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Simple Summary: Vitamin A, a vital fat-soluble micronutrient, is indispensable for the health and
well-being of companion animals, notably dogs and cats. Its multifaceted roles encompass crucial
functions in vision, immune modulation, and reproductive health. Vitamin A is intricately involved
in cellular differentiation, gene expression, and antioxidant defense mechanisms, exerting a profound
influence on the overall physiological function. A deficiency in this essential vitamin can lead to
a spectrum of health issues, including compromised vision, an impaired immune function, and
reproductive abnormalities. A comprehensive understanding of the mechanisms involved in the
absorption, cellular uptake, and metabolic pathways of vitamin A is crucial for optimizing the nutri-
tion of companion animals. Further research on retinoids is essential to deepen our understanding
and to refine dietary recommendations tailored to the unique needs of companion animals, thereby
ensuring their optimal health and vitality.

Abstract: The health of companion animals, particularly dogs and cats, is significantly influenced
by nutrition, with vitamins playing a crucial role. Vitamin A, in particular, is indispensable, with
diverse roles ranging from vision to immune modulation and reproduction. Despite its importance,
the metabolism and dietary requirements of vitamin A in companion animals remain complex and
not fully understood. This review provides a comprehensive overview of the historical perspective,
the digestion, the metabolism, the physiological roles, the deficiency, the excess, and the interactions
with other micronutrients of vitamin A in companion animals. Additionally, it highlights future
research directions and gaps in our understanding. Insights into the metabolism of vitamin A in
companion animals, personalized nutrition strategies based on genetic variability, longitudinal studies
tracking the status of vitamin A, and investigations into its immunomodulatory effects are crucial for
optimizing pet health and wellness. Furthermore, understanding the stability and bioavailability of
vitamin A in pet food formulations is essential for ensuring the provision of adequate micronutrients.
Overall, this review underscores the importance of vitamin A in companion animal nutrition and the
need for further research to enhance our understanding and to optimize dietary recommendations
for pet health and well-being.
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1. Introduction

In the important domain of companion animal health, particularly concerning species
such as dogs and cats, there is an increasing emphasis on the vital role of nutrition, particu-
larly in relation to vitamins. Veterinarians, pet owners, and researchers are progressively
acknowledging the significance of these organic compounds in animal well-being and
longevity, given their indispensable role in physiological functions [1–4]. Vitamins, func-
tioning as crucial components in the complex machinery of life, serve diverse roles, with
vitamin A being notably versatile, involved in vision, immune system modulation, cellular
differentiation, and reproduction [5]. Noteworthily, vitamin A is considered by many
veterinary nutritionists to be the most important vitamin [6]. The term “vitamin A” encom-
passes three chemical compounds: retinol, retinal, and retinoic acid (all-trans retinoic acid,
ATRA) [7].
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The profound bond between humans and their pets transcends mere ownership,
evolving into a shared journey of companionship and caregiving. As caretakers of their
well-being, it is crucial for owners to comprehend the fundamental nutritional elements
contributing to the health of our pets [8]. The investigation of vitamin A in this context is
not solely an academic endeavor; it delves into the foundational aspects of pet nutrition,
exerting a substantial influence on their overall well-being [9,10].

Dietary sources serve as pathways through which pets obtain nutrients, and under-
standing the availability of vitamin A in various diets is crucial for ensuring optimal pet
health [10,11]. The decisions about pet diets are not just about providing food; they are
intentional choices that significantly impact the pets’ wellness by shaping their nutritional
needs [12,13]. Vitamin A, sourced from various foods, becomes a critical consideration,
whether obtained from animal products or as a precursor from plant-based sources. The
presence and accessibility of vitamin A in pet diets establish the nutritional groundwork
influencing a pet’s health trajectory [11,14].

It is crucial to recognize that dogs and cats, as obligate carnivores, have varying and
unpredictable abilities to convert certain plant carotenoids like β-carotene into vitamin A,
unlike many other animals such as poultry, livestock, and most wild animals [15]. This
introduces a critical aspect into the dietary landscape of these carnivorous companions,
where dependence on animal-derived or synthetic sources of vitamin A becomes pivotal
for meeting their nutritional requirements [16]. This subtlety adds complexity to their
nutritional needs, prompting pet owners and pet food producers to make informed choices
tailored to the unique needs of pets. At its core, this review aims to answer the fundamental
question: how does vitamin A contribute to the wellness of our pets? To unravel this
inquiry, we embark on a scientific exploration that focuses on the following key facets:

Historical perspective on vitamin A in pet nutrition;
Digestion and metabolism of vitamin A;
Physiological role of vitamin A;
Vitamin A deficiency and excess in pets;
Interactions with other micronutrients;
Comparing vitamin A requirements: livestock vs. pets;
Future directions and research gaps.

By addressing these objectives, this review aims to deepen our understanding of the
role of vitamin A in optimizing pet health and well-being. This knowledge can inform
effective management strategies to ensure appropriate micronutrient intake and optimize
dietary formulations for pet wellness.

2. Historical Perspective on Vitamin A in Pet Nutrition

The historical journey of vitamin A in pet nutrition spans over a century, marked by
key discoveries and evolving dietary guidelines. From its identification as vital for growth
to the current research on therapeutic uses, this history offers deep insights into scientific
inquiry and nutritional advancements [17–20].

The discovery of vitamin A can be traced back to the early 20th century when re-
searchers embarked on a quest to elucidate the causes of various nutritional deficiencies. In
1913, Elmer Vernon McCollum and Marguerite Davis conducted groundbreaking experi-
ments on rats, revealing the existence of an essential factor vital for normal growth and
health in animals [17]. This factor, later identified as vitamin A, emerged as a key player in
preventing conditions such as night blindness and promoting overall well-being [21,22].
A significant stride in the practical application of vitamin A knowledge was its analytical
determination in various foods and feeds [23]. The analytical determination of retinol
began in the early 20th century, coinciding with the identification of vitamin A’s chemical
structure by Paul Karrer in 1932 ([24]; Figure 1). Pivotal studies during this period focused
on the isolation and purification of vitamin A from diverse natural sources, laying the
foundation for subsequent analytical pursuits [25,26]. In 1937, Harry Holmes and Ruth
Corbet isolated and crystallized vitamin A. The synthesis methods for vitamin A were
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later established through the research conducted by David Adriaan van Dorp and Jozef
Ferdinand Arens in 1946, as well as by Otto Isler and his colleagues in 1947 [24].
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These early discoveries sparked interest in understanding the dietary sources of vi-
tamin A and its specific functions in different species, including companion animals [20].
Researchers delved into exploring the relationship between vitamin A and vision, reproduc-
tion, the immune function, and the integrity of epithelial tissues in dogs and cats [21,27].

