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Abstract: The transmembrane glycoprotein OX40 receptor (OX40) and its ligand, OX40L, are instru-
mental modulators of the adaptive immune response in humans. OX40 functions as a costimulatory
molecule that promotes T cell activation, differentiation, and survival through ligation with OX40L.
T cells play an integral role in the pathogenesis of several inflammatory skin conditions, including
atopic dermatitis (AD). In particular, T helper 2 (TH2) cells strongly contribute to AD pathogenesis
via the production of cytokines associated with type 2 inflammation (e.g., IL-4, IL-5, IL-13, and IL-31)
that lead to skin barrier dysfunction and pruritus. The OX40-OX40L interaction also promotes the
activation and proliferation of other T helper cell populations (e.g., TH1, TH22, and TH17), and AD
patients have demonstrated higher levels of OX40 expression on peripheral blood mononuclear cells
than healthy controls. As such, the OX40-OX40L pathway is a potential target for AD treatment.
Novel therapies targeting the OX40 pathway are currently in development, several of which have
demonstrated promising safety and efficacy results in patients with moderate-to-severe AD. Herein,
we review the function of OX40 and the OX40-OX40L signaling pathway, their role in AD patho-
genesis, and emerging therapies targeting OX40-OX40L that may offer insights into the future of
AD management.

Keywords: OX40; OX40L; atopic dermatitis; AD; eczema; cytokines; inflammation; AD pathogenesis;
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1. Introduction

Atopic dermatitis (AD) is a chronic inflammatory disease that affects up to 25% of
children and 7–10% of adults [1]. AD typically presents in early childhood with acute flares
of intensely pruritic and eczematous skin lesions [2]. These symptoms are potentially debili-
tating and may negatively impact many aspects of a patient’s quality of life, including sleep
quality, self-esteem, school and work productivity, and mental health outcomes [1,2]. Some
AD patients may develop other atopic conditions like asthma, allergic rhinitis, rhinocon-
junctivitis, and food allergy [2–4]. AD may also be associated with a myriad of non-atopic
comorbidities that are potentially related to systemic organ dysfunction caused by chronic
inflammation, such as cardiovascular complications and metabolic disorders [3,5]. These
associations emphasize the significant burden of AD on affected individuals, especially
those with severe disease.

AD pathogenesis principally involves T cell-mediated processes that generate acute
and chronic inflammatory responses [6,7]. Many treatment options aim to decrease in-
flammation through the modulation of the T cell response. Topical immunosuppres-
sants like glucocorticoids, calcineurin inhibitors (e.g., tacrolimus and pimecrolimus), and
phosphodiesterase-4 inhibitors (e.g., crisaborole) are generally recommended as first-line
treatments for mild-to-moderate AD [4] as they help target local inflammation [1,3]. The
landscape of available treatments for moderate-to-severe AD has rapidly advanced in recent
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years due to the identification of key immunologic pathways that have been shown to drive
systemic inflammation [3,8,9]. Therapies that target these pathways include short-term pho-
totherapy, systemic immunosuppressants (e.g., cyclosporine, azathioprine, methotrexate,
and oral corticosteroids), Janus kinase (JAK) inhibitors (e.g., upadacitinib and abrocitinib),
and monoclonal antibodies that block specific cytokines (i.e., biologics) [1,3,8,10].

While targeted biologic therapies like dupilumab (an IL-4Rα inhibitor) and tralok-
inumab (an IL-13 inhibitor) have substantially decreased the disease burden for many
patients with moderate-to-severe AD, some still struggle to achieve a desired level of
disease control [1,9,11]. As such, a therapeutic need exists for patients with moderate-to-
severe AD who do not adequately respond to available treatments. AD pathophysiology is
complex and involves many interconnected immunologic pathways. Therefore, identifying
additional immune pathways that may contribute to AD pathogenesis can potentially lead
to the development of novel therapies that allow a broader range of AD patients to optimize
their long-term disease control.

The transmembrane glycoprotein OX40 receptor (OX40/CD134/TNFRSF4) and its
ligand OX40L (CD252/TNFSF4) influence the production of different T cell populations
and may be important for AD pathogenesis [12–14]. OX40 and OX40L are members of the
tumor necrosis factor receptor (TNFR)/tumor necrosis factor (TNF) superfamily [12,15,16].
TNFR/TNF superfamily members are immune checkpoint molecules that can augment
the T cell response through costimulation [15–19]. The interaction between OX40 and
OX40L promotes T cell activation, differentiation, and survival through various mech-
anisms [12,15,20,21]. The inhibition of this interaction can potentially attenuate T cell-
mediated processes that contribute to AD pathogenesis [15,22,23]. As such, OX40 and
OX40L may serve as viable therapeutic targets for treating AD.

Herein, we review the function of OX40 and the OX40-OX40L signaling pathway, their
role in AD pathogenesis, and emerging therapies targeting OX40-OX40L that may offer
insights into the future of AD management.

