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Abstract: The synthesis and structural characterization of α-haloalkyl-substituted pyridinium-fused
1,2,4-selenadiazoles with various counterions is reported herein, demonstrating a strategy for directed
supramolecular dimerization in the solid state. The compounds were obtained through a recently
discovered 1,3-dipolar cycloaddition reaction between nitriles and bifunctional 2-pyridylselenyl
reagents, and their structures were confirmed by the X-ray crystallography. α-Haloalkyl-substituted
pyridinium-fused 1,2,4-selenadiazoles exclusively formed supramolecular dimers via four-center
Se···N chalcogen bonding, supported by additional halogen bonding involving α-haloalkyl sub-
stituents. The introduction of halogens at the α-position of the substituent R in the selenadiazole core
proved effective in promoting supramolecular dimerization, which was unaffected by variation of
counterions. Additionally, the impact of cocrystallization with a classical halogen bond donor C6F3I3

on the supramolecular assembly was investigated. Non-covalent interactions were studied using
density functional theory calculations and topological analysis of the electron density distribution,
which indicated that all ChB, XB and HB interactions are purely non-covalent and attractive in
nature. This study underscores the potential of halogen and chalcogen bonding in directing the
self-assembly of functional supramolecular materials employing 1,2,4-selenadiazoles derived from
recently discovered cycloaddition between nitriles and bifunctional 2-pyridylselenyl reagents.

Keywords: selenadiazoles; non-covalent interactions; hydrogen bonding; halogen bonding;
chalcogen bonding

1. Introduction

The creation of functional supramolecular materials with programmable structures
and, as a result, tunable properties through a bottom-up approach has posed a persistent
and enduring challenge. Among the numerous supramolecular linkages employed for
creating complex assemblies, coordination and hydrogen bonds are the most extensively
utilized, which resulted in the rise of metal–organic frameworks (MOFs) [1,2] and hydrogen-
bonded organic frameworks (HOFs) [3–7]. In recent years, halogen bonding (XB) and
chalcogen bonding (ChB) have emerged as potent alternatives for hydrogen bonding, due
to their directionality and superior tunability [8–30]. Despite their potential benefits, XB
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and ChB have garnered significantly less attention in the context of the creation of extended
materials akin to HOFs and MOFs [30].

Chalcogenodiazoles are appealing candidates for creating such materials [31–37]. They
have demonstrated the ability to assemble into symmetrical antiparallel supramolecular
dimers through two Ch···N chalcogen bonding interactions. These appealing supramolecu-
lar building blocks have undergone extensive investigation in recent years [32–37].

Recently we have described a novel 1,3-dipolar cycloaddition reaction between ni-
triles and bifunctional 2-pyridylselenyl reagents, which allows us to synthesize otherwise
inaccessible pyridinium-fused 1,2,4-selenadiazoles [38–40]. The latter showed a propen-
sity to self-assemble into antiparallel supramolecular dimers in the solid state via four-
center Se2N2 ChB. The formation of dimers was not observed for all the structurally
characterized cationic selenadiazoles and depended on the substituents in the heterocyclic
system [41–44]. In some cases, the square formation was outcompeted by other weak
intermolecular contacts in the solid state. This prompted us to search for approaches for
directed supramolecular synthesis involving our novel synthons featuring four-center
Se2N2 ChB.

In a previous work [43], we demonstrated that benzylic-substituted pyridinium-fused
1,2,4-selenadiazoles exclusively form supramolecular dimers via four-center Se2N2 and
two symmetrically equivalent selenium···arene ChB interactions. This benzylic substitution
approach can be employed for reliable supramolecular dimerization of pyridinium-fused
selenadiazoles in the crystal, which can be applied in supramolecular engineering.

Here, we report the synthesis and structural characterization of α-haloalkyl-substituted
pyridinium-fused 1,2,4-selenadiazoles with various counterions and demonstrate that the
introduction of a halogen at the α-position of substituent R in the selenadiazole core may
be an effective strategy for directed supramolecular dimerization of selenadiazoles in the
solid state.