As our understanding of vitamin A deepened, efforts were made to establish recom-
mended dietary allowances to guide pet food formulation. The first nutritional require-
ments for dogs and cats were established in the 1960s and 1970s [28–31]. The National
Academies of Sciences, Engineering, and Medicine (NASEM; formerly known as the Na-
tional Research Council) later published updated recommendations for companion animals
in 1985–1986, subsequently updated in 2006 [11,32,33]. These recommendations played
a pivotal role in preventing vitamin deficiencies and associated health issues in compan-
ion animals. Mass production allowed for more consistent nutrient profiles, including
vitamins, in commercial pet foods [34,35]. This era marked a shift from homemade diets
to convenient, commercially prepared pet foods aimed at meeting essential nutritional
requirements, including those of vitamin A.

The evolution of pet diets over the decades has influenced the formulation of vitamin
A in commercial pet foods. With the transition towards commercially prepared pet foods,
manufacturers have incorporated vitamin A from various sources to meet the specific needs
of dogs and cats [16]. The inclusion of synthetic vitamin A, primarily in the forms of retinyl
acetate, in pet food has become a standard practice to ensure optimal bioavailability and
meet the requirements for this essential vitamin [23]. Consequently, the chemical synthesis
of retinol has played a crucial role in nearly eliminating the risk of hypovitaminosis A
in livestock, poultry, and pet nutrition, making a substantial contribution to the overall
well-being of domesticated animals.

In recent years, research on vitamin A in pet nutrition has expanded beyond basic
requirements to explore potential therapeutic applications. The investigations into the
vitamin’s role in supporting the immune function, reducing inflammation, and promoting
overall well-being have opened new avenues for enhancing the health of companion
animals [36,37].

Studies in mammals have delved into the impact of vitamin A supplementation in
managing specific health conditions, including dermatological issues, ocular disorders, and
immune-mediated diseases [6,38–41].

3. Digestion and Metabolism of Vitamin A

The metabolic process of vitamin A in carnivores entails a sophisticated and multi-
phase mechanism involving various enzymes and pathways. Initially present as retinyl
esters, such as retinyl acetate, vitamin A undergoes hydrolysis facilitated by pancreatic
lipases in the small intestine [5,42]. This enzymatic activity liberates retinol, which then
forms mixed micelles upon combining with other lipids and bile salts, thus promoting
efficient absorption by enterocytes ([43]; Figure 2). In carnivorous animals, the absorption
of preformed vitamin A primarily takes place in the small intestine, particularly the je-
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junum [44,45]. Within this section, the preformed vitamin A is integrated into chylomicrons,
lipid-containing particles, and transported via the lymphatic system to the liver [46].
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Figure 2. Diagram of the current model of vitamin A absorption, transport, and storage. Retinoid
metabolism can be classified into three major processes—intestinal uptake, hepatic storage, and
tissue-specific metabolism that are interconnected via lymphatic and blood vitamin A transport [47].
“Although each of these steps is characterized by a set of specialized proteins, lecithin:retinol acyltrans-
ferase (LRAT) plays a pivotal role in each of them. The abbreviations used are the following: 11c-RAL,
11-cis-retinal; ADHs, alcohol dehydrogenases; ALDHs, aldehyde dehydrogenases; βC, β,β-carotene;
BCO1, β,β-carotene-15,15-dioxygenase; CRABPs, cellular retinoic acid-binding proteins; CRALBP,
cellular retinaldehyde-binding protein; CRBP1, cellular retinol-binding protein 1; CRBP2, cellular
retinol-binding protein 2; ER, endoplasmic reticulum; LRAT, lecithin:retinol acyltransferase; RA,
all-trans-retinoic acid; RAL, all-trans-retinaldehyde; REHs, retinyl ester hydrolases; REs, retinyl esters;
RESs, retinyl esterases; RPE65, retinoid isomerase; ROL, all-trans-retinol; RBP, serum retinol-binding
protein; SCARB1, scavenger receptor class B, type I; SDRs, short-chain dehydrogenases/reductases;
STRA6, stimulated by retinoic acid 6; TTR, transthyretin”.

In the liver, vitamin A is stored as retinyl esters in the hepatic stellate cells of dogs
and cats, available for mobilization as required [7,10,48,49]. Conversely, provitamin A
carotenoids, such as β-carotene found in plant-based sources, have the potential to undergo
enzymatic cleavage in the intestinal mucosa, converting into retinaldehyde and retinol in
canines [43]. However, the efficiency of this conversion process varies considerably; notably,
dogs, akin to many other obligate carnivores, exhibit a limited ability to convert carotenoids
compared to omnivores and herbivores [15]. Substantial amounts of intact β-carotene have
been observed in the bloodstream of dogs following dietary supplementation, indicating a
constrained conversion within the enterocytes [50,51].

Moreover, cats may be among the least efficient converters of β-carotene to vitamin
A among domesticated animals. Previously, it was believed that felines were unable to
convert β-carotene to vitamin A [52–54]. However, recent evidence suggests that cats can
convert β-carotene into retinol, albeit to a very limited extent [55,56]. Consequently, the
type of diet and dietary vitamin A supplementation emerge as critical factors in maintaining
optimal vitamin A levels in both domesticated canines and felines.

Ancestral vertebrates underwent a loss of biosynthetic pathways for most vitamins,
prompting the evolution of specialized mechanisms, such as dedicated transport pro-
teins [57]. These proteins facilitate the absorption of dietary vitamins from the intestine,
storage tissues, and serum [58]. In instances where there is a demand for vitamin A, the
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stored retinyl esters in the liver are mobilized and subsequently hydrolyzed to retinol. This
retinol is then transported to target tissues predominantly via the retinol-binding protein
(RBP) in most mammals [59–61]. The RBP plays a crucial role in regulating vitamin A
homeostasis, ensuring its proper distribution and delivery to target tissues while prevent-
ing potential toxicity [5,62]. Interestingly, cats and dogs exhibit a lower dependence on
the RBP for transporting vitamin A in plasma compared to other mammals. Instead, they
primarily transport vitamin A as retinyl esters (mostly retinyl stearate, with lesser amounts
of retinyl oleate and palmitate) bound to low-density lipoprotein (LDL) and very low-
density lipoprotein (VLDL), in concentrations significantly higher (10–50 times) than other
mammals ([6,63,64]; Table 1). The significance of this circulating pool of retinyl esters and
its impact on the tissue metabolism of vitamin A remains unclear [65]. In dogs, cats, and
other carnivores, only a portion of the retinol in the blood plasma is bound to the RBP, with
an average ratio of retinol to total retinyl esters ranging from 0.2 to 1 to 1:1 [64,66,67]. This
discrepancy underscores the necessity for species-specific investigations to comprehend
the metabolism of vitamin A. It is of note that, in addition to potential biliary excretion,
carnivores such as dogs and cats have a unique ability to eliminate excess vitamin A from
their bodies through urine, specifically in the form of protein-bound vitamin A and retinyl
esters [67].