2. Overview of OX40 Signaling Pathways
2.1. OX40 Expression

The OX40-OX40L signaling pathway is an instrumental modulator of the adaptive
immune response. Antigenic stimulation causes the activation of naïve CD4+ and CD8+ T
cells, which induces the transient expression of OX40 [24,25]. OX40 expression principally
occurs on activated T cells, and it is not expressed on naïve T cell populations [11]. OX40
expression on activated T cells may be promoted by the production of proinflammatory
cytokines that augment the T cell response, including IL-1, IL-2, IL-4, and tumor necrosis
factor-alpha (TNF-α) [11]. OX40 expression may also occur on natural killer T (NKT) cells,
natural killer (NK) cells, and neutrophils. However, the induction of OX40 expression on
these cell types is not well described in the current literature [26].

2.2. OX40L Expression

OX40 binds to its endogenous ligand, OX40L, which can be induced on activated
B cells, mature conventional dendritic cells (cDCs), plasmacytoid dendritic cells (pDCs),
Langerhans cells, and macrophages in response to factors that promote antigen-presenting
cell (APC) activation and maturation [27–31]. OX40L expression primarily occurs on
professional APCs [11,32,33]. OX40L may also be expressed on type 2 innate lymphoid cells
(ILC2s) and non-lymphoid cells, including endothelial cells, fibroblasts, smooth muscle
cells, and mast cells [26,34–36]. The OX40-OX40L interaction establishes an important
costimulatory pathway that induces the clonal expansion of effector CD4+ and CD8+ T cell
populations, upregulates the expression of proinflammatory cytokines, and facilitates the
generation of memory T cells (Figure 1) [12].
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Figure 1. OX40 expression is induced on activated T cells, and OX40L expression is induced on APCs.
OX40-OX40L ligation stimulates the clonal expansion of effector CD4+ and CD8+ T cell populations,
upregulates the expression of proinflammatory cytokines, and promotes the survival of T cells.

2.3. OX40-OX40L Signaling

As TNFR/TNF superfamily members, both OX40 and OX40L signal through TNF
receptor-associated factor (TRAF) adaptor molecules [37]. Specifically, OX40-OX40L liga-
tion generates a signal transduction cascade by activating the phosphoinositide 3-kinase
(PI3K) pathway, which results in the downstream phosphorylation and subsequent activa-
tion of protein kinase B (PKB, also known as Akt) [38]. The PI3K-PKB/Akt pathway helps
regulate cell growth, survival, and metabolism. By controlling PI3K-PKB/Akt activation in
T cells, the OX40-OX40L pathway plays an integral role in promoting T cell proliferation,
differentiation, and survival (Figure 2). OX40-OX40L signaling also promotes T cell sur-
vival through the NF-κB1 pathway, which stimulates intracellular anti-apoptotic protein
production [39]. Furthermore, OX40-OX40L signaling contributes to the persistence and
reactivation of memory T cell populations [40].
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Figure 2. OX40-OX40L ligation activates the PI3K-PKB/Akt and NF-κB1 pathways. These intracellu-
lar pathways regulate cellular division and promote cellular growth and T cell survival, which can
contribute to inflammation.

2.4. Downstream Effects of OX40-OX40L Signaling

OX40-OX40L ligation also impacts the transcriptional activity of various downstream
targets, including forkhead box P3 (FoxP3). The expression of FoxP3 in CD4+ T cells creates
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a regulatory T cell (Treg) phenotype that suppresses self-reactive T cells in the periphery [41].
Signaling through OX40 has been demonstrated to suppress FoxP3 expression, prevent the
induction of new FoxP3+ Tregs from CD4+ T cells, and attenuate the immune suppressor
function of existing FoxP3+ CD4+ Tregs [42]. Furthermore, OX40-OX40L signaling has
been shown to preferentially act on antigen-specific T cells and promote the primary clonal
expansion of these T cell populations [43].

In vivo studies have further expanded our understanding of OX40-OX40L signaling in
different T cell subsets [44,45]. These studies have demonstrated the impact of the surround-
ing cytokine milieu on the downstream effects of OX40-OX40L signaling [44,45]. In the
presence of cytokines, such as IL-4 and interferon-gamma (IFN-γ), OX40-OX40L signaling
leads to the preferential expansion of effector CD4+ T cell populations (Figure 3) [44,45]. In
contrast, in the absence of IL-4 and IFN-γ, OX40-OX40L signaling leads to the expansion of
the Treg population [44,45]. These studies suggest that in a proinflammatory microenvi-
ronment, OX40 will further amplify immune activity due to signaling from inflammatory
cytokines. In contrast, in the absence of inflammatory cytokine signaling, OX40 promotes a
more immunoregulatory phenotype.
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Figure 3. Downstream effects of OX40-OX40L signaling. OX40-OX40L signaling expands effector
CD4+ T cell populations when there is a surrounding inflammatory cytokine milieu. OX40-OX40L
signaling also decreases the induction of Treg populations through FoxP3 suppression. Additionally,
OX40-OX40L signaling promotes the clonal expansion of antigen-specific T cell populations.