2. Results and Discussion

Halides of α-haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles were ob-
tained by the oxidation of 2,2′-dipyridyl diselenide 1 or 4,4′-dimethyl-2,2′-dipyridyl dise-
lenide 2 followed by sequential cyclization of in situ generated 2-pyridylselenyl halide or
4-methyl-2-pyridylselenyl halide with corresponding α-haloalkylnitriles (Scheme 1A, see
experimental part for details). The salts of ReO4

−, PF6
−, BF4

− and SCN− were obtained
via anion metathesis in 1,2,4-selenadiazolium chlorides (Scheme 1B).

The NMR data for 3–10 was consistent with the proposed structures. Compounds
3–10 could be recrystallized from the MeOH-Et2O mixture to give single crystals suitable
for X-ray structural analysis, which confirmed their structures (Figure 1).

The crystal quality for 6 did not allow us to establish precise metrical parameters,
but confirmed the atom connectivity in the solid state. Structural analysis revealed that
for 3–10, the anion was involved in Se···X and H···X bifurcated non-covalent interactions
(Figure 1). This robust chalcogen-bonded supramolecular synthon was described by us ear-
lier [44–46]. Importantly, all the α-haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles
3–10 exclusively form supramolecular dimers via four-center Se···N ChB (Figure 1) with-
out an exception. Trichloromethyl-substituted 1,2,4-selenadiazoles 3 and 4 feature two
antiparallel XB interactions Cl···Cl (for 3) or Cl···OReO3 (for 4, Figure 1). Chloromethyl-
substituted derivatives 5 (PF6 salt) and 6 (BF4 salt) apart from four-center Se···N ChB exhibit
Cl···F XB and Se···F ChB. 2,2-Dibromo-2-cyanoacetamide-derived pyridinium-fused 1,2,4-
selenadiazole bromide 7 also exhibited four-center Se···N ChB together with the peripheral
Br···Br interactions (Figure 1).

Further, we prepared fluoromethyl-substituted 1,2,4-selenadiazole salts 8 and 9
(Figure 1). Interestingly, they also formed dimers via four-center Se···N ChB but did
not form F···X XB with the anions. In these cases, H···X HB (Figure 1) outcompeted the
formation of XB involving the fluorine atom, arguably due to the low polarizability of the F
atom and its weak XB-donating ability.
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Finally, thiocyanate salt 10 also self-assembled into antiparallel supramolecular dimers
in the solid state via four-center Se···N ChB and a pair of Cl···NCS XB (Figure 1).

Thus, the introduction of a halogen at the α-position of substituent R in the selenadia-
zole core indeed promotes supramolecular dimerization via four-center Se···N ChB; anion
variation does not break these robust dimers as demonstrated above.

Further, we aimed to obtain thiocyanate salt of chloromethyl-substituted 1,2,4-selenadiazole
salt via anion metathesis, but obtained thiocyano-substituted derivative 11 due to chlorine-to-
thiocyanate exchange (Scheme 2).
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Scheme 2. Synthesis of 11.

The reaction was reproducible and allowed the preparation of 11 in good yield (57%).
We managed to obtain single crystals suitable for the X-ray structural analysis, which
revealed that 11 also self-assembles in the solid into Se2N2 supramolecular dimers, which
are supported by a pair of S···S ChB interactions (Figure 2).
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represent carbon and hydrogen, respectively.

Further, we were interested in how cocrystallization of α-haloalkyl-substituted pyridinium-
fused 1,2,4-selenadiazoles with C6F3I3, which is a classical halogen bond donor, would affect
the self-assembly of a resulting supramolecular aggregate and whether Se2N2 supramolecular
dimers would be sustained.

For this reason, we cocrystallized α-(trichloromethyl)-[1,2,4]selenadiazolo [4,5-a]pyridin-
4-ium chloride with C6F3I3 (1:1 ratio) using MeOH as a solvent and performed single crystal
structural analysis for a cocrystal 12 (Figure 3).

