
Citation: Krauz, K.; Kempiński, M.;
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Abstract: Epicardial adipose tissue (EAT) is a fat deposit surrounding the heart and located under
the visceral layer of the pericardium. Due to its unique features, the contribution of EAT to the
pathogenesis of cardiovascular and metabolic disorders is extensively studied. Especially, EAT can be
associated with the onset and development of coronary artery disease, myocardial infarction and
post-infarct heart failure which all are significant problems for public health. In this article, we focus
on the mechanisms of how EAT impacts acute coronary syndromes. Particular emphasis was placed
on the role of inflammation and adipokines secreted by EAT. Moreover, we present how EAT affects
the remodeling of the heart following myocardial infarction. We further review the role of EAT as a
source of stem cells for cardiac regeneration. In addition, we describe the imaging assessment of EAT,
its prognostic value, and its correlation with the clinical characteristics of patients.

Keywords: epicardial adipose tissue; acute coronary syndromes; coronary artery disease; myocardial
infarction; left ventricular remodeling; post-infarction heart failure; stem cells

1. Introduction

Epicardial adipose tissue (EAT) is the fat deposit situated between the myocardium
and the visceral layer of the pericardium. Histologically, it is considered white but may
exhibit beige or brown features. EAT is composed of adipocytes, ganglia, interconnecting
neurons, stromovascular, and immune cells [1–4]. It also contains progenitor cells that could
be transformed into myofibroblasts [5]. EAT is anatomically and functionally contiguous
with the myocardium and coronary vessels [4,6], covers 80% of the heart’s surface, and
contributes to 20% of the heart’s weight [7].

As a part of EAT, pericoronary adipose tissue (PCAT) is a fat deposit that surrounds
coronary vessels and is adjacent to the adventitia of coronary arteries (Figure 1) [8,9]. That
differentiation is important because EAT and PCAT could contribute to cardiovascular risk
in distinct ways, giving different pathogenic effects [8,10]. It is also vital to distinguish
EAT from pericardial adipose tissue (PAT) as they have different anatomical locations and
functional properties [11].

Physiologically EAT displays metabolic and thermogenic properties. It also pro-
vides mechanical protection of the heart and coronary arteries [4]. Additionally, EAT
appeared to be an endocrine organ, and as a rich source of adiponectin, adrenomedullin,
resistin, and many other cytokines [6,12] may have pro- or anti-inflammatory effects on
the heart [12,13]. Communication between EAT and myocardium can be achieved via
paracrine and vasocrine signaling [4,14].
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Figure 1. Schematic of the epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) 
locations within the heart wall. Created with BioRender.com (accessed on 13 February 2024). 
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tention in terms of metabolic and cardiovascular (CV) disorders [15], including coronary 
artery disease (CAD) [16,17], heart failure (HF) [18], or atrial fibrillation (AF) [19]. Most 
research concerns the relationship between adipose tissue and atherosclerosis. Studies 
show that the paracrine activity of EAT may vary and, in certain circumstances, may con-
tribute to the development of atherosclerotic plaque formation and its rupture [4,14,20]. 
Since it would be difficult to assess the metabolic activity of EAT, a good solution seems 
to be the assessment of its amount. It is not fully explored, however, whether the volume 
of EAT assessed by imaging studies may be positively associated with CV disorders [4,21–
23]. 

As most studies focus on chronic coronary syndromes, this article aims to review 
associations between EAT and acute coronary syndromes (ACS) and to discuss possible 
mechanisms through which EAT contributes to cardiac remodeling following myocardial 
infarction (MI). The potential role of EAT as a source of stem cells, as well as imaging 
assessment, was also described. 

Figure 1. Schematic of the epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT)
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Due to its unique structure and features, the role of EAT has drawn researchers’
attention in terms of metabolic and cardiovascular (CV) disorders [15], including coronary
artery disease (CAD) [16,17], heart failure (HF) [18], or atrial fibrillation (AF) [19]. Most
research concerns the relationship between adipose tissue and atherosclerosis. Studies show
that the paracrine activity of EAT may vary and, in certain circumstances, may contribute
to the development of atherosclerotic plaque formation and its rupture [4,14,20]. Since it
would be difficult to assess the metabolic activity of EAT, a good solution seems to be the
assessment of its amount. It is not fully explored, however, whether the volume of EAT
assessed by imaging studies may be positively associated with CV disorders [4,21–23].

As most studies focus on chronic coronary syndromes, this article aims to review
associations between EAT and acute coronary syndromes (ACS) and to discuss possible
mechanisms through which EAT contributes to cardiac remodeling following myocardial
infarction (MI). The potential role of EAT as a source of stem cells, as well as imaging
assessment, was also described.