In addition to being a positive effector of T cell growth and survival, OX40-OX40L
signaling has also been shown to upregulate the expression of IFN-γ and other proinflam-
matory cytokine receptors, such as IL-2Rα (CD25), IL-7Rα (CD127), IL-12Rβ2 (CD212), and
IL-15Rα (CD215) [37]. These mechanisms describe how the OX40-OX40L axis may amplify
the proinflammatory T cell response and highlight its potentially significant role in the
pathogenesis of T cell-mediated inflammatory skin diseases, such as AD [46].

3. AD Pathogenesis

The OX40-OX40L axis has been implicated in AD pathogenesis [11]. However, many
other factors contribute to the complex pathophysiology that characterizes AD [2,47]. The
development and progression of AD may represent an interplay between genetic predispo-
sition, environmental exposure, epidermal barrier dysfunction, microbial dysbiosis, and
immune system dysregulation [1,4,48,49].
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3.1. Phenotypic Variance

The multifactorial etiology behind AD development lends itself to a heterogeneous
clinical course and presentation [8,50,51]. Several characteristics may contribute to the
wide range of observed AD phenotypes, including race, ethnicity, age at disease onset,
disease stage (i.e., duration), geographic location, and IgE levels [4,9]. An analysis of
the underlying molecular endotype that drives the clinical presentation of AD may help
explain its phenotypic variance in different populations [52]. For example, preliminary
work comparing AD patients with different racial backgrounds has shown that Asian
AD patients tend to demonstrate greater T helper 17 (TH17) axis activation than African
American and European American AD patients [9,52]. However, the results of these studies
need to be validated with large-scale, longitudinal research [53]. Age may also influence
molecular endotype as older AD patients have been shown to exhibit decreased activation
of the TH2 and TH22 axes compared to younger AD patients [54]. These findings emphasize
the complexity of AD and highlight potential factors that can contribute to its pathogenesis.

3.2. Skin Barrier Dysfunction

Patients with AD may experience skin barrier dysfunction due to several reasons,
including structural protein deficiency, imbalanced stratum corneum enzyme activity, ab-
normal lipid composition and organization, and defective tight junction proteins [1,2,55,56].
A defective epidermal barrier can lead to transepidermal water loss that may dehydrate
the skin and increase its susceptibility to penetration by irritants and allergens [2,9,56,57].
A compromised epidermal barrier may also impact the microbiome of organisms that
constitute our natural skin flora [49].

3.3. Skin Dysbiosis

The skin is inhabited by numerous commensal microbes that help regulate its homeo-
static functions, such as generating immune responses and preventing the overgrowth of
virulent pathogens [49,58]. Staphylococcus, Corynebacterium, and Propionibacterium comprise
around 60% of the bacterial species in healthy skin flora, whereas Malassezia species repre-
sent the most abundant fungi [59]. Compared to the skin microbiome of healthy patients,
the bacterial composition of the skin microbiome in AD patients is altered [59]. Epidermal
barrier impairment facilitates microbiota disruption, triggering immunologic processes that
may contribute to AD pathogenesis [49]. Cutaneous dysbiosis in AD is characterized by
decreased microbial diversity and greater proliferation of Staphylococcal species, particularly
Staphylococcus aureus (S. aureus) [9,49,60].

Several studies have shown that the extent of S. aureus colonization positively corre-
lates with AD disease severity [49,58,59,61]. This relationship may be due to the role that
S. aureus plays in AD pathogenesis. For example, S. aureus stimulates endogenous protease
activity and expression in keratinocytes [59,62]. Increased proteolysis in keratinocytes
facilitates filaggrin cleavage, which decreases epidermal barrier integrity and increases its
vulnerability to penetration [59,62,63].

Additionally, S. aureus produces pathogenic virulence factors, including alpha toxin
(α-toxin/α-hemolysin/H1a) and delta toxin (δ-toxin/δ-hemolysin) [49,58]. α-Toxin forms
pores in the cellular membrane of various types of cells, including epithelial cells, en-
dothelial cells, and neutrophils [64]. Pore formation in the epidermal barrier stimulates
the secretion of proinflammatory cytokines that generate an immune response [58,64].
δ-toxin induces mast cell degranulation and IgE production, which promotes TH2 signaling
and TH2-mediated cytokine production [49,58,65]. Therefore, dysbiosis of the cutaneous
microbiome may facilitate AD pathogenesis by exacerbating skin barrier dysfunction and
potentiating inflammation.

3.4. Immune System Dysregulation

The disruption of the epithelial barrier stimulates toll-like receptors (TLRs) expressed
on keratinocytes and APCs in the skin, which subsequently activates the innate immune
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system [1,56]. The activation of the innate immune system leads to the release of an-
timicrobial peptides, proteases, extracellular matrix proteins, and alarmins such as IL-1α,
IL-25, IL-33, macrophage-derived chemokine (MDC), thymus and activation-regulated
chemokine (TARC), and thymic stromal lymphopoietin (TSLP) [1,56,66]. These molecules
activate dendritic cells, Langerhans cells, and ILC2s, which stimulate TH2 cells [1].