X-ray analysis revealed that in the solid of 12 Se2N2 supramolecular dimers are
broken (Se···N distances of 5.82 Å are too long for ChB). However, Se···Cl and H···Cl
bifurcated non-covalent interactions between the heterocycle and the Cl anion are conserved
demonstrating again the robustness of this supramolecular synthon. Moreover, 12 contains
supramolecular 1D infinite chains consisting of alternating selenadiazole···Cl ion pairs
and C6F3I3 molecules (Figure 3), which are interconnected by I···N and I···Cl XB. Thus, in
the resulting solid 12 Se2N2 supramolecular dimers were disrupted, indicating that the
formed I···N and I···Cl XB interactions involving C6F3I3 molecules were collectively more
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significant than ChBs and HBs, which is confirmed by the results of DFT calculations and
topological analysis of the electron density distribution within the framework of Bader’s
theory (QTAIM analysis) [47] for model supramolecular associates (see properties and
estimated strengths of such contacts in Tables 1 and 2).
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Table 1. Values of the density of all electrons—ρ(r), Laplacian of electron density—∇2ρ(r) and
appropriate λ2 eigenvalues, energy density—Hb, potential energy density—V(r), and Lagrangian
kinetic energy—G(r) (a.u.) at the bond critical points (3, −1) corresponding with hydrogen, halogen
and chalcogen bonding in studied crystal structures 3–12.

Contact ρ(r) ∇2ρ(r) λ2 Hb V(r) G(r)

3

Se···N 3.199 Å 0.010 0.033 −0.010 0.001 −0.006 0.007

Se···Cl 2.886 Å 0.027 0.071 −0.027 0.000 −0.017 0.017

Cl···Cl 3.201 Å 0.012 0.041 −0.012 0.002 −0.007 0.009

H···Cl 2.590 Å 0.009 0.039 −0.009 0.003 −0.005 0.008

4

Se···N 3.139 Å 0.011 0.037 −0.011 0.002 −0.006 0.008

Se···O 2.611 Å 0.026 0.101 −0.026 0.003 −0.020 0.023

Cl···O 3.334 Å 0.006 0.022 −0.006 0.001 −0.003 0.004

Cl···O 3.180 Å 0.007 0.029 −0.007 0.001 −0.005 0.006

Cl···Se 3.644 Å 0.006 0.018 −0.006 0.001 −0.003 0.004

H···O 2.473 Å 0.010 0.043 −0.010 0.002 −0.007 0.009

5

Se···N 2.951 Å 0.015 0.055 −0.015 0.002 −0.010 0.012

Se···F 2.916 Å 0.012 0.049 −0.012 0.002 −0.008 0.010

Cl···F 3.153 Å 0.006 0.027 −0.006 0.001 −0.004 0.005

Cl···F 3.286 Å 0.005 0.020 −0.005 0.001 −0.003 0.004

H···F 2.441 Å 0.008 0.033 −0.008 0.001 −0.006 0.007

H···F 2.633 Å 0.006 0.026 −0.006 0.001 −0.004 0.005
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Table 1. Cont.

Contact ρ(r) ∇2ρ(r) λ2 Hb V(r) G(r)

