proteins, their associ-
ations were at P < 0.05 in the current work using protein genetic
prediction models as instruments (Supplementary Table S1).

We compared the heritability of the prediction models estab-
lished using cis + trans and cis-only predictors strategies. Here, we
focused on the 490 models established using both cis and trans
SNPs in the main analysis. The results showed that 250 out of
the 490 (51.02%) models have higher estimated heritability with
the cis + trans strategy (Supplementary Table S2), and 215 pro-
teins (43.88%) showed the same estimated heritability between cis
+ trans and cis-only strategies (Supplementary Table S2). Only 25
proteins (5.10%) showed lower estimated heritability when using
the cis + trans strategy (Supplementary Table S2). These results
showed that trans SNPs could in general increase heritability of
the prediction models.

The robustness analysis showed that all the 40 PDAC-
associated proteins had the same effect directions
(Supplementary Table S3). A total of 39 proteins could be tested
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Figure 2: Manhattan plot of 40 identified proteins associated with PDAC risk. Proteins in blue represent those identified in our previous work using
PQTL as instruments, and proteins in red represent novel ones identified in the current study.

using the bslmm method and 37 out of the 39 (94.87%) could be
replicated (except for SEMA6A and CHST11 proteins). When we
removed highly correlated SNPs and only weakly correlated SNPs
were used for establishing prediction models, a total of 39 pre-
diction models were established. The association results showed
that associations of 38 out of the 39 (97.44%) proteins could be
replicated (Supplementary Table S3). In addition, 3 different P
value thresholds (P <5 x 1077,P <5 x 107°,and P < 5 x 107%) for
selecting trans SNPs were examined (Supplementary Table S3).

All the association results were consistent with those in our main
analysis. The above results showed the robustness of our main
results.

Based on a comparison of exome-sequencing data of tumor tis-
sue and tumor-adjacent normal tissue obtained from 150 TCGA
PDAC patients, the somatic-level changes of potentially functional
variants/mutations were observed in atleast 1 patient for 10 of the
39 genes encoding identified associated proteins (Supplementary
Table S4). This proportion (10/39 = 25.64%) is significantly higher
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Figure 3: PPI network and canonical pathways of 40 identified proteins associated with PDAC risk. Network nodes represent proteins, edge thickness is
proportional to the evidence for the PPI, and dashed lines represent the interaction among clusters. The enrichment of canonical pathways was

determined using IPA software.

(enrichment P < 0.00001) than the overall observed proportion
of potentially functional changes across the genes encoding
the proteins tested for association analyses (95/1,218 = 7.80%;
here 1,218 represents the number of the genes available in
TCGA analysis as part of the genes encoding the 1,389 assessed
proteins).

According to the IPA analysis, several cancer-related functions
were enriched for the genes encoding our identified proteins
(Supplementary Table S5). The top canonical pathways identi-
fied included I1-15 production (P = 2.21 x 10~3), Heparan Sul-
fate Biosynthesis (Late Stages) (P = 2.97 x 1073), Heparan Sulfate
Biosynthesis (P = 3.99 x 107%), Sperm Motility (P = 7.73 x 1073),
and Dermatan Sulfate Biosynthesis (Late Stages) (P = 0.01) (Fig. 3).
Among the related networks, the top network was cell-to-cell sig-
naling and interaction, cardiovascular system development and
function, and organismal development (Supplementary Fig. S1),
followed by cancer, organismal injury and abnormalities, respi-
ratory disease, free radical scavenging, cell death and survival,
organismal injury and abnormalities, carbohydrate metabolism,
small molecule biochemistry, cell cycle, and cancer, cell-to-cell
signaling and interaction, and cellular assembly and organization.

Interactions among identified proteins were investigated based
on STRING database (Fig. 3). In the network, KDR was predicted
to interact with IGF1R, NOTCH1, MET, SEMA6A, ENG, SELP, and
SELE.