Table 1. Blood plasma or serum concentrations of retinol and retinyl esters in dogs, cats, and humans.

Species Retinol Retinyl Stearate Retinyl Palmitate + Oleate Total Retinyl Esters Reference

Dogs

0.3–1.0 mg/L 0.8–1.0 mg/L 0.5–0.7 mg/L 1.3–1.7 mg/L [68] 1

0.6–0.8 mg/L 0.9–0.1 mg/L 0.6–0.7 mg/L 1.5–1.7 mg/L [69] 1

0.9–1.3 mg/L 0.23–0.45 mg/L 0.3–0.4 mg/L 0.53–0.85 mg/L [64] 1

2.3–4.1 µmol/L 3.5–10.6 µmol/L 1.4–6.2 µmol/L 4.9–16.8 µmol/L [70] 1

2.7–3.4 µmol/L Not measured 4.5–12.0 * µmol/L - [71] 2

642 ng/mol 916 ng/mol 609 ng/mol 1525 ng/mol [63] 1

Cats

0.2–1.6 mg/L 0.3–0.4 mg/L 0.1–0.2 mg/L 0.4–0.6 mg/L [72] 1

0.24 mg/L 0.4 mg/L 0.3 mg/L 0.7 mg/L [66] 1

366–533 nmol/L 247–327 nmol/L 162–203 nmol/L 409–530 nmol/L [54] 1

213 ng/mol 323 ng/mol 165 ng/mol 488 ng/mol [63] 1

Humans

0.065–3.14 µmol/L - - 0.00–0.11 µmol/L [73] 2

2.0–4.0 µmol/L - - 0.1–0.2 µmol/L [74] 1

2.1–2.4 µmol/L - - 0.054–0.056 µmol/L [75] 2

* Only retinyl palmitate was measured; 1 blood plasma; and 2 blood serum.

Upon entering a cell, the retinol binds to the intracellular retinol-binding protein
(CRBP) within the cytoplasm in both dogs and cats [76,77]. The CRBP acts as a carrier
protein, facilitating the intracellular transport of the retinol to specific cellular compart-
ments where it is utilized [78]. Within the cell, the retinol undergoes various metabolic
transformations to fulfill the cell’s specific requirements.

A critical pathway involves the oxidation of retinol to retinaldehyde, a crucial precur-
sor for the synthesis of the active forms of vitamin A. In mammals, including felines and
canines, this oxidation reaction is mediated by enzymes called alcohol dehydrogenases
(ADHs), particularly class I ADH and class IV ADH, which convert retinol to retinalde-
hyde [79–85]. Retinaldehyde can further metabolize to produce ATRA through the enzy-
matic activity of retinaldehyde dehydrogenases (RALDHs) [86–88]. The primary isoform
responsible for this conversion, as evidenced by studies in dogs, is RALDH1A2 [89].

ATRA, the biologically active derivative of vitamin A, exerts its regulatory influence on
the cellular metabolism in animals by selectively binding to nuclear receptors, specifically
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retinoic acid receptors (RAR) and retinoid X receptors (RXR). These receptors demonstrate
widespread expression across various tissues, including the liver, kidney, intestine, adipose
tissue, and immune cells [90–92]. Upon binding, the resultant retinoic acid-receptor com-
plex interacts with specific DNA sequences, thereby modulating the gene expression in
numerous biological processes [93–95].

4. Physiological Roles of Vitamin A

Exploring the intricate mechanisms of vitamin A reveals its profound physiologi-
cal significance. From visual perception to cellular proliferation, retinol and its active
derivatives play multifaceted roles in sustaining bodily functions [5]. In this section, we
delve into the dynamic interplay of vitamin A within the intricate landscape of canine and
feline physiology.

4.1. Vision

One of the most well-established functions of vitamin A in pets is its indispensable
role in vision [11]. It plays a significant role in eye morphogenesis (Figure 3), as well as
in the structure and function of the photoreceptor cells within the retina. In dogs and
cats, the visual cycle comprises a complex biochemical process that ensures uninterrupted
vision across varying light conditions. It initiates with the absorption of light by the
photoreceptor cells in the retina, specifically the rod and cone cells [96–98]. These cells
harbor visual pigments, including rhodopsin, a G-protein-coupled receptor, in rod cells,
and iodopsins, a photopsin, in cone cells, comprised of opsin protein and light-sensitive
retinal molecule [99–101].
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Figure 3. Schematic showing the proposed sites of RA (all-trans-retinoic acid; ATRA) function during
eye morphogenesis (left) and differentiation (right) [102]. At the early stages of the eye development,
the RA generated by RALDH1 and RALDH3 acts as a paracrine signal binding to the RARs located
in the perioptic mesenchyme to support the anterior eye segment development and the closure of the
optic fissure. Pitx2 is a RA/RAR-regulated transcription factor that is required both for anterior eye
segment morphogenesis, as well as the closure of the optic fissure. At the later stages of development,
the RA promotes the differentiation of the neural retina. The mechanism is unclear but could involve
either a paracrine effect of the RA outside of the neural retina or a direct effect on the cells within the
retina itself. https://creativecommons.org/licenses/by/3.0/ (accessed on 3 January 2024).

After light absorption, the retinal shifts from its active 11-cis-retinal form to the inactive
all-trans-retinal [103]. To maintain vision, the all-trans-retinal must convert back to 11-cis-
retinal [104], a process occurring in the retinal pigment epithelium (RPE) behind the retina’s
photoreceptor cells [103,105,106]. In the visual cycle, the all-trans-retinal is reduced to all-

https://creativecommons.org/licenses/by/3.0/
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trans retinol, then oxidized to 11-cis retinal within the RPE cells [103,107]. This regenerated
11-cis-retinal is transported back to the photoreceptor cells, where it combines with opsin
to create functional visual pigments [108]. The continuous regeneration of 11-cis-retinal is
vital for maintaining light sensitivity and adapting to changes in illumination [109].