2. The Contribution of Epicardial Adipose Tissue to Pathogenesis of Acute
Coronary Syndromes

Various biological processes occurring in EAT may impact the myocardium, as they
share a common microvasculature and are located in close proximity. EAT plays a role in
the development of CAD which is the main underlying cause of ACS [14]. Several studies
analyzed whether and how EAT contributes to the pathogenesis of ACS, therefore this
topic requires to be summarized (Figure 2) (Table 1). Special attention was given to the role
of inflammation and adipokines secreted by EAT.
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Figure 2. Altered secretory profile of epicardial adipose tissue and its impact on the pathogenesis
of acute coronary syndrome with proposed mechanisms. Abbreviations: FABP4, fatty acid binding
protein 4; IL-1ra, interleukin-1 receptor antagonist; IL-1β, interleukin-1β; IL-6, interleukin-6, MCP-
1, monocyte chemoattractant protein-1; NSTEMI, non-ST-elevation myocardial infarction; PAI-1,
plasminogen activator inhibitor-1; STEMI, ST-elevation myocardial infarction; TNF-α, tumor necrosis
factor alpha; UA, unstable angina. Created with BioRender.com (accessed on 13 February 2024).

The most common mechanism leading to MI is the rupture of a vulnerable plaque
and thrombotic occlusion of the coronary artery [24]. Cellular crosstalk between EAT and
fibroatheromas may contribute to the development of their high-risk characteristics [25].
Thinning of the fibrous cap and necrotic core development may result from the apoptosis of
smooth muscle cells and macrophages in the fibroatheromas. Interestingly, proteins related
to apoptosis—tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1) and monocyte
chemoattractant protein-1 (MCP-1)—were found to be highly expressed in the EAT [26].
Increased volume of EAT is associated with high-risk plaques [27–31], which is discussed
more extensively in the next chapters.

Table 1. Summary of the most important studies concerning the role of EAT in the pathogenesis of
ACS and cardiac remodeling after MI.

First Author Year Study Population/Experimental Model Main Findings Reference

Moreno-Santos, I. 2019 Patients with ACS (n = 29), stable CAD
(n = 16) or without CAD (n = 29)

• Reduced expression of NPR-C,
UCP1 and PGC1α in EAT of
ACS patients.

• Decreased activation of p38 MAPK
pathway in EAT samples from
ACS patients.

[32]
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Table 1. Cont.

First Author Year Study Population/Experimental Model Main Findings Reference

Hao, S. 2023
Male Sprague Dawley rats: MI induction
(n = 6) or sham surgery (n = 6);
H9C2 cardiomyocytes

• After MI, EAT mediates
cardiomyocytes’ apoptosis by
secretion of CFD, which causes
PARP-1 activation.

[33]

Pedicino, D. 2017 Patients with ACS (n = 18), SA (n = 16) or
without CAD (n = 13)

• Enhanced NLRP3 and pro-IL1β
expression in EAT from
ACS patients.

• Many bacterial species were found
in EAT samples from ACS and
SA patients.

[34]

Parisi, V. 2020 Patients with CCS (n = 54) or recent ACS
(n = 33)

• Reduced IL-1ra levels in EAT from
ACS patients. [35]

Pedicino, D. 2022 Patients with ACS (n = 32), CCS (n = 34)
or MVD (n = 12)

• Higher content of CD31, CHI3L1,
CRP, ENG, IL-17, IL-33, MMP-9,
MPO, NGAL, RBP-4, RETN, in
EAT of ACS patients found in
proteome profiling.

• Perturbation of the TRBV21 in EAT
were associated with the first
NSTEMI.

[36]

Langheim, S. 2010
Patients with ACS (n = 32), stable CAD
(n = 34) or without CAD (n = 23);
HUVEC

• Increased resistin expression in
EAT of ACS patients.

• Supernatant of cultured EAT
obtained from ACS patients
increased permeability of
endothelial cells in vitro.

• Greater number of CD68+ cells in
was found EAT of ACS patients
than stable CAD patients
and controls.

[37]

Rachwalik, M. 2014
Patients undergoing CABG with history
of MI (n = 17) or without previous MI
(n = 16)

• Previous MI was associated with
higher resistin content in EAT. [38]

Hao, S. 2021
Male Sprague Dawley rats: MI induction
(n = 20) or sham surgery (n = 10);
H9C2 cardiomyocytes

• EAT-CM through miR-134-
5p/KAT7/MnSOD/catalase axis
and increase in ROS intracellular
levels promoted activation of
cardiac fibroblasts into
myofibroblasts.

• Knockdown of miR-134-5p limited
myocardial fibrosis in vivo.

[39]

Chang, H-X 2017
Sprague Dawley rats (n = 82) which
underwent MI (with or without EAT
removal) or sham surgery

• Increased lipolysis of EAT after MI.
• EAT removal reduced infarct area,

enhanced cardiac function, and
decreased inflammation after MI.