Based on interrogation using the OpenTargets and DrugBank
database, 10 of the identified proteins are supported to be rele-
vant to PDAC (overall score >0 in OpenTargets) and are targets
of existing drugs approved to be used to treat human conditions
(Table 3). Our work indicates potential drug repurposing oppor-
tunities of these drug targets to other indications. The scores of
molecular docking between each of the proteins and the corre-
sponding meta-drug agents are included in Table 3.

Among the 16 novel associated proteins, analysis of TGCA data
also revealed potential relevance of B4GT1 and GOLM1 with tu-
mor development (Supplementary Figs. S2 and S3). The examina-
tion of GOLM1 and B4GALT1 gene expression in PAAD cancer was
conducted using Gene Expression Profiling Interactive Analysis
(GEPIA). The analysis involved a dataset consisting of 179 tumor
samples and 171 normal controls. The boxplot analysis revealed
a statistically significant increase in GOLM1 (Supplementary Fig.
S2A) and B4GALT1 (Supplementary Fig. S3A) expression in the


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data

Table 3: Drug repurposing opportunities
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OpenTargets
Protein-encoding information Molecular  Molecular docking
Protein Protein full name gene (overall score) Drugbank ID Drug name action score*
sTie-1 Tyrosine-protein TIE1 0.006 DB12010 Fostamatinib Inhibitor -6.1
kinase receptor Tie-1,
soluble
Carboxypeptidase B1 ~ Carboxypeptidase B CPB1 0.159 DB04272 Citric acid NA -39
Chymotrypsin Chymotrypsinogen B CTRB1 0.078 DB06692 Aprotinin NA MDNA
sE-Selectin E-selectin SELE 0.023 DB01136 Carvedilol Inhibitor -6.9
P-Selectin P-Selectin SELP 0.008 DB01109 Heparin Inhibitor -4.9
DB08813 Nadroparin Inhibitor -4.9
DB06779 Dalteparin Inhibitor —4.9
DB15271 Crizanlizumab Inhibitor 3DSNA
VEGF sR2 Vascular endothelial KDR 0.367 DB06589 Pazopanib Inhibitor -6.3
growth factor receptor
2
DB08896 Regorafenib Inhibitor -6.5
DB09079 Nintedanib Inhibitor -5.8
DB14840 Ripretinib Inhibitor —6.6
DB00398 Sorafenib Antagonist —6.6
DB01268 Sunitinib Inhibitor -5.6
DB06595 Midostaurin Antagonist -5.1
inhibitor
DB06626 Axitinib Inhibitor —6.0
DB08875 Cabozantinib Antagonist -7.0
DB08901 Ponatinib Inhibitor -6.9
DB09078 Lenvatinib Inhibitor -6.1
DB05578 Ramucirumab Antagonist 3DSNA
DB12010 Fostamatinib Inhibitor -53
DB12147 Erdafitinib Substrate -55
DB15822 Pralsetinib Inhibitor -6.9
DB11800 Tivozanib Inhibitor —6.4
ADH1B Alcohol ADHI1B 0.001 DB00898 Ethanol Substrate -2.8
dehydrogenase 1B
DB09462 Glycerin NA -37
DB00157 NADH Substrate -9.6
DB01213 Fomepizole Inhibitor -3.9
Met Hepatocyte growth MET 0.304 DB08865 Crizotinib Inhibitor -8.1
factor receptor
DB08875 Cabozantinib Antagonist -8
DB12267 Brigatinib Inhibitor -8.2
DB12010 Fostamatinib Inhibitor -6.7
DB11791 Capmatinib Inhibitor -8.7
DB15133 Tepotinib Inhibitor -83
DB11800 Tivozanib Inhibitor -8.2
DB16695 Amivantamab Antagonist 3DSNA
antibody
IGF-IsR Insulin-like growth IGFIR 0.099 DB00071 Insulin pork NA MDNA
factor 1 receptor
DB00046 Insulin lispro Activator MDNA
DB01307 Insulin detemir Activator MDNA
DB00047 Insulin glargine Activator MDNA
DB01306 Insulin aspart Activator MDNA
DB01309 Insulin glulisine Activator MDNA
DB09564 Insulin degludec Activator MDNA
DB14751 Mecasermin Agonist MDNA
rinfabate
DB09456 Insulin beef Activator MDNA
DB08804 Nandrolone Inducer -5.8
decanoate
DB01277 Mecasermin Agonist 3DSNA
DB00030 Insulin human Activator MDNA
DB06343 Teprotumumab Binder, 3DSNA
antibody
DB12267 Brigatinib Inhibitor -5.7
IR Insulin receptor INSR 0.013 DB00047 Insulin glargine Agonist MDNA
DB00071 Insulin pork Binder MDNA
DB01307 Insulin detemir Agonist MDNA
DB00046 Insulin lispro Agonist MDNA
DB01306 Insulin aspart Agonist MDNA
DB01309 Insulin glulisine Agonist MDNA
DB09564 Insulin degludec Agonist MDNA
DB09129 Chromic chloride Activator MDNA
DB14751 Mecasermin NA MDNA
rinfabate
DB09456 Insulin beef Agonist MDNA
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Table 3: (Continued)