Furthermore, vitamin A is imperative for maintaining the structural integrity of the
eye. Adequate vitamin A levels support the differentiation and upkeep of ocular tissues
such as the cornea and conjunctiva [7,110].

4.2. Immune Function

Vitamin A, acting through its metabolite ATRA, plays a critical role in regulating the
immune system’s functionality in mammals. ATRA engages with the specific receptors
known as RARs present within the immune cells, thereby initiating gene transcription
processes [111,112]. This transcriptional activity leads to the synthesis of key proteins,
such as Interferon Regulatory Factors (IRFs), which are essential for the proper function of
immune cells [113–116]. These proteins contribute to regulating critical cellular processes
including the differentiation, proliferation, and modulation of immune responses [117].
Ultimately, the influence of vitamin A on gene expression dynamics helps maintain a
balanced and robust immune system, thereby enhancing the body’s ability to combat
infections and sustain overall health [118].

Retinol and its derivatives are crucial for preserving the integrity of the mucosal
surfaces found in the respiratory, gastrointestinal, and urogenital tracts, thereby acting as a
protective barrier against pathogens [39]. Vitamin A plays a pivotal role in governing the
differentiation and proliferation of various immune cells, including T and B lymphocytes,
as well as the antigen-presenting cells (APCs) like dendritic cells ([40]; Figure 4). Due
to its essential function in immune modulation, vitamin A is often referred to as “the
anti-infective vitamin” [5,119]. As early as 1926, Mellanby [18], based on a comprehensive
review of 330 post-mortem examinations of dogs, observed a significant correlation between
bronchopneumonia, resulting from bacterial lung infections, and vitamin A deficiency,
indicating a higher incidence among dogs with insufficient retinol levels.
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Currently, retinol stands as one of the most extensively studied micronutrients con-
cerning the immune function [121,122]. Moreover, vitamin A enhances mucosal immunity
by stimulating the production of secretory IgA, IgM, and IgG antibodies [123,124], which
are particularly crucial for defending against the pathogens at mucosal surfaces such as
those in the gastrointestinal and respiratory tracts.

4.3. Growth, Cellular Differentiation, Morphogenesis, and Reproductive Health

ATRA is recognized for its pivotal involvement in fundamental cellular processes such
as growth (including in bones), differentiation, and organogenesis [125,126]. Through its
specific binding to the RARs located in target cells, ATRA operates as a transcriptional
regulator, modulating the expression of genes crucial for cell differentiation, proliferation,
morphogenesis, and tissue development [127–129]. This regulatory mechanism orchestrates
the intricate process of cell specialization and the formation of distinct tissues and organs
during embryonic development [130].

With regards to cellular proliferation and differentiation, ATRA exerts its influence by
promoting the progression of cells through the cell cycle, particularly the G1 phase. This is
achieved through the activation of genes supportive of cell division while concurrently sup-
pressing genes associated with cell cycle arrest [131]. Moreover, ATRA signaling contributes
significantly to morphogenesis. For instance, it plays a critical role in organizing the trunk
through three key morphogenetic processes: mesoderm segmentation (including somite
size and bilateral registration), axial elongation (posterior extension), and the establishment
of anterior–posterior identity within individual segments (regionalization) [132].

Vitamin A and its metabolites are recognized as vital for the optimal reproductive
health and development of pets [10,133,134]. In the ovaries, ATRA exerts significant ef-
fects on granulosa cell functions such as proliferation, differentiation, and steroidogenesis,
thereby contributing to follicular development [135–138]. Furthermore, ATRA is impli-
cated in the regulation of gene expression related to reproduction and enhances estrogen
production, particularly estradiol (E2), which is crucial for the menstrual cycle [139,140].

Moreover, ATRA is known to modulate uterine receptivity and facilitate embryo
implantation by promoting the secretion of uterine factors necessary for embryo attachment
and placental development [141,142]. Additionally, ATRA plays a pivotal role in male
reproduction, influencing processes such as spermatogenesis, testicular development, and
sperm production and motility [143,144].

4.4. Antioxidant Properties

Oxidative damage to DNA, proteins, and lipids is widely recognized as a significant
factor contributing to aging and the development of various chronic diseases in cats and
dogs [145]. Vitamin A plays a vital role as a systemic antioxidant, impacting various
biological processes in animals, including pets [4,146]. Retinol possesses direct antioxidant
properties due to its hydrophobic polyene chains, allowing it to quench singlet oxygen
and neutralize radicals [147]. However, in high oxygen levels, vitamin A can undergo
auto-oxidation, though it remains effective at physiological oxygen tensions [148,149].

Palace et al. [150] elucidated how retinol acts as a chain-breaking antioxidant, halting
lipid peroxidation by reacting with peroxyl radicals, thus preventing the spread of lipid
peroxidation in cells and the formation of hydroperoxides. Retinol efficiently scavenges
peroxyl radicals in various lipid models, such as liposomes mimicking cell membranes.
Additionally, ATRA, a vitamin A metabolite, serves as a potent transcriptional regulator,
influencing the expression of genes related to antioxidant processes [151]. Specifically,
ATRA upregulates genes involved in the glutathione (GSH) metabolism, bolstering cellular
antioxidant defenses [152–154]. It also enhances superoxide dismutase (SOD) activity,
crucial for neutralizing superoxide radicals [155]. ATRA modulates the oxidative stress
pathways by downregulating the NADPH oxidase genes, thereby reducing reactive oxygen
species production [156].
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Furthermore, ATRA enhances mitochondrial antioxidant activity by upregulating
genes associated with biogenesis and defense mechanisms [157,158]. Specifically, Tourni-
aire et al. [157] found that ATRA increases the expression of genes linked to these processes,
resulting in a heightened oxidative phosphorylation capacity and mitochondrial content
(Figure 5). These findings suggest significant implications for managing oxidative stress.
Additionally, ATRA induces autophagy, assisting cellular survival under oxidative stress
conditions [159,160]. This process involves autophagosome acidification through a path-
way independent of classic nuclear retinoid receptors, ultimately contributing to cellular
homeostasis regulation [159].
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Figure 5. Oxygen consumption in adipocytes exposed to 2 µM of ATRA (all-trans-retinoic acid) was
measured using Clarke’s electrode (adapted from Tourniaire et al. [157]). Control refers to control cells,
which received the vehicle (dimethyl sulfoxide). Data are the mean ± SEM of three independent
cultures per treatment condition. The assessment compared ATRA-treated cells to untreated cells and
measured their oxygen consumption rates to determine if ATRA-induced gene expression changes
altered cellular metabolism. ATRA increased oxygen consumption by 15% (* p < 0.05).