The overactivation of the TH2 cell response increases the secretion of several cytokines
that characterize early-stage AD, including IL-4, IL-5, and IL-13 [3]. These cytokines disrupt
the epidermal barrier by decreasing the expression of molecules that promote normal barrier
function (e.g., structural proteins, lipid synthetic enzymes, and antimicrobial peptides) and
help stimulate IgE class-switching and eosinophil production [1,55–57,67]. TH2 cells also
induce the secretion of IL-31, a cytokine that mediates pruritus, which exacerbates skin
inflammation through repetitive scratching that induces trauma and triggers additional
cytokine release (i.e., the “itch-scratch” cycle) [8,22,57,68].

AD inflammation is primarily mediated by TH2 cell-driven immune pathways; how-
ever, other T helper cell populations (e.g., TH1, TH17, and TH22 cells) also contribute to
disease pathogenesis and chronicity [11,69]. The upregulation of TH2 and TH22 cells char-
acterizes the acute phase of inflammation. In contrast, the chronic phase of inflammation is
marked by the upregulation of TH1, TH2, TH17, and TH22 cells [3,11,69]. These distinct T
helper cell environments exemplify the heterogeneity of immune dysregulation that drives
AD pathogenesis. Therefore, molecules like OX40 that can stimulate the proliferation
of multiple subsets of T helper cells may play a significant role in the pathogenesis and
progression of AD [11,15].

4. OX40-OX40L Signaling in Atopic Dermatitis

Skin barrier disruption is a hallmark of AD that leads to the release of epithelial
cell-derived cytokines from keratinocytes found in the epidermis, including TSLP, IL-25,
and IL-33 [11,57,70,71]. These cytokines are overexpressed in the skin of patients with AD,
likely due to the effects of multiple factors, including epigenetic modifications (e.g., the
hypomethylation of TSLP promoters) and exposure to environmental allergens [57,72].

4.1. T Helper 2 Cells

OX40 and OX40L form a key immunopathogenic signaling pathway that may influ-
ence the development of AD through numerous cellular processes [9,11]. Skin barrier
dysfunction is a key first step in activating CD4+ T cells and, subsequently, the OX40-
OX40L signaling pathway. The disruption of the skin barrier allows for the entry of foreign
antigens through the skin which prime TH2 cells [11]. In addition, damage to epithelial cells
induces the production of proinflammatory cytokines and chemokines, including thymic
stromal lymphopoietin (TSLP), IL-25, and IL-33 [11,15]. Among them, TSLP primarily
induces OX40L expression on APCs; OX40L-expressing APCs facilitate the activation of
CD4+ T cells and OX40 expression on T cells [11,15]. IL-25 and IL-33 produce cytokines
that drive type 2 inflammation and further upregulate OX40L expression [71]. The ligation
of OX40L to OX40 on activated CD4+ T cells drives the proliferation of effector T helper
cell populations, principally TH2 cells, that produce cytokines implicated in early AD
pathogenesis, such as IL-4 and IL-13 [1,12,73].

IL-4 and IL-13 are proinflammatory cytokines secreted by TH2 cells that downregulate
filaggrin, loricrin, and involucrin production in the epidermis [9,74]. The downregulation
of these structural proteins compromises skin barrier integrity [23,33,57]. The subsequent
disturbance of the epidermal barrier establishes a feedback loop that increases TSLP pro-
duction and stimulates OX40L expression, thus contributing to the TH2 cell predominance
that characterizes early-stage AD [3].

4.2. T Helper 1, T Helper 17, and T Helper 22 Cells

OX40 expression in other activated T helper cell populations, including TH1, TH17,
and TH22 cells, may help facilitate the transition from an acute to chronic inflammatory
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state [15]. Maximal OX40 expression typically occurs within 1-4 days after antigenic
stimulation [12,75]. This temporal relationship allows OX40 to contribute to both the acute
(i.e., days 1-3) and chronic (i.e., after 72 h) phases of AD inflammation [3,11].

During the acute phase of inflammation, OX40-OX40L signaling promotes TH2 cell dif-
ferentiation [3,11]. Activated TH2 cells express OX40 and secrete cytokines that further disrupt
the epidermal barrier, which activates APCs that subsequently express OX40L [3,11,12,15,71,76].
OX40-OX40L ligation facilitates the proliferation of additional TH2 cells that help maintain
inflammation; prolonged inflammation sustains OX40 and OX40L expression on T helper
cells and APCs [3,11,15].

During the chronic phase of inflammation, other T helper cell subsets that express
OX40 (i.e., TH1, TH17, and TH22 cells) are recruited to the inflammatory microenviron-
ment [3]. Continued OX40-OX40L signaling allows for the proliferation of effector TH1,
TH17, and TH22 cell populations (Figure 4) [3,11]. Effector TH1, TH17, and TH22 cells
upregulate the production of IFN-γ, IL-17, and IL-22. These cytokines help mediate the pro-
gression of acute to chronic AD through keratinocyte proliferation, epidermal thickening,
and the production of mediators that recruit T cells into the skin [1,46,52,69,71,77].
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Figure 4. Two phases of inflammation characterize AD. During the acute phase, OX40-OX40L ligation
on activated T cells facilitates TH2-predominant signaling and differentiation, which produces type 2
inflammatory cytokines. The shift to the chronic phase is characterized by the recruitment of TH1, TH17,
and TH22 cells expressing OX40. OX40-OX40L ligation on these activated T helper cell populations
leads to effector cell proliferation and cytokine production that maintain the inflammatory response.