OpenTargets
Protein-encoding information Molecular  Molecular docking
Protein Protein full name gene (overall score) Drugbank ID Drug name action score*
DB00030 Insulin human Agonist MDNA
DB01277 Mecasermin NA 3DSNA
DB12267 Brigatinib Binding -84
DB12010 Fostamatinib Inhibitor -7.5

*A score of <—7 represents a good interaction between the protein and corresponding drug agent and is bolded.

MDNA: molecular docking not applicable; 3DSNA: 3D structure not available.

tumor samples as compared with the normal control group.
GEPIA, accessible through [44], served as the platform for this in-
vestigation. The survival analysis of GOLM1 and B4GALT1 gene
expression in PAAD cancer was conducted using GEPIA. Survival
plots revealed a significant decrease in overall survival (OS) and
disease-free survival (DFS) among tumor samples exhibiting ele-
vated GOLM1 or B4GALT1 expression (n = 89) compared with those
with low expression (n = 89). Employing the log-rank test for hy-
pothesis testing, our findings emphasize a noteworthy correla-
tion between heightened gene expression and reduced OS and
DFS in the PAAD cancer cohort (Supplementary Fig. S2B, C and
Supplementary Fig. 3B, C). Consequently, these 2 proteins were
selected as the targets for experimental validation to further in-
vestigate their potential roles in PDAC development. Two gene-
specific siRNAs (siGOLM1 and siB4GALT1) were employed for post-
transcriptional gene silencing of GOLM1 and B4GALT1, resulting in
the knockdown of these 2 genes. As depicted in Fig. 4A, gPCR anal-
ysis demonstrated a significant reduction in the mRNA expression
of GOLM1 and B4GALT1 in PANC-1 and SU.86.86 cells at 72 hours
after transfection with siGOLM1 or siB4GALT1 (40 nM) when com-
pared with the untreated control group (P < 0.05). No significant
difference was observed between the negative control group (NC,
mock-siRNA transfection) and the control groups (Fig. 4A). This
trend was also consistent in the Western blot analysis (Fig. 4B)
in comparison with the gPCR assay, indicating that siGOLM1
and siB4GALT1 effectively reduce the expression of GOLM1 and
B4GALT1 at both mRNA and protein levels in PANC-1 and SU.86.86
cells.