5. Vitamin A Deficiency and Excess in Pets

Vitamin A is a fundamental micronutrient for pets, but, like many essential substances,
it must be carefully regulated to avoid health complications. Both the deficiency and excess
of vitamin A can have notable effects on pets’ well-being, necessitating an understanding
of the causes, symptoms, and management of these conditions [161,162].

5.1. Vitamin A Deficiency

Vitamin A deficiency can arise in pets due to various factors, encompassing inadequate
dietary intake, compromised absorption, or increased metabolic demands [146,163,164].
Pets consuming diets deficient in vitamin A or experiencing gastrointestinal disorders such
as intestinal fat malabsorption are particularly susceptible. Furthermore, certain medical
conditions or periods of rapid growth may elevate the requirement for vitamin A in dogs
and cats [35,165].

One of the primary physiological roles of vitamin A involves maintaining the opti-
mal visual function. Consequently, the felines and canines deficient in this vitamin may
manifest symptoms such as nyctalopia, reduced vision in low light, conjunctivitis, xerosis
with keratitis and corneal neovascularization, photophobia, mydriasis in normal lighting,
delayed pupillary light reflex, progressive retinal cell degeneration, cataract formation, or
even complete blindness in severe cases [19,27,146]. Additionally, common neurological
manifestations of progressive vitamin A deficiency include an altered mental state, seizures,
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nystagmus, ataxia, kyphosis, hyperesthesia, muscle wasting, nerve degeneration, and
impaired nerve conduction [32,146,166].

Hypovitaminosis A in pets also frequently leads to weight loss, bronchial epithelial
metaplasia, squamous metaplasia in the salivary glands and endometrium, a dry and
lackluster coat, dermatological issues, and a compromised immune function predisposed
to infections [18,32,33,119,167]. Reproductive complications such as infertility or dystocia
can also arise due to vitamin A deficiency in breeding animals [15,168].

The diagnosis of vitamin A deficiency in pets typically involves a comprehensive
evaluation including clinical signs, dietary history, and laboratory analyses. Blood assays
may reveal diminished vitamin A levels, though these findings can be inconclusive due
to various factors such as the presence of different vitamin A forms in plasma, carnivores’
ability to renally excrete vitamin A, individual variabilities, age, physiological and nutri-
tional influences, diurnal fluctuations, and sampling stress, among others [64,66,169–176].
Furthermore, it is important to recognize that veterinary practitioners often have a limited
availability of the specialized instrumentation required for measuring the vitamin A levels
in various tissues. Finally, veterinarians may also scrutinize the pet’s diet and overall health
status to elucidate the root cause of the deficiency [9].

The treatment of vitamin A deficiency in dogs and cats involves administering vitamin
A supplements orally or via injections, contingent upon the severity of the condition [6,9].
Additionally, transitioning to commercial pet foods formulated to meet nutritional require-
ments may be warranted if the pet was previously fed deficient homemade diets. The
regular monitoring of the pet’s response and addressing any underlying health issues con-
tributing to the deficiency are imperative for successful management [177,178]. According
to Silver [6], the following examples of diseases often linked to retinol deficiency in dogs
and cats can be mitigated or treated with supplements of retinoids:

✓ Retinoid-responsive dermatoses; ✓ Sebaceous gland disorder; ✓ Canine icthyosis;
✓ Solar dermatosis of dogs and cats; ✓ Feline muzzle folliculitis; ✓ Nyctalopia;
✓ Xerophthalmia; ✓ Keratoconjunctivitis sicca; ✓ Squamos metaplasia;
✓ Squamous cell carcinoma; ✓ Epitheliotrophic T cell lymphoma; ✓ Respiratory infections;
✓ Intestinal inflammation; ✓ Hyperkeratinization of the epithelial surfaces; ✓ Seborrhea;
✓ Keratoacanthoma; ✓ Haircoat problems; ✓ Schnauzer comedo syndrome;
✓ Alopecia; ✓ Increased susceptibility to infection; ✓ Exfoliation;
✓ Delayed wound healing; ✓ Sebaceous adenitis; ✓ Follicular dysplasia.

5.2. Vitamin A Excess

Hypervitaminosis A, or vitamin A overdose, can occur in canines and felines when
they consume excessively high levels of vitamin A, either through their diet or via supple-
mentation. Dogs and cats are at a higher risk of experiencing vitamin A overdose if they
devour excessive amounts of raw liver from fish, swine, or cattle over extended periods, as
it contains particularly high levels of this vitamin [68,161,179].

Generally, felines and canines exhibit a higher tolerance to developing hypervita-
minosis A compared to other domesticated mammals and poultry [6]. This heightened
tolerance can be attributed to several factors. Firstly, dogs and cats predominantly transport
vitamin A as retinyl ester in their blood plasma [180]. Unlike in many mammals, elevated
retinyl ester levels in plasma among carnivores do not correlate with the signs of vitamin
A overdose or postprandial effects [64]. Secondly, carnivores eliminate excess vitamin A
through urine in the form of protein-bound vitamin A and retinyl esters [67]. Dogs exhibit
a higher urinary retinol excretion capacity compared to cats ([64,66]; Table 2), ranging,
for example, from 15 to 63% of the intake in beagle dogs [180]. This efficient excretion
mechanism prevents the accumulation of retinyl esters in the liver and kidney cells, leading
to the manifestation of hypervitaminosis A only at extremely high intake levels of vitamin
A (>90 mg of retinol/kg BW consumed over a prolonged period) [180]. While humans also
excrete the metabolic products of retinol via urine [181], the urinary excretion of unmetabo-
lized retinol or its esters in healthy non-carnivorous domesticated animals is unheard of.
The ability of carnivores to rapidly excrete vitamin A and its esters via urine may be an
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evolutionary adaptation, allowing them to consume potentially high amounts of retinol in
the wild (e.g., liver consumption).

Table 2. Retinol and retinyl ester concentrations in the urine of domestic cats and dogs (mean ± SD).