6

Se···N 2.981 Å 0.014 0.052 −0.014 0.002 −0.009 0.011

Se···F 2.902 Å 0.012 0.050 −0.012 0.002 −0.008 0.010

Cl···F 3.312 Å 0.004 0.018 −0.004 0.001 −0.003 0.004

Cl···F 3.293 Å 0.005 0.020 −0.005 0.001 −0.003 0.004

H···F 2.345 Å 0.010 0.038 −0.010 0.001 −0.007 0.008

H···F 2.575 Å 0.006 0.029 −0.006 0.001 −0.005 0.006

7

Se···N 3.125 Å 0.011 0.039 −0.011 0.002 −0.007 0.008

Se···Br 3.230 Å 0.010 0.028 −0.010 0.001 −0.005 0.006

Br···Br 3.220 Å 0.017 0.042 −0.017 0.000 −0.010 0.010

Br···Br 3.316 Å 0.016 0.032 −0.016 0.000 −0.008 0.008

H···Br 2.716 Å 0.011 0.041 −0.011 0.001 −0.008 0.009

8

Se···N 2.892 Å 0.017 0.062 −0.017 0.002 −0.011 0.013

Se···F 2.953 Å 0.012 0.045 −0.012 0.002 −0.007 0.009

Se···F 3.068 Å 0.010 0.037 −0.010 0.002 −0.006 0.008

H···F 2.583 Å 0.006 0.029 −0.006 0.002 −0.004 0.006

H···F 2.768 Å 0.004 0.015 −0.004 0.001 −0.002 0.003

H···F 2.838 Å 0.003 0.013 −0.003 0.001 −0.002 0.003

9

Se···N 3.029 Å 0.013 0.047 −0.013 0.002 −0.008 0.010

Se···Cl 2.968 Å 0.024 0.062 −0.024 0.001 −0.014 0.015

H···Cl 2.712 Å 0.011 0.037 −0.011 0.001 −0.007 0.008

10

Se···N 3.239 Å 0.009 0.030 −0.009 0.001 −0.005 0.006

Se···N 2.694 Å 0.025 0.079 −0.025 0.001 −0.017 0.018

Cl···C 3.197 Å 0.007 0.029 −0.007 0.002 −0.004 0.006

H···N 2.422 Å 0.012 0.048 −0.012 0.002 −0.008 0.010

11

Se···N 3.101 Å 0.012 0.040 −0.012 0.002 −0.007 0.009

Se···S 3.591 Å 0.008 0.025 −0.008 0.001 −0.004 0.005

Se···C 3.402 Å 0.007 0.024 −0.007 0.001 −0.004 0.005

Se···S 3.201 Å 0.018 0.042 −0.018 0.001 −0.008 0.009

H···S 2.922 Å 0.008 0.025 −0.008 0.001 −0.004 0.005

12

I···Cl 3.358 Å 0.013 0.043 −0.013 0.001 −0.009 0.010

I···Cl 3.347 Å 0.014 0.044 −0.014 0.001 −0.009 0.010

I···Cl 3.353 Å 0.014 0.044 −0.014 0.001 −0.009 0.010

I···Cl 3.180 Å 0.019 0.055 −0.019 0.000 −0.013 0.013
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Table 1. Cont.

Contact ρ(r) ∇2ρ(r) λ2 Hb V(r) G(r)

I···N 3.116 Å 0.015 0.052 −0.015 0.001 −0.011 0.012

Se···Cl 2.968 Å 0.023 0.064 −0.023 0.001 −0.014 0.015

H···Cl 2.583 Å 0.014 0.046 −0.014 0.001 −0.009 0.010

Table 2. Estimated binding energies (Eint, kcal/mol) of HB, XB and ChB in studied crystal structures 3–12.

Contact Eint ≈ –V(r)/2

3

Se···N 3.199 Å 1.9

Se···Cl 2.886 Å 5.3

Cl···Cl 3.201 Å 2.2

H···Cl 2.590 Å 1.6

4

Se···N 3.139 Å 1.9

Se···O 2.611 Å 6.3

Cl···O 3.334 Å 0.9

Cl···O 3.180 Å 1.6

Cl···Se 3.644 Å 0.9

H···O 2.473 Å 2.2

5

Se···N 2.951 Å 3.1

Se···F 2.916 Å 2.5

Cl···F 3.153 Å 1.3

Cl···F 3.286 Å 0.9

H···F 2.441 Å 1.9

H···F 2.633 Å 1.3

6

Se···N 2.981 Å 2.8

Se···F 2.902 Å 2.5

Cl···F 3.312 Å 0.9

Cl···F 3.293 Å 0.9

H···F 2.345 Å 2.2

H···F 2.575 Å 1.6

7

Se···N 3.125 Å 2.2

Se···Br 3.230 Å 1.6

Br···Br 3.220 Å 3.1

Br···Br 3.316 Å 2.5

H···Br 2.716 Å 2.5
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Table 2. Cont.