[40]

Abbreviations: ACS, acute coronary syndrome; CAD, coronary artery disease; CFD, complement factor D; CHI3L1,
chitinase 3-like 1; CRP, C-reactive protein; EAT, epicardial adipose tissue; EAT-CM, conditioned media from
epicardial adipose tissue; ENG, endoglin; IL-17, interleukin-17; IL-1ra, interleukin-1 receptor antagonist; IL-33,
interleukin-33; KAT7, lysine acetyltransferase 7; MAPK, mitogen-activated protein kinase; MI, myocardial infarc-
tion; MMP-9, matrix metallopeptidase 9; MNSOD, manganese superoxide dismutase; MPO, myeloperoxidase;
NGAL, neutrophil gelatinase-associated lipocalin (lipocalin 2); NLRP3, NLR family pyrin domain containing 3;
NPR-C, natriuretic peptide receptor-C; NSTEMI, non-ST-elevation myocardial infarction; PARP-1, poly(ADP-
ribose) polymerase 1; PGC1α, peroxisome proliferator-activated receptor gamma coactivator alpha; pro-IL1β,
pro-interleukin-1beta; RBP-4, retinol binding protein 4; RETN, resistin; ROS, reactive oxygen species; SA, stable
angina; TRBV21, T cell receptor beta variable 21-1; UCP1, uncoupling protein 1.
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EAT represents features of brown adipose tissue (BAT), whose activation is linked
with cardioprotective effects [41,42]. Natriuretic peptides (NPs), apart from their role in
maintaining cardiovascular homeostasis, may also affect adipose tissue. NP receptors (NPR)
are expressed in this tissue, especially NPR-A and NPR-C [43]. NPs may induce lipolysis
and promote lipid mobilization. These effects are associated with the activation of NPR-A
and, consequently, increased intracellular levels of cyclic guanosine monophosphate [44,45].
Interestingly, NPs can also promote browning of white adipose tissue and enhance the
expression of brown fat markers including proteins associated with thermogenesis [46].
The thermogenic role of EAT may diminish with age, obesity, or the presence of CAD [33].
Through the loss of this role, the risk of acute coronary syndromes (ACS) may increase.
Patients with ACS had lower expression of NPR-C in EAT in comparison to individuals
with stable CAD or without CAD. This was associated with decreased phosphorylation of
p38 mitogen-activated protein kinase (MAPK), reduced expression of uncoupling protein 1
(UCP1) and peroxisome proliferator-activated receptor gamma coactivator alpha (PGC1α).
This might suggest that the p38 MAPK signaling pathway is diminished, which results in
lower expression of brown-like fat genes [32]. On the other hand, the p38 MAPK signaling
pathway is strongly activated by cytokines and environmental stress, therefore its activation
may contribute to inflammation or apoptosis [47]. However, the brown-like fat phenotype
of EAT might be related to atherosclerotic plaque stability. Moreover, medications targeting
NPR-C might potentially enhance ACS therapy [32]. PGC1α overexpression in adipocytes
alleviated metabolic dysfunction in mice fed a high-fat diet, which depended on heme
oxygenase 1 (HO-1). This was associated with browning of adipose tissue and reduced
inflammation [48]. In obese mice, PGC1α and HO-1 levels were decreased in epicardial
fat in comparison to visceral fat. Moreover, pharmacologically enhancing the activity of
HO-1-PGC1α was related to improved LV function in mice [49].

The role of EAT appears to be ambiguous, as it can exhibit both protective and destruc-
tive properties towards the heart. The analysis of gene expression in EAT of AF patients
showed a high abundance of complement factor D (CFD) transcript [50]. In a study on rats
with induced MI, CFD expression was found to be higher in EAT than in subcutaneous
adipose tissue (SAT). Additionally, the EAT mass in the MI group was increased compared
to that in the sham-operated group. Cardiomyocytes treated in vitro with EAT-conditioned
medium (EAT-CM) presented higher rates of apoptosis. Further analysis revealed that EAT
secretes CFD, which causes poly(ADP-ribose) polymerase 1 overactivation. This induces
apoptosis independently of caspase activity. Moreover, in vivo inhibition of CFD activity
was associated with a reduced rate of cardiomyocyte apoptosis and decreased myocardial
injury, which confirms its aggravating role in MI-related damage [33].

2.1. The Role of Inflammation

Inflammation is directly related to the pathogenesis of atherosclerosis and, conse-
quently, obstructive CAD. Numerous cell types, signaling pathways, and molecules play a
role in this process. They could constitute potential treatment targets [51]. Interestingly,
the inflammatory process contributing to the progression of this disease extends beyond
the atherosclerotic plaques and vessels [52]. Adipose tissue, as a potent participant in local
and systemic signaling, can also be engaged in inflammation [53]. Additionally, MI being a
severe consequence of CAD is inevitably associated with inflammation [54]. Several studies
have described the role of adipose tissue inflammation in ACS, with particular emphasis
on EAT.

Inflammation of visceral adipose tissue can be assessed using a microscope. Scavenger
macrophages surround dying adipocytes and form crown-like structures (CLS), which are
histologic hallmarks of inflammatory processes in adipose tissue [55]. Malavazos et al.
analyzed the CLS density in EAT samples obtained from patients undergoing CABG or
valvular replacement. Unfortunately, due to the small number of included patients it is hard
to consider the result as significant. However, it is worth mentioning that one patient with
a rapid weight increase and a recent episode of MI had about 100 times higher CLS density
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than the remaining CABG patients [56]. Unfortunately, the data concerning CLS formation
in EAT are currently limited. Inflammatory cell infiltration in EAT from individuals with
CAD is higher than in SAT [57]. The accumulation of mast cells, which secrete multiple
vasoactive molecules, may contribute to the rupture of vulnerable plaque. [58]. Moreover,
mast cells can activate T lymphocytes. CAD is associated with increased infiltration rates
of EAT by T lymphocytes (CD3+) and B lymphocytes (CD20+) [57,59]. However, little is
known about the impact of lymphocytes located in EAT on ACS development.