Species Total Vitamin A Retinol Retinyl Stearate Retinyl Palmitate/Oleate Reference

Dogs

0.44 ± 0.55 µg/mL 0.22 ± 0.04 µg/mL 0.006 ± 0.008 µg/mL 0.21 ± 0.39 µg/mL [64]

0.6 ± 0.4 mg/L Not indicated Not indicated Not indicated [180]

580 ng/mL Not measured Not measured Not measured [54]

Cats
22 ± 21.0 ng/mL Not detected 15 ± 13.6 ng/mL 9 ± 7.6 ng/mL/

11 ± 17.5 ng/mL [66]

131 µg/dL Not indicated Not indicated Not indicated [180]

The symptoms of hypervitaminosis A in pets vary depending on the severity and
duration of the exposure. The studies investigating retinol overdose employed extraor-
dinarily high doses of vitamin A, ranging from 3,500,000 to 15,000,000 IU per kg of diet,
administered to cats consistently over a period of up to 10 months [48,182,183]. These
doses exceeded the latest NASEM requirement estimate for adult cats by up to 4500 times.
The dogs fed diets supplemented with 100,000 IU of vitamin A per 1000 kcal of diet for 44
weeks exhibited no signs of hypervitaminosis A or any adverse health effects [10].

The early signs of hypervitaminosis A often include gastrointestinal disturbances such
as diarrhea and loss of appetite [183]. As the overdose progresses, dogs and cats may
exhibit neurological symptoms such as lethargy, weakness, disorientation, and seizures,
along with bone demineralization and reduced thyroxin levels in the blood plasma [68].

Preventing vitamin A overdose in pets entails feeding them a balanced diet formu-
lated to meet their nutritional needs without excessive supplementation (Table 3). Pet
owners should refrain from feeding large amounts of liver or pure vitamin A supplements
without consulting a veterinarian. Regular veterinary check-ups can aid in identifying and
addressing any nutritional imbalances before they adversely affect pet health.

Table 3. Upper safe levels of vitamin A in dogs and cats as provided by the various literature sources.

Source Dogs Cats

[183] 33,330 IU/kg of diet 100,000 IU/kg of diet

[11] Puppies and breeding bitches: 50,000 IU/kg of diet
Adult: 210,000 IU/kg of diet 330,000 IU/kg of diet

[10] 100,000 IU/1000 kcal of diet -

[184] 250,000 IU/kg of diet (DM basis) 333,300 IU/kg of diet (DM basis)

[35] 400,000 IU/kg of diet (DM basis) Adult and growth: 400,000 IU/kg of diet (DM basis)
Reproduction: 333,333 IU/kg of diet (DM basis)

6. Interactions with Other Micronutrients

Understanding vitamin A’s interactions with other micronutrients is vital for maintain-
ing overall health and preventing deficiencies or overdose. Here, we explore the intricate
relationships between vitamin A and several key micronutrients.

6.1. Vitamin A and Vitamin D

Vitamin A and vitamin D are integral to various physiological processes, including im-
mune regulation, bone metabolism, and cellular differentiation [10,185,186]. The interplay
between these vitamins is complex, involving their active forms binding to specific nuclear
receptors. The active forms of vitamin A, such as ATRA and 9-cis retinoic acid (9-cis RA),
interact with RAR and RXR, while 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) binds to the
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vitamin D receptor (VDR) and RXR [187]. These receptors form heterodimers that bind to re-
sponse elements like the vitamin D response element (VDRE) and the retinoic acid response
element. The research indicates that 9-cis RA can modulate the effects of 1,25(OH)2D3,
leading to diverse outcomes ranging from antagonistic to synergistic [187–191]. Notably,
ATRA can influence the expression of the vitamin D-binding protein (DBP) complex, which
is pivotal for the cellular uptake and actions of vitamin D, thus implicating vitamin A in the
modulation of the vitamin D metabolism within specific cell types [187]. Moreover, vitamin
A and vitamin D collaboratively regulate immune responses in the innate lymphoid cells
(ILCs) ([186]; see Figure 6). However, ATRA and 1,25(OH)2D3 may also exert antagonistic
effects on the expression of effector cytokines and gut-homing integrin by mammalian
ILCs. The balance between these vitamins could be a key determinant in ILC activity and
associated diseases, including allergic inflammation [189].
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primarily produce cytokines such as interferon-gamma (IFN-γ) and interleukin-2 (IL-2) and are
involved in cell-mediated immunity), Th17 (they produce cytokines such as interleukin-17 (IL-17)
and interleukin-22 (IL-22) and are involved in the defense against extracellular pathogens), and Th2
(they produce cytokines such as interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13)
and are involved in humoral immunity and allergic responses); and Treg = regulatory T cells (they
express the transcription factor Foxp3 and play a crucial role in immune tolerance and regulation).

6.2. Vitamin A and Vitamin E

Vitamin A and vitamin E are both powerful antioxidants that protect cells from oxida-
tive damage and play essential roles in maintaining skin health, vision, and the immune
function [4,192]. While they have distinct antioxidant properties, they may also interact
synergistically to enhance each other’s effectiveness. In experiments conducted within a
unilamellar liposomal system comprised of phosphatidylcholine, there is evidence indicat-
ing that α-tocopherol enhances the antioxidant efficacy of all-trans-retinol by reducing its
autooxidation [193]. This action likely occurs through the concerted scavenging of radicals,
leading to the synergistic protection of the lipid system against peroxidative stress [194].
Consequently, this mechanism could potentially reduce the consumption of α-tocopherol
over time. However, given that retinol exhibits relatively weak direct antioxidant properties,
further investigations are warranted to accurately quantify the potential interaction be-
tween these vitamins in vivo. Moreover, vitamin E aids in the body’s utilization of vitamin
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A while also regulating vitamin A stores, thereby mitigating the risk of hypervitaminosis
A. Nevertheless, the excessive intake of vitamin E may negatively influence the vitamin A
storage levels in the body [6].

6.3. Vitamin A and C

Vitamin C is synthesized endogenously within the liver across a variety of species,
including canines and felines, and is distributed widely throughout the body’s [195].
This essential micronutrient serves pivotal physiological functions in various metabolic
pathways, including tissue growth and maintenance, the mitigation of oxidative stress, and
the modulation of the immune system [1].

Administering vitamin A and C, either prior to or following the induction of stress
in mammals, has been shown to significantly enhance the activities of crucial antioxidant
enzymes such as SOD, glutathione-S-transferase, and catalase [196]. Moreover, there is
a notable increase in the levels of reduced glutathione, accompanied by a decrease in
lipid peroxidation. Importantly, this combined treatment demonstrates markedly superior
outcomes compared to the use of either vitamin alone. Similarly, Hosseini Omshi et al. [197]
reported that the supplementation of vitamins A and C in animals may offer promising
effects against the imbalance between oxidants and antioxidants.