Contact Eint ≈ –V(r)/2

8

Se···N 2.892 Å 3.5

Se···F 2.953 Å 2.2

Se···F 3.068 Å 1.9

H···F 2.583 Å 1.3

H···F 2.768 Å 0.6

H···F 2.838 Å 0.6

9

Se···N 3.029 Å 2.5

Se···Cl 2.968 Å 4.4

H···Cl 2.712 Å 2.2

10

Se···N 3.239 Å 1.6

Se···N 2.694 Å 5.3

Cl···C 3.197 Å 1.3

H···N 2.422 Å 2.5

11

Se···N 3.101 Å 2.2

Se···S 3.591 Å 1.3

Se···C 3.402 Å 1.3

Se···S 3.201 Å 2.5

H···S 2.922 Å 1.3

12

I···Cl 3.358 Å 2.8

I···Cl 3.347 Å 2.8

I···Cl 3.353 Å 2.8

I···Cl 3.180 Å 4.1

I···N 3.116 Å 3.5

Se···Cl 2.968 Å 4.4

H···Cl 2.583 Å 2.8

In order to confirm the presence of discussed HB, XB and ChB in studied solids 3–12
from a theoretical viewpoint, we carried out DFT calculations at the ωB97XD/DZP-DKH
level of theory followed by the topological analysis of the electron density distribution
within the framework of Bader’s theory (QTAIM analysis) [47] for model supramolecular
associates (Cartesian atomic coordinates for these model supramolecular associates are
presented in Supplementary Materials). The results of QTAIM analysis are summarized in
Tables 1 and 2; for illustrative purposes, the contour line diagram of the Laplacian of electron
density distribution ∇2ρ(r), bond paths and selected zero-flux surfaces, visualization of
electron localization function (ELF) and reduced density gradient (RDG) analyses for H···Cl,
Se···N, Se···Cl, and Cl···Cl non-covalent interactions in 3 are shown in Figure 4.
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and selected zero-flux surfaces (top panel), visualization of electron localization function (ELF, center
panel) and reduced density gradient (RDG, bottom panel) analyses for H···Cl, Se···N, Se···C and
Cl···Cl non-covalent interactions in 3. Bond critical points (3, −1) are shown in blue, nuclear critical
points (3, −3) in pale brown, ring critical points (3, +1) in orange, bond paths are shown as pale
brown lines, length units on axis is Å and the color scale for the ELF and RDG maps is presented
in a.u.

The QTAIM analysis demonstrates the presence of appropriate bond critical points
(3, −1) for HB, XB and ChB in model supramolecular associates (Table 1). The low magni-
tude of the electron density, positive values of the Laplacian of electron density and zero or
very close to zero positive energy density in these bond critical points (3, −1) and estimated
strengths for appropriate short contacts are typical for such non-covalent interactions is
similar chemical systems [38,41,48–51]. The balance between the Lagrangian kinetic energy
G(r) and potential energy density V(r) at the bond critical points (3, −1) corresponding
for HB, XB and ChB in model supramolecular associates reveals that a covalent contri-
bution is absent in these contacts (−G(r)/V(r) > 1) [52]. The sign of λ2 can be utilized to
distinguish bonding (attractive, λ2 < 0) weak interactions from nonbonding ones (repulsive,
λ2 > 0) [4,53,54]. Thus, discussed non-covalent interactions are attractive (Table 1).
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3. Materials and Methods
3.1. General Remarks

All manipulations were carried out in the air. All the reagents used in this study were
obtained from commercial sources (Aldrich, TCI-Europe, Strem, ABCR). Commercially
available solvents were purified by conventional methods and distilled immediately prior
to use. NMR spectra were recorded on a Bruker Avance NEO 700 (Karlsruhe, Germany);
chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. 4,4′-Dimethyl-2,2′-
dipyridyl diselenide was obtained by the method reported in [55].