Pedicino et al. proved that EAT expression of NOD-like receptor protein 3 (NLRP3) and
pro-interleukin-1β (pro-IL-1β) is significantly enhanced in patients with non-ST-segment
elevation acute coronary syndrome (NSTE-ACS) in comparison to individuals with stable
angina (SA) or control group [34]. NLRP3 detects microbial patterns, danger signals, or
cellular stress, which causes NLRP3 inflammasome assembly and activation. This leads
to the release of pro-inflammatory cytokines IL-1β and IL-18 in a caspase-1-dependent
manner [60]. These data indicate that ACS might be correlated with upregulation of
the some inflammasome components in EAT. In another study, NLRP3 protein level in
peripheral blood obtained from patients with ACS was higher than in the control group.
It positively correlated with the number of atherosclerotic lesions and diseased coronary
arteries [61]. Moreover, the expression of NLRP3 in SAT also positively correlated with the
severity of coronary atherosclerosis suggesting that NLRP3 inflammasomes in SAT could
be engaged in atherogenesis [62].

On the other hand, another study analyzing patients with ACS undergoing urgent
CABG due to NSTEMI and patients with CAD referred to an elective CABG showed
that both EAT and circulating IL-1β levels did not differ. However, ACS patients had
significantly lower levels of both circulating and EAT IL-1 receptor antagonist (IL-1ra).
These results could indicate reduced counterregulatory activity of IL-1ra against IL-1β and
its pro-inflammatory role. Furthermore, EAT is actively engaged in the local inflammatory
process. Interestingly, no correlation was found between IL-1β levels and markers of M1
macrophages in EAT [35]. In contrast, another study showed that the ratio of M1/M2
macrophages in EAT positively correlates with the levels of pro-inflammatory cytokines
and the severity of CAD [63]. However, adipocytes could contribute to IL-1β levels as
they can be a source of inflammatory cytokines [64]. Moreover, the inflammatory state
of EAT is suggested to be connected to the pathogenesis of INOCA (ischemia with non-
obstructive coronary artery) due to several possible mechanisms, such as endothelial
function damage [65].

Therapies for atherosclerosis, CAD, and ACS could have an impact on EAT. Moreover,
processes in EAT may potentially become therapeutic targets in the future. HMG-CoA
reductase (HMGCR) inhibitors, known as statins, are traditionally used as cholesterol-
lowering agents. However, their intake is associated with pleiotropic effects [66]. An in vivo
study demonstrated that statin therapy was related to decreased EAT thickness and inflam-
matory profile in patients undergoing aortic valve replacement. Moreover, in vitro analysis
showed that the reduction in pro-inflammatory cytokines concentrations was greater in
EAT than in SAT, which indicates a possible selective impact of statin therapy on EAT [67].
Furthermore, anti-diabetic medications may affect EAT metabolism. Application of SGLT2
inhibitors in rats with induced AF led to reduced EAT inflammation. This was achieved by
upregulation in ketone body levels, downregulated expression of acetyl-CoA carboxylase
1, and decreased GAPDH lysine residue malonylation in macrophages [68]. The use of
glucagon-like peptide 1 receptor (GLP1R) agonist can decrease inflammation and adipoge-
nesis, enhance free fatty acid oxygenation, and promote browning of adipocytes [14,69].
The use of SGLT2 inhibitors, GLP1R agonists, metformin and pioglitazone was related to
decreased EAT quantity [14,70,71]. These mechanisms may partially explain the beneficial
impact of anti-diabetic treatment on the cardiovascular system [14].

During analysis of microbiota composition in EAT, Pedicino and colleagues found
DNA of 76 bacterial species. The main species in EAT obtained from ACS patients were
Cyanobacteria Streptophyta and Proteobacteria Rickettsiales, whereas Moraxellaceae, Pseu-
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domonas, and Bacteroides dominated in the SA group. It shows the potential role of
bacteria in ACS pathogenesis. Unfortunately, it is not yet established if and how they
participate in this process [34]. In another study, EAT proteome analysis revealed an el-
evated amount of pro-inflammatory proteins among NSTEMI patients in comparison to
individuals with CAD. The former group had a specific T-cell clonal expansion. In the vast
majority of these patients, it was the first CV event. In silico analysis led to a hypothesis
that antigens derived from the microbiome are possible inducers of instability through
antigen-driven immune response. Even though these results require further confirmation
they could be an introduction to developing engineered epitope-based therapies [36].

2.2. Adipokines

Adipokines are described as bioactive peptides secreted by adipose tissue. These
molecules impact adipose tissue by regulating adipogenesis and adipocyte metabolism
and affecting migration of immune cells. However, adipokines may also affect targets
at the systemic level. They play a part in inflammation and immune response, glucose
metabolism, regulation of blood pressure, myocardial contractility, and other various
processes [72]. Thus, adipokines are engaged in the pathogenesis of numerous diseases,
and EAT, as both a source and potential recipient of these molecules, is also involved in
these processes.