6.4. Vitamin A and Zinc

Zinc, an indispensable trace element, plays a pivotal role in numerous enzymatic reac-
tions, immune modulation, and the process of wound healing [198]. Studies in humans and
chickens, as well as ex vivo research using cultures of spleen leukocytes from dogs, have
suggested the existence of a synergistic relationship between the dietary intake of zinc and
the metabolism and status of vitamin A [199–201]. Simultaneous long-term zinc and vita-
min A supplementation was shown to be associated with reduced parasitic gastrointestinal
infections caused by Giardia lamblia and Ascaris lumbricoides in humans [202]. The influ-
ence of zinc extends to various facets of vitamin A metabolism, encompassing absorption,
transportation, and utilization. This influence arises from the regulatory function of zinc
in vitamin A transportation, primarily facilitated through the synthesis of retinol-binding
protein (RBP) in the liver. Additionally, zinc serves as a crucial cofactor in the synthesis of
enzymes that regulate the absorption and function of vitamin A [203]. Furthermore, zinc
plays a pivotal role in the oxidative conversion of retinol to retinal, necessitating the action
of zinc-dependent retinol dehydrogenase enzymes [204]. Studies indicate that in animals a
deficiency in zinc consistently leads to reduced plasma vitamin A concentrations, despite a
diet being nutritionally adequate in vitamin A [203]. Moreover, zinc deficiency has been
shown to diminish the lymphatic absorption of retinol in animal models, a phenomenon
linked to a decline in the output of lymphatic phospholipids due to compromised biliary se-
cretion into the intestinal lumen [205]. Conversely, vitamin A is required for the absorption
and utilization of zinc by improving intestinal functionality [201,204].

7. Comparing Vitamin A Requirements: Livestock vs. Pets

Variability in the requirements for vitamin A is evident across different species and
even among individuals within the same species [5,7,62,206,207]. Understanding these
variations is crucial for maintaining the optimal health and well-being of animals under
human care. Due to extensive artificial selection, dogs have evolved into one of the most
morphologically diverse vertebrate species, encompassing approximately 400 distinct
breeds [208,209]. Similarly, domestic cats exhibit a wide range of breed variations and
morphological traits [210]. The selective breeding of dogs and cats has primarily been
motivated by considerations of aesthetics, morphology, and behavior [211].

In contrast to companion animals, modern livestock species such as swine, poultry, and
cattle have undergone intense selection and breeding for traits such as rapid growth, lean
meat deposition, efficient feed conversion, and high egg and milk production [5,62,206,207].
This genetic manipulation imposes additional metabolic demands and alters the require-
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ment for essential nutrients, including vitamins. For instance, modern pig breeds exhibit
an increased metabolic turnover and oxidative stress levels akin to those of endurance
athletes [212]. Consequently, the demand for fat-soluble vitamins in livestock has increased
significantly over the past few decades [5,62,206,207,213].

While certain dog breeds may be exceptions due to selective breeding for enhanced
performance [214], the overall trend suggests that the vitamin A requirements for compan-
ion animals, particularly dogs and cats, may not have escalated to the same extent as those
of livestock species. This discrepancy underscores a fundamental difference between the
breeding pressures shaping the nutrient needs of pets versus those of livestock.

The specific vitamin A requirements for domesticated animals depend on various
factors, including the animal’s age, weight, and reproductive status, as well as other
parameters [5]. For example, pregnant and lactating pets have increased vitamin A re-
quirements to support fetal development and milk production [35,215]. Similarly, young,
growing animals require higher levels of vitamin A to support bone development and
overall growth [216]. In contrast, mature animals may have lower vitamin A requirements
but still need adequate amounts to maintain health and the immune function. We pro-
pose that the ideal dosage of vitamin supplementation in companion animals depends on
promoting optimal growth and development, as well as achieving a balance marked by
maximal physiological well-being, including immune competence, while ensuring ade-
quate bodily reserves are maintained. Table 4 presents the minimum requirements and
practical dosage recommendations for vitamin A in cats and dogs sourced from various
references. The authors have published similar information for poultry, swine, and cattle
elsewhere. For comparison with felines and canines, readers are referred to these peer-
reviewed data [62,206,207]. Furthermore, it should be noted that NASEM estimates for
vitamins represent the minimum levels necessary to prevent clinical deficiencies and may
not necessarily ensure optimal health, including the immune function, and sufficient bodily
reserves [217,218].

Table 4. Minimum requirement estimates (NASEM), minimum recommended levels (FEDIAF),
minimum levels (AAFCO), and recommendations for optimum supply (AWT) of vitamin A in dog
and cat food (IU/kg of diet; dry matter basis).

Source
Dogs Cats

Growing Reproduction Adult Growing Reproduction Adult

[33] - - - 3333 * 5999 * -

[32] 3336 * - - - - -

[11] 3533 * 3533 * 3533 * 3333 * 6666 * 3333 *

[35] 5000 * 5000 * 6060–7020 * 3333–4444 * 9000 * 9000 *

[184] 5000 * 5000 * 5000 * 6668 * 6668 * 3332 *

[219] 8000–12,000 ** 8000–12,000 ** 8000–12,000 ** 15,000–25,000 ** 15,000–25,000 ** 15,000–25,000 **

* Minimum; and ** Recommendations for optimum supply.

Overall, while the vitamin A requirements of livestock and pets share similarities, such
as the need for adequate levels to support growth, development, and overall health, signifi-
cant differences between the two arise due to variations in the goals of genetic selection.

8. Future Directions and Research Gaps

As the field of companion animal wellness progresses, there are numerous avenues for
future research aimed at understanding the role of vitamin A in the health and well-being of
pets. In this section, we outline potential directions for future investigation and emphasize
key research gaps that require attention within the scientific community.

Although there have been notable advancements in elucidating the metabolism of
vitamin A in humans and laboratory animals, our comprehension of these mechanisms in
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companion animals, such as dogs and cats, remains comparatively limited. This disparity
in knowledge presents obstacles in effectively optimizing the dietary management of pets.
To bridge this gap, it is proposed to widen usage of in vitro simulation techniques and ex
vivo methodologies to investigate the metabolism of vitamin A in companion animals [220].
This approach is advocated primarily due to ethical considerations.