To assess the biological impact of GOLM1 and B4GALT1 silenc-
ing in PANC-1 and SU.86.86 cells, cell proliferation was exam-
ined using the MTS assay over a span of 5 consecutive days. As
shown in Fig. 4C and D, transfection of siGOLM1 and siB4GALT1
inhibited cell proliferation in both PANC-1 and SU.86.86 cells
compared with the control (untransfected) and NC (mock-siRNA
transfected) groups. Furthermore, a wound-healing assay demon-
strated that at 12 and 24 hours postscratch treatment, the open
wound area in GOLM1 and B4GALT1 siRNA-transfected cells was
significantly larger than that in mock siRNA-transfected or un-
transfected cells (Fig. 4D, E), implying that knockdown of GOLM1
and B4GALT1 in PANC-1 and SU.86.86 cells effectively inhibited
cell migration in vitro. To investigate whether the downregula-
tion of GOLM1 and B4GALT1 affects the invasive capabilities of
PANC-1 and SU.86.86 cells, a Transwell analysis was performed.
The results revealed a significant inhibition of cell invasion in
PANC-1 and SU.86.86 cells upon GOLM1 or B4GALT1 silencing.
The number of siGOLM1- or siB4GALT1-transfected cells invad-
ing through the membrane was markedly lower than that of
control-siRNA transfected cells (Fig. 4F, P < 0.05). Together, our
findings suggest that GOLM1 and B4GT1 play crucial roles in
PDAC cell proliferation, migration, and invasion, and their sup-
pression could potentially serve as a therapeutic strategy for
PDAC.

Discussion

This is the first PWAS study using comprehensive protein genetic
prediction models to assess the associations between genetically
predicted circulating protein concentrations and PDAC risk. Over-
all, we identified 40 proteins that were significantly associated
with PDAC risk after FDR correction, including 16 novel proteins
that have not been previously reported. Our results suggest new
knowledge on the genetics and etiology of PDAC, and the newly
identified proteins could serve as candidate blood biomarkers for
risk assessment of PDAC, a highly fatal malignancy. We also iden-
tified potential drug repurposing opportunities targeting the iden-
tified proteins, which warrant further investigations.

In previous studies, blood concentrations of specific proteins
such as CA242, PIVKA-II, PAM4, S100A6, OPN, RBM6, EphA2, and
OPG have been reported to be potentially associated with PDAC
risk [4-7]. In the INTERVAL dataset, proteins S100A6 and OPG
were captured, and we were able to develop satisfactory pre-
diction models for their levels in blood [17]. We observed a sig-
nificant association with the same direction for OPG (P = 0.03,
z score = 2.23) but not for SI00A6 (P = 0.93) with PDAC risk. Such
inconsistent findings with previous studies might be explained by
potential biases in previous epidemiological studies and warrant
further exploration.

In this large study, we identified 16 novel proteins that were as-
sociated with PDAC risk. Previous studies have suggested potential
roles for some of the novel proteins in pancreatic tumorigenesis.
Tiel deficiency is reported to induce endothelial-mesenchymal
transition (EndMT) and promote a motile phenotype [46]. EndMT
is known to present in human pancreatic tumors [46]. Another
study reports that TNF-«, which is abundantly present in PDAC,
induces EndMT and acts at least partially through TIE1 regulation
in murine pancreatic tumors [47]. For CPB1, immunohistochem-
istry of tissue microarray from patients with PDAC showed that
it was significantly downregulated in pancreatic tumor compared
with adjacent normal pancreatic tissues [48]. This aligns with the
negative association between genetically predicted levels of car-
boxypeptidase B1 and PDAC risk observed in this study. In another
study, it was reported that mutations in CPB1 were associated with
pancreatic cancer [49]. Regarding GOLM1, 1 study supported that
long noncoding RNA TP73-AS1 could promote pancreatic can-
cer progression through GOLM1 upregulation by competitively
binding to miR-128-3p [50]. Further investigations are warranted
to clarify roles of the identified proteins in pancreatic cancer
development.

Based on drug repurposing analyses, we prioritized several
drugs that may serve as promising candidates for treating PDAC,
such as crizotinib, cabozantinib, brigatinib, capmatinib, tepotinib,
and tivozanib targeting Hepatocyte growth factor receptor (Met).
Previous research has supported potential link between these
drugs and PDAC. For example, earlier research found that crizo-
tinib and cabozantinib could decrease PDAC cell line viability in
vitro [51]. Cabozantinib together with photodynamic therapy had