Resistin is an adipokine originally linked with insulin resistance, obesity, and diabetes.
However, increasing evidence has revealed that its functions are well beyond that [73]. It
has been shown that among patients with acute MI, elevated levels of resistin in the plasma
serve as a predictor for all-cause mortality [74]. Another study demonstrated that the
concentrations of resistin in EAT obtained from patients undergoing CABG are higher in
individuals with prior MI [38]. Langheim et al. observed a higher EAT expression of resistin
in ACS patients compared to stable CAD patients and controls. This was accompanied by
an increased concentration of resistin in the ACS group. Moreover, in EAT obtained from
ACS patients, there was the highest percentage of CD68+ cells (macrophages), which had a
similar location as the distribution of resistin [37]. In humans, resistin is mainly secreted
by mononuclear leukocytes including macrophages [73,75]. Both in ACS and stable CAD,
there was enhanced expression of IL-6, plasminogen activator inhibitor-1 (PAI-1), and
MCP-1, which indicates a proinflammatory cytokine profile. Examination with the use of
an in vitro model of endothelial permeability showed that among adipokines secreted from
EAT, the major player causing endothelial damage is resistin. This may lead to a hypothesis
that EAT-derived resistin enters coronary arteries and contributes to the ACS initiation
by maintaining aberrant permeability of the endothelium [37]. The exact mechanism
is not fully understood. However, resistin may enhance the expression of endothelin-1
and adhesion molecules thus promoting endothelial dysfunction [76]. Moreover, factors
secreted by adipocytes seem to enhance the secretion of pro-inflammatory cytokines by
endothelial cells [77]. Therefore, activation of macrophages or suppression of resistin action
might be potential therapeutic targets for ACS patients.

Fatty-acid-binding protein 4 (FABP4) is a lipid chaperone protein. Apart from its
intracellular role, FABP4 is secreted from adipocytes in a controlled manner in response
to fasting-related signals. It is also associated with atherosclerosis, diabetes, and other
metabolic disorders [78,79]. Peeters et al. discovered that elevated FABP4 expression
in carotid atherosclerotic plaques is related to instability of the plaque and correlates
with adverse cardiovascular events [80]. Patients presented with acute MI had increased
serum levels of fatty acid binding protein 4 (FABP4). Among them, the highest values of
FABP4 levels had individuals with cardiac arrest due to ventricular fibrillation. The FABP4
expression was observed in adipose tissue, including EAT. Interestingly, the secretion of
FABP4 from adipocytes is mediated through the activation of β3-adrenergic receptors.
This finding suggests that during MI, sympathetic signaling could induce lipolysis in EAT
surrounding the heart, ultimately leading to the release of FABP4, which may be a potential
marker of adrenergic overactivation in cardiovascular diseases [81]. FABP4 increases
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endoplasmic reticulum (ER) stress, which contributes to the apoptosis of cardiomyocytes.
Moreover, the application of FABP4 inhibitor alleviates these deleterious effects. Hence, it
can be useful in MI treatment [82].

Omentin-1 is an adipokine that exerts many protective properties. It inhibits inflam-
mation and contributes to vasodilatation by modulation of endothelial nitric oxide synthase
phosphorylation and nitric oxide production [83,84]. Administration of omentin-1 in mice
was associated with decreased infarct size following ischemia/reperfusion injury [85]. EAT
levels of omentin-1 are significantly lower in patients with CAD. There was a negative
association between the expression of omentin-1 in EAT and local coronary atherosclero-
sis [86]. Similarly, the expression of omentin-1 was reduced in EAT samples from patients
with prior MI [87]. The plasma levels of omentin-1 increase following myocardial ischemia,
whereas its expression in left ventricular tissue decreases.

No study analyzed directly the EAT expression of leptin and adiponectin in patients
with ACS. However, based on the available data, it is likely that the secretion of these
adipokines from the EAT may play a part in the ACS pathogenesis. Leptin is involved in
the pathogenesis of cardiovascular metabolic diseases, including obesity, type 2 diabetes,
atherosclerosis, and hypertension [88]. It can also affect plasma cholesterol metabolism [89].
EAT leptin expression was found to be increased in patients with CAD. This was accompa-
nied by elevated serum leptin levels. Moreover, an increase in leptin mRNA expression
in the EAT was a risk factor for local coronary artery stenosis [90]. Patients with ACS
had higher serum leptin levels than individuals with stable angina [91]. Leptin derived
from EAT induced myocardial injury in rats with metabolic syndrome independently from
the circulating leptin effects. Furthermore, EAT-derived leptin causes induction of the
mitochondrial pathway of apoptosis and promotes inflammation in H9C2 cardiomyocytes.
These effects are mediated by protein kinase C/reduced nicotinamide adenine dinucleotide
phosphate oxidase/reactive oxygen species pathway [92]. Levels of leptin seem to be
inversely related to adiponectin, as they are regulated contrarily. The latter has beneficial
effects on the cardiovascular system and exerts anti-inflammatory and anti-fibrotic proper-
ties [93]. Patients with coronary atherosclerosis had decreased adiponectin expression in
epicardial adipose tissue which was associated with elevated expression of inflammatory
cytokines [88,94]. Interestingly, elevated serum adiponectin levels in patients with ACS
were related to higher rates of cardiovascular events and mortality in the future. An in-
crease in circulating levels of adiponectin due to adiponectin resistance development is one
of the suggested explanations. However, the exact mechanism is not established yet [95].