Furthermore, investigating rodents as potential models for elucidating the vitamin
A metabolism in dogs and cats should be assessed [221–223]. This implies that the
translational-related challenges between the models regarding vitamin A need clarifi-
cation. By directing the research efforts towards uncovering the specific pathways involved
in the absorption, storage, and utilization of vitamin A, potentially valuable insights can
be gained. If proven to be applicable, these insights might facilitate the customization of
dietary vitamin A levels to suit different breeds of dogs and cats, thereby enhancing overall
pet health and wellness.

Genetic factors play a crucial role in determining the vitamin A requirements and
response to supplementation [224,225]. Investigating genetic variability among different
pet breeds and its influence on the metabolism and function of vitamin A could aid in
tailoring personalized nutrition strategies for optimal health outcomes. Integrating genomic
approaches with nutritional studies will pave the way for precision nutrition in companion
animals. Nevertheless, genetic association studies remain challenging, even in human
populations. Recognizing the potential challenges for similar studies in pets would provide
further confidence.

Long-term studies tracking vitamin A status and its correlation with various health
parameters in pets are essential for establishing causal relationships and understanding
the impact of vitamin A deficiency or excess on overall health outcomes [226,227]. Longi-
tudinal research designs, encompassing diverse populations of pets across different life
stages and environmental conditions, will provide robust evidence to guide nutritional
recommendations and preventive healthcare strategies.

Vitamin A is known to play a critical role in modulating the immune function and
reducing the risk of infectious and chronic diseases in humans [176,228]. Similarly, investi-
gating the immunomodulatory effects of vitamin A in pets can offer valuable insights into
enhancing immune resilience and mitigating disease susceptibility. This includes reducing
the incidence of respiratory infections and improving wound healing times. Specifically,
exploring the translational potential of molecular studies on retinoids’ impact on the im-
mune function in companion animals holds significant promise for animal health, a concept
already supported by the research in humans [229]. Understanding how vitamin A en-
hances mucosal immunity, as evidenced by its stimulation of secretory IgA, IgM, and IgG
antibodies [39,230], forms a crucial foundation for potential applications in veterinary prac-
tice for pets [231,232]. These antibodies play a pivotal role in defending mucosal surfaces,
such as those in the gastrointestinal and respiratory tracts, against pathogens, making
the findings a promising research direction for enhancing the health and well-being of
companion animals [8].

Pets are frequently exposed to diverse pathogens in their environments, so enhancing
their natural defenses through vitamin A interventions could lead to reduced disease
susceptibility and improved overall health outcomes. Moreover, comprehending how
retinoids influence gene expression related to immunity could provide insights into tailor-
ing treatments for individual animals, thereby enhancing their well-being and quality of
life [90,233]. Ultimately, the application of the molecular findings on retinoids in pets has
the potential to transform veterinary medicine, offering more effective and personalized
care for our beloved companions.

The stability and bioavailability of vitamin A from pet food and animal feed formulations
can vary depending on factors such as the vitamin A formulation (from a commercial source),
the ingredient composition, processing methods, and storage conditions [110,234–237]. Sys-
tematic assessments of vitamin A bioavailability in commercial pet foods are necessary to
ensure adequate nutrient delivery and to optimize dietary formulations for pet health and
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wellness. Incorporating advanced analytical techniques and in vitro digestion models can
facilitate the accurate determination of vitamin A bioavailability in pet food matrices.

9. Conclusions

The multifaceted role of vitamin A in the health and well-being of companion an-
imals is undeniable. From its crucial involvement in vision, the immune function, and
reproduction to its antioxidant properties, vitamin A serves as a cornerstone of optimal
pet nutrition. Through historical perspectives, we have seen how our understanding of
vitamin A’s importance has evolved, leading to the establishment of recommended dietary
allowances and the development of commercial pet foods aimed at meeting the essential
nutritional requirements.

The intricate processes of digestion, metabolism, and physiological functions elucidate
the complexities of ensuring adequate vitamin A levels in pets, especially considering their
unique dietary needs as obligate carnivores. While deficiencies can lead to a myriad of
health issues, including impaired vision, a compromised immune function, and repro-
ductive complications, excess intake may also carry potential concerns, underscoring the
importance of balanced nutrition and careful supplementation.

Exploring interactions with other micronutrients further emphasizes the interconnect-
edness of dietary components in promoting overall health. Future research directions,
including investigating genetic variability, long-term studies tracking vitamin A status, and
exploring immunomodulatory effects, offer promising avenues for enhancing our under-
standing of vitamin A’s role in companion animal nutrition. Additionally, considerations of
stability and bioavailability in pet food formulations underscore the importance of optimiz-
ing nutritional strategies to ensure the well-being of our beloved animal companions. By
addressing these research gaps and advancing our knowledge, we can continue to improve
the nutritional management of pets, ultimately enhancing their quality of life and longevity.
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SOD Superoxide dismutase
1,25(OH)2D3 1,25-dihydroxyvitamin D3
11c-RAL 11-cis-retinal; ADHs, alcohol dehydrogenases
ADHs Alcohol dehydrogenases
ALDHs Aldehyde dehydrogenases
APCs Antigen-presenting cells
ATRA All-trans retinoic acid
BCO1 β,β-carotene-15,15-dioxygenase
CRABPs Cellular retinoic acid-binding proteins
CRALBP Cellular retinaldehyde-binding protein
CRBP Intracellular retinol-binding protein
CRBP1 Cellular retinol-binding protein 1
CRBP2 Cellular retinol-binding protein 2
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DBP Vitamin D-binding protein
DNA Deoxyribonucleic acid
E2 Estradiol
ER Endoplasmic reticulum
GSH Glutathione
Ig Immunoglobulin
ILCs Innate lymphoid cells
IRFs Interferon Regulatory Factors
LDL Low-density lipoprotein
LRAT Lecithin:retinol acyltransferase
NADPH Nicotinamide adenine dinucleotide phosphate
Pitx2 i RA/RAR-regulated transcription factor
RA All-trans-retinoic acid
RAL All-trans-retinaldehyde
RALDHs Retinaldehyde dehydrogenases
RAR Retinoic acid receptors
RBP Serum retinol-binding protein
REHs Retinyl ester hydrolases
REs Retinyl esters
RESs Retinyl esterases
ROL All-trans-retinol
RPE Retinal pigment epithelium
RPE65 Retinoid isomerase
RXR Retinoid X receptors
SCARB1 Scavenger receptor class B, type I
SDRs Short-chain dehydrogenases/reductases
STRA6 Retinoic acid 6
Th T helper cells
Treg regulatory T cells
TTR Transthyretin
VDR Vitamin D receptor
VDRE Vitamin D response element
VLDL Very low-density lipoprotein
βC β,β-carotene
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