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae012#supplementary-data
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72h) in PANC-1 and SU.86.86 cells. GAPDH was used as an internal control for gPCR analyses and Western blot analyses, respectively. (B, C) The effect
of transfection with siB4GALT1 and siGOLM1 (40 nM) on cell proliferation. The cells were detected by MTS
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium] assay on each day for 5 consecutive days. (D, E) Silencing
of B4GALT1 and GOLM1 inhibited migration of PANC-1 and SU.86.86 cells. Representative images of wound scratch assay were performed to evaluate

the motility of cells after silencing B4GALT1 and GOLM1. After transfection, a scratch was made on the cell monolayer and was monitored with

microscopy every 12 hours (0, 12, and 24h). Bar graphs show normalized wound area, calculated using Gen S. Representative images of invasion assay.
Data are represented as mean + SD from triplicate samples, where *P < 0.01 compared to the control. (F) Effect of siB4GALT1 and siGOLM1

transfection on the invasion of PANC-1 and SU.86.86 cells. After siB4GALT1 and siGOLM1 transfection for 48h, the invasive ability of PANC-1 and

SU.86.86 cells were identified by Transwell assay. P < 0.01 compared with the control cells; #P < 0.01 compared with the mock cells; data are

expressed as the mean + SD,n = 3.
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been shown to achieve local control and decrease in tumor metas-
tases in preclinical PDAC models [52]. A translational mathemat-
ical modeling study revealed that tepotinib at a dose selection of
500 mg once daily could be effective for PDAC [53]. Further work
is needed to assess potential efficacy of these drug candidates in
PDAC treatment.

There are several strengths of this study for detecting proteins
associated with PDAC risk. We developed comprehensive protein
genetic prediction models as instruments, which not only poten-
tially minimize biases commonly encountered in conventional ob-
servational study design but also bring improved statistical power
compared with the design of only using pQTLs as instruments.
However, several limitations of this study need to be recognized
when interpreting our findings. First, our results may still be sus-
ceptible to potential pleiotropic effects and may not necessar-
ily infer causality. Similar to the design of the TWAS, our PWAS
should be useful for prioritizing causal proteins; however, we can-
not completely exclude the possibility of false-positive findings
for some of the identified associations [54]. Several likely reasons
may induce these, such as correlated protein expression across
participants, correlated genetically predicted protein expression,
and shared genetic variants [54]. Future functional investigation
will better characterize whether the identified proteins play a
causal role in PDAC development. Second, since in this work, the
genetically regulated components of plasma protein levels were
studied but not the overall measured levels, the utility of the iden-
tified proteins as risk biomarkers for PDAC remains unclear. Ad-
ditional work for measuring circulating protein levels in prediag-
nostic blood samples is needed to evaluate the prediction role of
these proteins in PDAC risk. Third, for our current model develop-
ment design, the candidate predictors for each protein of interest
merely rely on the potentially associated SNPs at a specific sta-
tistical threshold. A small proportion of proteins were excluded
for downstream model construction because of the lack of such
SNPs. Future work considering additional potential predictors be-
yond such statistics-based selection would be needed to improve
the ability to evaluate additional proteins. Fourth, previous work
has supported that covariates of smoking and body mass index
are related to blood protein levels 55, 56]. In the current study us-
ing INTERVAL resources, we were not able to adjust for these co-
variates during model construction. Further study is thus needed
to validate our results. Lastly, the current study largely focuses on
Europeans for both protein genetic prediction model development
and downstream association analyses with PDAC risk. Future re-
search is warranted to study proteins associated with PDAC risk
in other non-European ancestries.

Our TGCA data analysis has revealed potential relevance of
B4GT1 and GOLMI1 in tumorigenesis and tumor progression.
B4GT1 (beta-1,4-galactosyl transferase 1) is an enzyme primar-
ily responsible for catalyzing the galactose transfer to specific
receptor molecules within organisms [57]. Its significance lies in
its involvement in various essential biological processes, such
as intercellular communication and cell adhesion. Furthermore,
alterations in the expression level of B4GT1 have been observed
in certain cancers, suggesting its potential implication in tumor
initiation and development [58]. This intriguing finding has led
us to select B4GT1 as a priority target for further exploration
of its role in PDAC using experimental techniques. Similarly,
our attention was drawn to GOLM1 (Golgi membrane protein
1), 2 membrane protein predominantly located in the Golgi
apparatus, which plays a pivotal role in cellular secretion and
transport processes. Recent investigations have demonstrated
an upregulation of GOLM1 expression in multiple cancer types,