As presented above, there is evidence that adipokines secreted from EAT are involved
in atherogenesis and CAD. However, the mechanisms through which they contribute to
the pathogenesis of MI require further studies. Due to the presented findings, the secretory
role of EAT should be given particular attention, as it may become a potential therapeutic
target in the future.

3. Impact of Epicardial Adipose Tissue on Post-Infarct Cardiac Remodeling

Following MI, the cardiac muscle in survivors undergoes pathological changes due to
adverse alterations in mechanical and neurohormonal conditions. This process is known
as cardiac remodeling [96]. It leads to the development of HF which is related to a poor
quality of life and significantly increased mortality [97]. Numerous factors can influence
myocardial remodeling and EAT seems to play a role in this process. Various studies have
analyzed the mechanisms through which EAT impacts cardiac remodeling.

A study using a rat model demonstrated a positive correlation between EAT mass and
both the area of myocardial fibrosis and cardiomyocyte size after MI. Additionally, when
rat cardiac fibroblasts were cultured in EAT-CM, it was observed that this environment
promoted their activation into myofibroblasts, which produce collagen and therefore con-
tribute to cardiac fibrosis. This effect was achieved by miR-134-5p/KAT7/MnSOD/catalase
axis leading to an increase in ROS level. Knockdown of miR-134 in vivo relieved my-
ocardial fibrosis and reduced cardiomyocyte size, thus reducing pathological myocardial
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remodeling. Interestingly, the use of anti-activin-A antibodies prevented an increase in
miR-134-5p levels, which may indicate that the presence of this cytokine in EAT-CM in-
duced aberrant changes [39]. Other studies reported that plasma levels of miR-134-5p were
significantly increased in patients with acute MI [98]. miR-134-5p can impact oxidative
stress and apoptosis in cardiomyocytes via interaction with cAMP-responsive element
binding protein 1 (Creb1) or X-linked inhibitor of apoptosis protein (XIAP) [99,100].

Venteclef et al. proved that EAT plays a role in mediating atrial myocardium fibrosis
by secreting adipo-fibrokines, with the main agent being activin A, a member of the TGF-β
superfamily. In contrast, the secretome obtained from SAT did not have profibrotic effects
and the expression of activin A in SAT was significantly lower, which proves metabolic
differences between EAT and SAT. Furthermore, EAT-CM and activin A itself enhanced
expression of TGF-β1 and TGF-β2 in rat atria, potentially augmenting profibrotic effects.
The levels of activin A in EAT secretome were higher in a subset of patients with left
ventricular ejection fraction (LVEF) less than 45% [101]. Another study showed that HF
patients had increased serum levels of activin A. These levels significantly correlated with
NT-pro-BNP levels, decreased cardiac index, and increased LV end-diastolic pressure. This
may indicate that activin A may play a role in the development of HF with reduced LVEF
and myocardial remodeling after MI [102].

Type 2 diabetes mellitus (DM2) induces disturbances in the secretory profile of EAT.
When cardiomyocytes were treated in vitro with EAT-CM obtained from patients with DM2,
impaired contractile function was observed. The primary factors identified as responsible
for this dysfunction were activin A and angiopoietin-2 [103]. This is a valuable finding
because DM2 is related to a 2-4-fold increase in the risk of HF [104]. Furthermore, DM was
present in almost 33% of patients hospitalized due to heart failure [105].

Due to anatomical proximity, pathologies involving the myocardium can also affect
EAT. Parisi et al. observed a remodeling of EAT at three months following STEMI. In some
patients, the thickness of EAT increased, while in others it decreased. An increase in EAT
amount was related to intensified myocardial remodeling and lower LVEF. Simultaneously,
circulating levels of IL-13, an anti-inflammatory cytokine involved in cardiac regeneration,
decreased three months after STEMI. This decrease was negatively associated with an
increase in EAT thickness [106]. The downstream pathways of IL-13 involve ERK1/2 and
Akt signaling, which possess pro-proliferative and anti-apoptotic capacities in cardiomy-
ocytes [107,108]. Furthermore, increased circulating levels of IL-13 have been associated
with the preservation of LVEF after STEMI [106]. The exact mechanisms of how myocardial
ischemia contributes to EAT remodeling have not been established yet. We hypothesize
that cardiokines, inflammatory cytokines, and extracellular vesicles (EVs) may play a role
in this process. Interestingly, EVs secreted under myocardial ischemia/reperfusion may
induce endoplasmic reticulum stress in adipocytes [109].