3.2. X-ray Crystal Structure Determination

The single-crystal X-ray diffraction data were collected on a three-circle Bruker D8 Ven-
ture diffractometer (Karlsruhe, Germany) (graphite monochromator, w and φ scan mode)
(3, 4, 6–9, 11), on the ‘Belok/RSA’ beamline of the National Research Center ‘Kurchatov
Institute’ (Moscow, Russian Federation) using a Rayonix SX165 CCD detector (Evanston, IL
USA) (φ scan mode) (5) and on a four-circle Rigaku Synergy S diffractometer equipped with
a HyPix6000HE area-detector (Tokyo, Japan) (graphite monochromator, shutterless ω scan
mode) (10, 12). For compounds 3, 4, 6–9 and 11, the data were indexed and integrated using
the SAINT program [56] and then scaled and corrected for absorption using the SADABS
program [57]. For compound 5, the data were integrated by the utility iMOSFLM in the
CCP4 program [58] and corrected for absorption using the Scala program [59]. For com-
pounds 10 and 12, the data were integrated and corrected for absorption by the CrysAlisPro
program (Rigaku, CrysAlisPro Software System, v. 1.171.41.106a, Rigaku Oxford Diffraction,
2021). For details, see Table S1 (electronic Supporting Information). The structures were
determined by direct methods and refined by full-matrix least squares technique on F2 with
anisotropic displacement parameters for non-hydrogen atoms. The amino hydrogen atoms
in 7 were localized in the difference-Fourier maps and refined within the riding model with
fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms
in all compounds were placed in calculated positions and refined within the riding model
with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 groups
and 1.2Ueq(C) for the other groups]. All calculations were carried out using the SHELXTL
program suite [60].

Crystallographic data for compounds 3–12 have been deposited into the Cambridge
Crystallographic Data Center, CCDC 2341614-2341623, respectively. Copies of this in-
formation may be obtained free of charge from the Director, CCDC, 12 Union Road,
Cambridge CHB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or
www.ccdc.cam.ac.uk).