including liver cancer, lung cancer, and pancreatic cancer. Such
evidence strongly suggests that GOLM1 might exert a significant
influence on the onset and progression of these malignancies
[59]. Consequently, we selected GOLM1 as an additional focus for
verification to gain deeper insights into its involvement in PDAC.
By utilizing RNA interference (RNAi) technology to silence these
genes, our experimental results corroborated the critical roles of
GOLM1 and B4GT1 in driving PDAC cell proliferation, migration,
and invasion. Subduing these genes holds promise as a potential
therapeutic approach for PDAC treatment.

In summary, using protein genetic prediction models, we iden-
tified 16 novel protein biomarker candidates for which the ge-
netically predicted circulating levels were significantly associated
with PDAC risk. Future work is needed to better characterize the
potential roles of these proteins in the etiology of PDAC develop-
ment, assess the predictive role of such markers in risk assess-
ment of PDAC, and evaluate whether the potential drug repurpos-
ing opportunities we identified may improve PDAC outcomes.

Additional Files

Supplementary Fig. S1. The top networks identified by IPA. (A)
Network 1 and (B) network 2. The nodes marked with red indi-
cate proteins associated with pancreatic cancer risk. A solid line
represents a direct interaction between 2 nodes, and a dotted line
indicates an indirect interaction.

Supplementary Fig. S2. (A) Boxplot analysis of GOLM1 gene ex-
pression in PAAD cancer using GEPIA. The plot compares expres-
sion levels between tumor (n = 179) and normal control (n = 171)
samples. The analysis was conducted based on RNA sequencing
data from TCGA and GTEx projects (*P < 0.01). (B, C) Survival anal-
ysis of GOLM1 gene expression in PAAD cancer using GEPIA. The
survival plot compares the overall survival (OS) (B) and disease-
free survival (DFS) (C) between tumor samples with high GOLM1
expression (n = 89) and low GOLM1 expression (n = 89). The anal-
ysis utilized the log-rank test for hypothesis testing, with a signif-
icant finding indicating a shorter OS and DFS in the high GOLM1
expression group compared with the low GOLM1 expression group.
Cohort thresholds and expression cutoffs were set based on user-
defined parameters in the GEPIA platform.

Supplementary Fig. S3. (A) Boxplot analysis of B4GALT1 gene ex-
pression in PAAD cancer using GEPIA. The plot compares expres-
sion levels between tumor (n = 179) and normal control (n = 171)
samples. The analysis was conducted based on RNA sequencing
data from TCGA and GTEx projects (*P < 0.01). (B, C) Survival
analysis of B4GALT1 gene expression in PAAD cancer using GEPIA.
The survival plot compares the overall survival (OS) (A) and the
disease-free survival (DFS) (B) between tumor samples with high
B4GALT1 expression (n = 89) and low B4GALT1 expression (n =
89). The analysis utilized the log-rank test for hypothesis testing,
with a significant finding indicating a shorter OS and DFS in the
high B4GALT1 expression group compared to the low B4GALT1 ex-
pression group. Cohort thresholds and expression cutoffs were set
based on user-defined parameters in the GEPIA platform.
Supplementary Table S1. Associations of proteins identified using
pQTL as instruments but not show a significant association with
pancreatic cancer risk in the current study.

Supplementary Table S2. Comparison of heritability between
cis + trans models and cis-only models.

Supplementary Table S3. Robustness analysis.

Supplementary Table S4. Somatic-level potentially deleterious
changes of genes encoding identified proteins in TCGA pancreatic
adenocarcinoma patients.



Supplementary Table S5. Top diseases, biofunctions, and net-
works associated with the genes encoding identified pancreatic
cancer risk-associated proteins.
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