A quantitative proteomic analysis showed significant changes in the expression of
165 proteins in the EAT of patients with ischemic cardiomyopathy (ICM). The altered
proteins were mainly related to cardiac structure or metabolism and immune response.
Expression of extracellular matrix (ECM) proteins was significantly enhanced, which was
accompanied by increased collagen volume. Activation of ERK1/2 seemed to have been
involved in the regulation of ECM remodeling in the EAT of ICM patients, which is in
contrast to the beneficial roles of this pathway mentioned above [110].

During the embryonic development of the heart, epicardial progenitors that express
WT1 factor undergo epithelial-to-mesenchymal transition (EMT) and become epicardium-
derived cells. They are relocated to the heart and form different types of cells [111].
Interestingly, MI leads to activation of the fetal program of the epicardium [112]. After
MI, WT1+ mesothelial lineage cells can differentiate into EAT. However, this is possible
only within a short period following MI. For this process, activation of the insulin-like
growth factor 1 (IGF-1) receptor signaling pathway is required [113]. This may indicate a
potential negative impact of IGF-1 pathway activity, even though it is rather depicted as
cardioprotective [114,115].
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An animal study presented that removal of EAT during the MI induction resulted
in better cardiac function and lower infarct area following MI. This procedure was also
associated with a decrease in leukocyte numbers in the infarcted hearts one month after MI.
Notably, there was an increase in the percentage of CD68+ macrophages and a reduction
in both, absolute and proportional number of neutrophils, suggesting an alleviation of
inflammation. Moreover, the removal of EAT was accompanied by a decrease in the levels
of inflammatory cytokines—TNF-α and IL-1β one month after MI. These results may
indicate a possible role of surgical EAT removal in post-MI therapy [40].

4. Epicardial Adipose Tissue as a Source of Stem Cells for Cardiac Regeneration

The proliferative potential of human cardiomyocytes (CMs) is limited, especially in
adults [116]. The application of stem cells seems to be a possible solution to improve cardiac
regeneration following MI. Stem cell therapies were examined in a wide range of cardio-
vascular pathologies, including HF [117,118]. Animal studies showed promising results
of embryonic stem cell (ESC) transplantation [119,120]. However, the use of ESCs raises
relevant questions concerning the ethical nature of such procedures [121]. Multiple clinical
trials regarding stem cells obtained from various sources in MI therapies have yielded
inconsistent results. Mesenchymal stem cells (MSCs) are interesting due to their properties,
as they can differentiate into cardiomyocytes, smooth muscle cells or endothelial cells.
Moreover, cytokines secreted by MSCs have anti-fibrotic and anti-angiogenic properties.
They also promote the differentiation of stem cells resident in the heart [122]. A specific
subset of MSCs, known as adipose-derived stem cells (ADSCs), has been isolated from EAT.

ADSCs have the potential to differentiate in many types of cells, including cardiomy-
ocytes, endothelial cells and vascular smooth muscle cells [123–125]. ADSCs obtained from
cardiac adipose tissue presented an immunophenotype similar to mesenchymal stem cells
as they were robustly positive for CD105, CD44, CD166, CD29, and CD90 and negative
for CD106, CD45, and CD14. Transplantation of cardiac ADSCs in an animal model of MI
led to improved cardiac function and reduced scar size. Moreover, these cells can secrete
proangiogenic factors and thus promote angiogenesis resulting in higher capillary density
in vivo [126]. Similarly, Özkaynak et al. studied the use of EAT-derived MSCs in a MI
rabbit model. The intramyocardial injection of these cells led to an increase in EF, which
was accompanied by enriched vascular density and decreased scar size in the infarcted
area [127].

It has been established that ADSCs isolated from adipose tissue in distinct locations
represent variations in functions, differentiation capacity and therapeutic potential in my-
ocardial infarction. Cardiac ADSCs had significantly higher cell density and proliferation
activity than ADSCs obtained from subcutaneous, visceral, and subscapular adipose tis-
sue. They presented increased differentiation potential for cardiovascular cells. Moreover,
cardiac ADSCs after systemic transfusion were more frequently recruited to the ischemic
myocardium, which was related to improved cardiac recovery and enhanced cardiac func-
tions after MI in mice [128]. Epicardial ADSCs had elevated proliferation potential in
comparison to pericardial and omental ADSCs. They also presented the highest cardiomyo-
genic potential [129]. Epicardial ADSCs had significantly higher expression of GATA4
than pericardial and omental ADSCs [129]. GATA4 is a transcription factor which plays an
essential role in myocardial morphogenesis [130,131].