3.3. Computational Details

The single-point calculations based on the experimental X-ray structures 3–12 have
been carried out at the DFT level of theory using the dispersion-corrected hybrid functional
ωB97XD [61] with the help of the Gaussian 09 [62] program package. The Douglas–Kroll–
Hess 2nd order scalar relativistic calculations requested relativistic core Hamiltonian were
carried out using the DZP-DKH basis sets [63] for all atoms. The topological analysis
of the electron density distribution with the help of the atoms in molecules (QTAIM)
method has been performed by using the Multiwfn program (version 3.7) [64]. The
Cartesian atomic coordinates for model supramolecular associates are presented in the
Supplementary Materials.
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A solution of PhICl2 (88 mg, 320 µmol) in CH2Cl2 (2 mL) was added to a solution of
4,4′-dimethyl-2,2′-dipyridyldiselenide (100 mg, 292 µmol) in Et2O (5 mL), and the reaction
mixture was allowed to stand without stirring at room temperature for 12 h. Subsequently,
the solution was separated from a yellow precipitate, and the solid was washed with Et2O
(3 × 1 mL) and dried under a vacuum. Yield: 52 mg (43%). 1H NMR (600 MHz, CDCl3) δ
8.48 (d, J = 6.0 Hz, 1H), 8.37 (d, J = 6.0 Hz, 1H), 7.97 (s, 1H), 2.49 (s, 3H). 13C NMR (151 MHz,
CDCl3) δ 139.6, 22.0.
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3. A solution of PhICl2 (27 mg, 98 µmol) in CH2Cl2 (2 mL) was added to a solution of
4,4′-dimethyl-2,2′-dipyridyldiselenide (30 mg, 88 µmol) and trichloroacetonitrile (50 µL,
499 µmol) in CH2Cl2 (2 mL), and the reaction mixture was left without stirring at room
temperature for 12 h. After that, the solution was decanted from a colorless precipitate, and
the solid was washed with Et2O (3 × 1 mL) and dried under a vacuum. Yield: 48 mg (78%).
1H NMR (600 MHz, D2O) δ 9.75 (d, J = 7.2 Hz, 1H), 8.69 (s, 1H), 7.95 (dd, J = 7.2, 1.8 Hz, 1H),
2.73 (s, 3H). 13C NMR (151 MHz, D2O) δ 170.2, 155.6, 147.8, 137.0, 125.7, 124.9, 87.5, 21.6.
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4. 7-methyl-3-(trichloromethyl)-[1,2,4]selenadiazolo [4,5-a]pyridin-4-ium chloride 3
(15 mg, 43 µmol) was dissolved in MeOH (1.5 mL) and the addition of 20 µL of perrhenic
acid (70 wt %) resulted in the formation of a colorless microcrystalline precipitate, which
was washed with Et2O (3 × 3 mL) and dried in vacuum. Yield: 10 mg (42%). 1H NMR
(700 MHz, DMSO-d6) δ 9.68 (d, J = 7.1 Hz, 1H), 8.83–8.82 (m, 1H), 7.99–7.95 (m, 1H), 2.71 (s,
3H). 13C NMR (176 MHz, DMSO-d6) δ 172.2, 153.9, 146.8, 137.1, 126.7, 125.2, 88.7, 22.2.
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5. 3-(chloromethyl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride (15 mg, 56 µmol)
was dissolved in MeOH (1.5 mL) and the addition of the saturated MeOH solution of
NBu4PF6 (300 µL) resulted in the formation of colorless crystals, which were washed with
Et2O (3×3 mL) and dried under vacuum. Yield: 9 mg (43%). 1H NMR (600 MHz, D2O) δ
9.51 (d, J = 6.8 Hz, 1H), 8.86 (d, J = 8.7 Hz, 1H), 8.48–8.43 (m, 1H), 8.10–8.07 (m, 1H), 5.34 (s,
2H). 13C NMR (151 MHz, D2O) δ 168.8, 153.0, 140.0, 136.5, 126.2, 123.4, 37.8.
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6. 3-(chloromethyl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride (15 mg, 56 µmol)
was dissolved in MeOH (1.5 mL) and the addition of 10 µL of HBF4 (40 wt %) resulted
in the formation of yellow crystals, which were washed with Et2O (3 × 3 mL) and dried
under a vacuum. Yield: 8 mg (48%). 1H NMR (600 MHz, D2O) δ 9.50 (d, J = 6.8 Hz, 1H),
8.85 (d, J = 8.7 Hz, 1H), 8.45 (t, J = 8.3 Hz, 1H), 8.08 (t, J = 7.4 Hz, 1H), 5.34 (s, 2H). 13C NMR
(151 MHz, D2O) δ 168.8, 153.0, 139.9, 136.4, 126.2, 123.4, 37.8.
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7. A solution of bromine (15 mg, 96 µmol) in CH2Cl2 (1 mL) was added to a solution
of 2,2′-dipyridyldiselenide (30 mg, 96 µmol) and 2,2-dibromo-2-cyanoacetamide (46 mg,
192 µmol) in CH2Cl2 (2 mL), and the reaction mixture was left without stirring at room
temperature for 12 h. After that, the solution was decanted from a yellow precipitate, and
the solid was washed with Et2O (3×1 mL) and dried under a vacuum. Yield: 73 mg (79%).
1H NMR (600 MHz, D2O) δ 9.41 (d, J = 6.8 Hz, 1H), 8.92 (d, J = 8.7 Hz, 1H), 8.48–8.43 (m,
1H), 8.08 (t, J = 7.1 Hz, 1H). 13C NMR (151 MHz, D2O) δ 171.2, 167.0, 149.1, 140.0, 137.7,
126.7, 123.2, 47.1.
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8. 3-(fluoromethyl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride (15 mg, 59.6 µmol)
was dissolved in MeOH (1.5 mL) and addition of the saturated MeOH solution of NBu4PF6
(300 µL) resulted in the formation of colorless crystals, which were washed with Et2O
(3 × 3 mL) and dried under a vacuum. Yield: 9 mg (42%). 1H NMR (700 MHz, D2O) δ 9.47
(d, J = 6.8 Hz, 1H), 8.86 (d, J = 8.7 Hz, 1H), 8.46 (t, J = 8.0 Hz, 1H), 8.08 (t, J = 7.0 Hz, 1H),
6.11 (s, 1H), 6.04 (s, 1H). 13C NMR (176 MHz, D2O) δ 168.6, 152.4, 140.0, 136.3, 126.1, 123.4,
78.5, 77.5.
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9. A solution of PhICl2 (27 mg, 98 µmol) in CH2Cl2 (2 mL) was added to a solution
of 4,4′-dimethyl-2,2′-dipyridyldiselenide (30 mg, 88 µmol) and fluoroacetonitrile (50 µL,
890 µmol) in CH2Cl2 (2 mL), and the reaction mixture was left without stirring at room
temperature for 12 h. After that, the solution was decanted from a colorless precipitate,
and the solid was washed with Et2O (3 × 1 mL) and dried under a vacuum. Yield: 34 mg
(72%). 1H NMR (600 MHz, D2O) δ 9.26 (d, J = 6.9 Hz, 1H), 8.61–8.60 (m, 1H), 7.89 (dd,
J = 7.0, 1.6 Hz, 1H), 6.05 (s, 1H), 5.97 (s, 1H), 2.70 (s, 3H). 13C NMR (151 MHz, D2O) δ 167.3,
155.3, 135.0, 125.4, 125.3, 78.6, 77.5, 21.6.
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10. 3-(trichloromethyl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride (15 mg,
44.5 µmol) was dissolved in MeOH (1.5 mL) and the addition of the saturated MeOH
solution of NH4SCN (100 µL) resulted in the formation of colorless crystals, which were
washed with EtOH (3 × 3 mL) and dried under a vacuum. Yield: 7 mg (44%). 1H NMR
(700 MHz, D2O) δ 9.37 (dt, J = 6.8, 1.0 Hz, 1H), 8.80 (dt, J = 8.7, 1.0 Hz, 1H), 8.40–8.36 (m,
1H), 8.02–7.99 (m, 1H). 13C NMR (176 MHz, D2O) δ 171.6, 148.1, 140.1, 138.3, 133.1, 126.4,
123.1, 87.5.
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11. 3-(chloromethyl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride (15 mg,
56 µmol) was dissolved in MeOH (1.5 mL) and addition of the saturated MeOH solution
of NH4SCN (100 µL) resulted in the formation of colorless crystals, which were washed
with EtOH (3 × 3 mL) and dried under a vacuum. Yield: 10 mg (57%). 1H NMR (700 MHz,
D2O) δ 9.50 (dd, J = 12.6, 6.8 Hz, 1H), 8.86 (d, J = 8.7 Hz, 1H), 8.46 (t, J = 7.9 Hz, 1H), 8.09 (q,
J = 6.8 Hz, 1H), 5.35 (s, 1H), 5.18 (s, 1H). 13C NMR (176 MHz, D2O) δ 168.8, 151.9, 139.9,
135.8, 133.5, 126.3, 123.4, 112.2, 31.9.