4.3. Memory T Cells

In addition to promoting T cell differentiation and proliferation, the OX40-OX40L
pathway also contributes to the generation of memory T cells that may further modulate
AD pathogenesis. Many effector T cells undergo apoptosis following a primary immune
response; however, OX40-OX40L signaling mediates the transition of some effector T cells
into resting memory T cells [11,12,15]. Although the exact mechanism is not fully understood,
the anti-apoptotic effects of OX40-OX40L signaling likely contribute to the enhanced survival
of memory T cells after the initial response to antigen presentation [11,12,20].

Re-exposure to the same antigen activates resting memory T cells and converts them
into effector memory T cells that rapidly express OX40 [12,15,78]. Ligation with OX40L
facilitates the expansion of effector T helper cell populations that secrete new proinflamma-
tory cytokines (Figure 5) [15]. Effector memory T cells expressing OX40 are upregulated in
AD lesions, which may offer a potential immunologic explanation for disease recurrence
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(i.e., flares) [15,79,80]. These findings demonstrate how OX40 may facilitate the chronicity
of AD through the maintenance of a robust memory T cell population [11].
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Figure 5. OX40-OX40L signaling causes effector T cell proliferation, which generates a primary
immune response. Effector T cells undergo apoptosis following a primary immune response; however,
OX40-OX40L signaling mediates the transition of some into resting memory T cells. Re-exposure
to the same antigen converts resting memory T cells into effector memory T cells expressing OX40.
OX40-OX40L ligation on effector memory T cells causes effector memory T cell proliferation, leading
to a secondary immune response.

4.4. Suppression of Apoptosis

The OX40-OX40L axis may also contribute to the pathogenesis of AD through the
suppression of T cell apoptosis. Under normal physiologic conditions, apoptosis prevents
sustained inflammation through tightly regulated processes influenced by different signal
transduction cascades and molecules [81–85]. T cell apoptosis is dysregulated in AD, which
facilitates prolonged inflammation and disease progression [86,87].

OX40 induces the sustained activation of intracellular anti-apoptotic pathways in T
cells. The nuclear factor-κB (specifically, NF-κB1) and PI3K-PKB/Akt pathways are key
modulators of cell division and apoptosis that respond to OX40 signaling [12]. The NF-κB
signal transduction cascade promotes inflammation through two distinct pathways: the
canonical (NF-κB1) pathway and the non-canonical/alternative pathway [81,88]. The OX40-
mediated stimulation of the NF-κB1 pathway increases the production of anti-apoptotic
proteins (e.g., survivin, Bcl-2, and Bcl-xL) that regulate cell division and prolong T cell
survival [39]. The OX40-mediated activation of the PI3K-PKB/Akt pathway also upregu-
lates the expression of these anti-apoptotic factors [39,89]. The activation of these pathways
may lead to cellular survival and subsequent memory T cell accumulation after an initial
effector T cell response [12,24,32,90].

4.5. Modulation of OX40-OX40L Signaling

Collectively, these mechanisms suggest a viable pathophysiological link between OX40-
OX40L and AD. The OX40-OX40L axis modulates processes integral to AD pathogenesis
that promote T cell differentiation and proliferation and the survival of multiple subsets of
T helper cells [12]. Disrupting the costimulatory interaction between OX40 and OX40L may
lead to a diminished T cell response [32]. As such, the inhibition of OX40-OX40L ligation is
a potentially significant area of therapeutic interest for the management of AD.
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5. Therapeutic Targets and Emerging Therapies

The treatment landscape for moderate-to-severe AD has greatly expanded due to the
development of systemic therapies that inhibit specific cytokines or small molecules impli-
cated in AD pathogenesis. A few examples of these novel treatments include biologics that
inhibit IL-4Rα (dupilumab) and IL-13 (tralokinumab), as well as JAK inhibitors [1,8,9,11,91].
Despite this recent drug discovery, a therapeutic need exists for patients with moderate-to-
severe AD who do not adequately respond to available therapies [11,91].

Several emerging AD therapies targeting the OX40-OX40L pathway are currently in
development, including the monoclonal antibodies rocatinlimab (AMG 451/KHK4083),
telazorlimab (ISB 830/GBR 830), and amlitelimab (KY1005/SAR445229) (Figure 6).
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5.1. Rocatinlimab

Rocatinlimab is a fully human anti-OX40 monoclonal antibody that selectively de-
pletes OX40+ activated T cells, downregulating TH1-, TH2-, TH17-, and TH22-mediated
inflammation [91]. In a phase 2b trial, rocatinlimab demonstrated good efficacy and safety
profiles (NCT03703102) [23]. This multi-center, double-blind, placebo-controlled trial in-
cluded 274 adult subjects with moderate-to-severe AD and an inadequate response to
topical treatments. The primary endpoint was the least-squares mean percent change in
the Eczema Area and Severity Index (EASI) score. The EASI scores ranged from 0 to 72,
with higher scores representing increased severity from baseline to week 16 between the
placebo and treatment groups. Subjects in this trial were randomized (1:1:1:1:1) to receive
rocatinlimab in doses of (1) 150 mg subcutaneously every four weeks (n = 52), (2) 600 mg
subcutaneously every four weeks (n = 52), (3) 300 mg subcutaneously every two weeks
(n = 52), or (4) 600 mg subcutaneously every two weeks (n = 54) or (5) a placebo for 18 weeks
(n = 57). The treatment period was followed by an 18-week active-treatment extension and
a subsequent 20-week safety follow-up period.