4. Conclusions

Overall, we prepared and structurally characterized eight α-haloalkyl-substituted
pyridinium-fused 1,2,4-selenadiazoles with various counterions. Our findings demonstrate
that incorporating a halogen at the α-position of the R substituent in the selenadiazole core
proves to be an effective strategy for inducing directed supramolecular dimerization of
selenadiazoles in the solid state.

Across all cases, the Se2N2 supramolecular motif was consistently supported by two
symmetrically equivalent halogen–anion (XB) interactions, with hydrogen bonding (HB)
also playing a crucial role in the self-assembly and supramolecular organization of these
chemical systems in the solid state. Furthermore, we investigated how the cocrystallization
of α-haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles with C6F3I3 would affect
the self-assembly of a resulting supramolecular aggregate.

In the resulting solid Se2N2 supramolecular dimers were disrupted, indicating that the
formed I···N and I···Cl XB interactions involving C6F3I3 were collectively more significant
than ChB. Considering the fundamental role of ChB, XB and HB interactions in the crystal
packing of studied solids 3–12, these intermolecular contacts were also investigated theoretically.

Results of DFT calculations and topological analysis of the electron density distribution
in model supramolecular associates reveal that all ChB, XB and HB interactions are purely
non-covalent and attractive in nature. Overall, the estimated strength of these weak
contacts decreases in the following order: 1.6–6.3 kcal/mol (ChB), 0.9–4.1 kcal/mol (XB)
and 0.6–2.8 kcal/mol (HB).

Hence, halogen bond-assisted supramolecular dimerization of pyridinium-fused 1,2,4-
selenadiazoles via four-center Se2N2 chalcogen bonding emerges as a potent tool in crystal
engineering. We anticipate that this approach will find widespread adoption by researchers
in the future for creating extended molecular systems connected via non-covalent interactions.
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