At week 16, all treatment groups demonstrated significant improvement in their EASI
scores relative to the placebo group. When compared to the placebo group’s mean decrease
in the EASI score of −15.0% (95% CI, −28.6%–−1.4%), (1) the group receiving 150 mg
subcutaneously every four weeks demonstrated a significantly higher decrease in the EASI
score of −48.3% (95% CI, −62.2%–−34.0%; p = 0.0003), (2) the group receiving 600 mg
subcutaneously every four weeks demonstrated a significantly higher decrease in the EASI
score of −49.7% (95% CI, −64.3%–−35.2%; p = 0.0002), (3) the group receiving 300 mg
subcutaneously every two weeks demonstrated a significantly higher decrease in the EASI
score of −61.1% (95% CI, −75.2%–−47.0%; p < 0.0001), and (4) the group receiving 600 mg
subcutaneously every two weeks demonstrated a significantly higher decrease in the EASI
score of −57.4% (95% CI, −71.3%–−43.4%; p < 0.0001). Treatment-emergent adverse events
were mild, and no deaths were reported. The most common adverse events reported in
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≥5% of the rocatinlimab-treated groups included pyrexia, chills, headache, aphthous ulcer,
and nausea [23].

Rocatinlimab is currently undergoing placebo-controlled, double-blind trials and
open-label phase 3 trials in adults and adolescents with moderate-to-severe AD to con-
tinue to assess the efficacy, safety, and tolerability of this new intervention (NCT05633355,
NCT05651711, NCT05398445, NCT05899816, NCT05724199, NCT05882877, NCT05704738).

5.2. Telazorlimab

Telazorlimab is a humanized anti-OX40 monoclonal antibody that may selectively deplete
activated T cells to interrupt the inflammatory pathways associated with AD [92,93]. In a phase
2b trial, telazorlimab demonstrated good efficacy and safety profiles (NCT03568162) [92]. This
multi-center, double-blind, placebo-controlled trial included adult subjects with moderate-
to-severe AD and consisted of two parts. The primary endpoint was the least-squares
mean percent change in the EASI score from baseline to week 16 between the placebo and
treatment groups.

Part 1 included 313 subjects who were randomized (1:1:1:1) to receive telazorlimab
subcutaneously (1) with a loading dose of 600 mg and then 300 mg every two weeks (n = 76),
(2) with a loading dose of 600 mg and then 300 mg every four weeks (n = 78), or (3) with a
loading dose of 150 mg and then 75 mg every four weeks (n = 77) or (4) a placebo (n = 80)
for 16 weeks. The treatment period was followed by a 38-week open-label extension in
which all participants received telazorlimab 300 mg subcutaneously every two weeks.

Part 2 included 149 subjects who were randomized (1:1) to receive telazorlimab subcu-
taneously with a loading dose of 1200 mg and then 600 mg every two weeks (n = 75) or a
placebo (n = 74) for 16 weeks. This treatment period was followed by a 38-week open-label
extension in which all participants received telazorlimab 600 mg subcutaneously every
two weeks. All subjects from parts 1 and 2 were monitored afterward for a 12-week safety
follow-up period.

At 16 weeks, the EASI scores were significantly improved in the two high-dose treat-
ment groups compared to the placebo group. In part 1, the high-dose group receiving
300 mg every two weeks demonstrated a significantly higher decrease in the mean EASI
score of −54.4% (SE 5.1; p = 0.008) in comparison to the placebo group’s mean decrease in
the EASI score of −34.2% (SE 5.5). In part 2, the high-dose group receiving 600 mg every
two weeks demonstrated a significantly higher decrease in the mean EASI score of −59.0%
(SE 4.6; p = 0.008) in comparison to the placebo group’s mean decrease in the EASI score of
−41.8% (SE 4.7).

Among the low-dose treatment groups, no significant differences were found in EASI
scores between the group receiving 300 mg every four weeks and the placebo group
(−48.6% [SE 5.4] versus −34.2% [SE 5.7]; p = 0.061) or the group receiving 75 mg every
four weeks and the placebo group (−31.0% [SE 5.7] versus −34.2% [SE 5.7]; p = 0.691).
The adverse event rates appeared to be distributed similarly between all treatment and
placebo arms. Across parts 1 and 2 of this study, the most common treatment-emergent
adverse events, which were defined as occurring in >5% of the telazorlimab-treated groups,
were AD, nasopharyngitis, upper respiratory tract infection, headache, pruritus, and
fatigue [92]. Similar rates of AD exacerbation, nasopharyngitis, upper respiratory tract
infection, headache, and urinary tract infection also occurred in the placebo groups [92].

There are currently no ongoing phase 3 trials that are further investigating the utility
of telazorlimab in the management of AD.

5.3. Amlitelimab

Amlitelimab is a fully human anti-OX40L monoclonal antibody that binds to OX40L.
Amlitelimab binding to OX40L blocks its interaction with OX40, which inhibits the acti-
vation of T cell-mediated inflammation. Amlitelimab also reduces the proinflammatory
activity of APCs by blocking the OX40L back signaling pathway [91].
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In a phase 2a trial, amlitelimab demonstrated good efficacy and safety profiles
(NCT03754309) [94]. This multi-center, double-blind, placebo-controlled trial included
89 adult subjects with moderate-to-severe AD. The primary endpoint was the least-squares
mean percent change in the EASI score from baseline to week 16 between placebo and
treatment groups. The secondary endpoints included changes in serum IL-22 levels from
baseline to week 16 between the treatment and placebo groups. Subjects were randomized
(1:1:1) to receive amlitelimab subcutaneously (1) with a 200 mg loading dose and 100 mg
every four weeks (n = 27), (2) with a 500 mg loading dose and 250 mg every four weeks
(n = 27), or (3) a placebo (n = 24) for 12 weeks. The treatment period was followed by a
24-week safety follow-up period.

At week 16, the low-dose treatment group (100 mg every four weeks) demonstrated
a significant decrease in the mean EASI score of −80.12% (95% CI, −95.55%–−54.60%;
p = 0.009) compared to the placebo group’s mean decrease in the EASI score of −49.37%
(95% CI, −66.02%–−32.72%). However, at week 16, the high-dose treatment group (250 mg
every four weeks) demonstrated a non-significant decrease in the mean EASI score of
−69.97% (95% CI, −85.04%–−54.60%; p = 0.07) as compared to the placebo group’s mean
decrease in the EASI score of −49.37% (95% CI, −66.02%–−32.72%). Additionally, serum
IL-22 levels at week 16 were found to be significantly reduced from baseline in the low-dose
treatment group (p < 0.001) and high-dose treatment group (p < 0.001). No reduction in
serum IL-22 levels was found for the placebo-treated group between baseline and week
16. The safety profile was unremarkable. The most common adverse events among the
amlitelimab-treated groups, occurring with ≥5% frequency compared to the placebo group,
were mild and included headache, hyperhidrosis, upper respiratory tract infection, pyrexia,
increased aspartate aminotransferase, and iron deficiency anemia [94].

The preliminary results of the phase 2b trial of amlitelimab were presented at the 2023
European Academy of Dermatology and Venereology (EADV) Congress (NCT05131477) [95].
This multi-center, double-blind, placebo-controlled trial included 390 subjects with moderate-
to-severe AD. In this dose-ranging study, subjects were randomized (1:1:1:1:1) to receive
amlitelimab subcutaneously as follows: (1) 250 mg every four weeks with a 500 mg loading
dose (n = 77), (2) 250 mg every four weeks without a loading dose (n = 78), (3) 125 mg
every four weeks without a loading dose (n = 77), (4) 62.5 mg every four weeks without a
loading dose (n = 79), or (5) a placebo (n = 79). The primary endpoint was the least-squares
mean percent change in the EASI score from baseline to week 16 between the placebo and
treatment groups [95].

At week 16, all treatment groups demonstrated significant improvement in the EASI
score relative to the placebo group. Compared to the placebo group, the decrease in the
least-squares mean percent change in the EASI score was −32.1% (95% CI, −43.9%–−20.3%;
p < 0.0001) for the group receiving 250 mg every four weeks with a 500 mg loading dose,
−27.3% (95% CI, −39.1%–−15.6%; p < 0.0001) for the group receiving 250 mg every four
weeks without a loading dose, −22.2% (95% CI, −34.0%–−10.4%; p = 0.0002) for the group
receiving 125 mg every four weeks without a loading dose, and −30.2% (95% CI, −41.9%–
−18.5%; p < 0.0001) for the group receiving 62.5 mg every four weeks without a loading
dose. Amlitelimab was well tolerated in all the treatment groups [95].

Amlitelimab is currently undergoing placebo-controlled, double-blind phase 3 trials
in adults with moderate-to-severe AD (NCT06181435, NCT06130566).

Table 1 summarizes the phase 2b clinical trials studying the effects of OX40-OX40L
pathway inhibition in adults with moderate-to-severe AD.
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Table 1. Phase 2b clinical trials of emerging therapies targeting the OX40-OX40L pathway.

Therapeutic
Agent

Site of
Action Study Design Primary Endpoint Study Arms Results

Rocatinlimab OX40
NCT03703102 [23]
Phase 2b multi-center, double-blind,
placebo-controlled trial of 274 adults with
moderate-to-severe AD randomized 1:1:1:1:1

Least-squares mean
percent change in
EASI from baseline
to week 16

Placebo −15.0% (95%CI,
−28.6%–−1.4%)

No LD
150 mg q4weeks

−48.3% (95%CI,
−62.2%–−34.0%)
p = 0.0003

No LD
600 mg q4weeks

−49.7% (95%CI,
−64.3%–−35.2%)
p = 0.0002

No LD
300 mg q2weeks

−61.1% (95%CI,
−75.2%–−47.0%)
p < 0.0001

No LD
600 mg q2weeks

−57.4% (95%CI,
−71.3%–−43.4%)
p < 0.0001

Telazorlimab OX40

NCT03568162 [93]
Phase 2b multi-center,
double-blind,
placebo-controlled trial of
adults with
moderate-to-severe AD

Part 1
313 subjects
randomized
1:1:1:1

Least-squares mean
percent change in
EASI from baseline
to week 16

Placebo −34.2% (SE 5.5)

LD: 150 mg
75 mg q4weeks

−31.0% (SE 5.7)
p = 0.691

LD: 600 mg
300 mg q4weeks

−48.6% (SE 5.4)
p = 0.061

LD: 600 mg
300 mg q2weeks

−54.4% (SE 5.1)
p = 0.008

Part 2
149 subjects
randomized 1:1

Least-squares mean
percent change in
EASI from baseline
to week 16

Placebo −41.8% (SE 4.7)

LD: 1200 mg
600 mg q2weeks

−59.0% (SE 4.6)
p = 0.008

Amlitelimab OX40L
NCT05131477 [95]
Phase 2b multi-center, double-blind,
placebo-controlled trial of 390 adults with
moderate-to-severe AD randomized 1:1:1:1:1

Least-squares mean
percent change in
EASI from baseline
to week 16

Placebo −29.4%

LD: 500 mg
250 mg q4weeks

−61.5%
p < 0.0001

No LD
250 mg q4weeks

−56.8%
p < 0.0001

No LD
125 mg q4weeks

−51.6%
p = 0.0002

No LD
62.5 mg q4weeks

−59.6%
p < 0.0001

Abbreviations: AD, atopic dermatitis; EASI, Eczema Area and Severity Index; LD, loading dose; q2weeks, every
two weeks; q4weeks, every four weeks; 95%CI, 95% confidence interval; SE, standard error.

6. Conclusions

In conclusion, the OX40-OX40L axis appears to strongly influence immune pathways
contributing to skin inflammation in AD. Numerous cellular mechanisms support the
significant role of OX40 and OX40L in AD pathogenesis. The OX40-OX40L pathway allows
multiple classes of T helper cells to proliferate. These T helper cell subsets secrete cytokines
that impair epidermal barrier function, dysregulate the immune response, and maintain
inflammation. OX40-OX40L ligation also promotes the formation of memory T cells. Once
activated, these T cells can further augment the production of proinflammatory cytokines.
In addition, the OX40-OX40L pathway sustains the activation of anti-apoptotic intracel-
lular pathways, allowing more T cells to potentially contribute to disease progression
and chronicity.

The heterogeneity of AD pathogenesis may limit the effectiveness of available treat-
ments, and options are sparse for patients with moderate-to-severe AD who do not respond
to existing therapies. Disrupting the OX40-OX40L interaction may attenuate the T cell
response and offer therapeutic utility for AD patients. AD pathogenesis is heterogeneous
among different patient populations. While traditionally thought of as a TH2-mediated
disease, AD in different populations may be differentially dominated by other pathways
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such as TH1, TH17, and TH22 [9,52,54]. OX40-OX40L signaling augments the expansion
and survival of several T helper cell subsets [91], therefore sustaining the proinflammatory
state across different phenotypes of AD patients.

Currently available systemic therapies for AD are mostly limited to targeting TH2
cell-driven inflammation. In contrast, therapies targeting OX40-OX40L signaling may
provide additional therapeutic benefits to patients with varying AD phenotypes and
endotypes, including those who do not adequately respond to treatments that target
specific components of the TH2 pathway.

Anti-OX40-OX40L therapies target AD pathogenesis more upstream by limiting the
proliferation of TH1, TH2, TH17, and TH22 cells [91]. As such, anti-OX40-OX40L therapies
may provide long-term durability over current AD treatments and may be administered
infrequently while maintaining efficacy [23].

Lastly, regarding differentiating OX40-OX40L inhibitors from existing AD biologics
in terms of safety profiles, the OX40-OX40L inhibitors do not have the adverse effect
of conjunctivitis, which is related to the use of IL-4 and/or IL-13 inhibitors [96,97]. Of
note, it is important to consider that the safety profile among the OX40-OX40L inhibitors
differs slightly, and this may be related to whether the inhibitor depletes T cell populations.
However, in the absence of larger phase 3 studies at this time, it is difficult to fully appreciate
safety differences among the OX40-OX40L inhibitors.

Several clinical trials are studying novel treatments targeting OX40 and OX40L in AD
patients. While these treatments have demonstrated encouraging results in early-phase
trials, continued research is needed to assess their long-term safety, tolerability, and efficacy
in patients with moderate-to-severe AD. These promising therapies may significantly
impact the future of AD management and enhance disease control for more AD patients.
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