Thankam and Agrawal obtained EAT from hyperlipidemic Yucatan microswine. The
researchers isolated EAT-derived stem cells and subjected them to ischemia and/or reper-
fusion in vitro. With the use of single-cell RNA sequencing, they identified 18 different
cell clusters, which may indicate that diverse phenotypes are present. Further analysis
showed protective phenotypes presenting several mechanisms, which involve: “epigenetic
regulation, myocardial homeostasis, cell integrity, and cell cycle, prevention of fibroblast
differentiation, differentiation to myocardial lineage, anti-inflammatory responses, pre-
vention of ER-stress, and increasing the energy metabolism” [132]. Another study with a
similar design analyzed ribosomal proteins in exosomes from EAT-derived stem cells. Even
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though many proteins were identified, the data concerning their extracellular functions
are limited [133]. Treating cardiac fibroblasts in vitro with extracellular vesicles obtained
from EAT-derived stem cells subjected to ischemia resulted in enhanced expression of
cardiomyocyte lineage genes, transcription factors specific for cardiomyocytes (GATA-4,
Nkx2.5, IRX4, and TBX5) and myofibroblast biomarker (αSMA) with subsequent reduction
in fibroblast (vimentin, FSP1, and podoplanin) and cardiac (connexin-43 and troponin-c)
biomarker expression. Analysis with mass spectrometry showed that EVs carried proteins
related to cardiac regeneration and inflammation. LGALS1, PRDX2, and CCL2 proteins
were identified as important mediators engaged in tissue regeneration [134].

5. Imaging Assessment of Epicardial Adipose Tissue and Its Predictive Role

EAT parameters can be assessed using various imaging methods: echocardiography,
computed tomography (CT) or magnetic resonance imaging (MRI) (Figure 3). Positron
emission tomography (PET) plays a role in the evaluation of EAT metabolic activity. Each of
them has advantages and disadvantages which indicate their utility in clinical practice. As
EAT is considered as a biomarker of cardiovascular diseases [135–137] or a factor indicating
future outcomes of patients [138,139], its assessment may become an important element
in future diagnostic and therapeutic approaches. The clinical role of EAT is discussed in
this chapter.
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5.1. Methods for Imaging Assessment of EAT
5.1.1. Echocardiography

Echocardiography is a widely performed examination, primarily due to its cost-
effectiveness and non-invasive nature, advantages that it holds over magnetic MRI and
CT [140]. The measurement is done in transthoracic echocardiography on the free wall
of the right ventricle from the parasternal long axis and short axis at end-systole or end-
diastole. That region was shown to contain the highest EAT thickness and it allows optimal
cursor beam orientation in each view. EAT appears as an echo-lucent space between the ex-
ternal wall of the myocardium and the visceral pericardium [6,141,142]. However, despite
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its vast availability, it is unable to measure whole epicardial fat and there are conflicting
results on the reproducibility of the method [136,142,143].

5.1.2. Computed Tomography

CT enables the measurement of EAT thickness and volume. Additionally, attenuation
(density) can be measured, and its less negative values serve as a marker of inflammation
within the tissue [144]. Moreover, it grants an assessment of these parameters in the peri-
coronary adipose tissue (PCAT), which is the fat layer surrounding coronary vessels [145].
Altogether, these make CT more multi-functional in EAT evaluation than echocardiography.
Nevertheless, it is numbered among the more expensive methods.

5.1.3. Magnetic Resonance Imaging

MRI is stated as the best method to assess visceral fat depots and the EAT amongst
them. Contrary to CT imaging it is a radiation-free method with high resolution allowing
distinct exact borders of EAT as well as visualize it in many small cardiac spaces for example
superior interventricular groove [146]. However, this approach is more expensive and
time-consuming than CT and echocardiography.

5.1.4. Positron Emission Tomography

It has been shown that fluorodeoxyglucose (FDG) uptake visualized by PET corre-
sponds to macrophage infiltration within the tissue, therefore it can be used to assess
the inflammatory properties of PCAT [147]. PET imaging is usually combined with CT
(PET/CT), which allows both metabolic and anatomical evaluation.

5.2. EAT Parameters Assessed in Imaging Studies
5.2.1. EAT Thickness

EAT thickness measured in echocardiography was associated with some CAD risk fac-
tors such as abdominal visceral adipose tissue, C-reactive protein level, waist circumference,
age, and body mass index (BMI) [148]. A meta-analysis of nearly 5000 patients showed that
EAT thickness is related to CAD and its severity [149]. Other studies also revealed EAT
thickness measured in echocardiography to be a predictor of CAD [150,151] as well as an
independent factor affecting its severity [152–154] and it was moreover reported to foresee
the presence of multivessel disease [155]. Multiple studies identified EAT thickness mea-
sured in echocardiography to parallel with the Gensini score [151,155,156] and SYNTAX
score [151,157], also in patients with ACS [137,156]. In addition, EAT thickness correlates
with TIMI flow grade which is used for evaluation of coronary perfusion [158]. Moreover, a
robust relationship with the number of thin-cap fibroatheromas was reported. Patients with
thick EAT in echocardiography had approximately more and larger plaques, they were of
higher mean burden index, with bigger necrotic core [159] and contained more lipids [160].
In a study on asymptomatic patients with type 2 diabetes, EAT thickness measured by
MRI in the left atrioventricular groove revealed thicker EAT in patients with more severe
coronary stenosis, yet no significant relation was showed between EAT thickness and silent
myocardial ischemia [161].

The EAT thickness measured in CT showed a correlation with coronary artery calcium
score (CAC), predicted CAD in asymptomatic patients [16] and negatively correlated with
impairment in myocardial flow reserve [162]. Nonetheless, when combined with the
calcium scoring, it gained little improvement in coronary stenosis diagnosis [163]. Picard
et al. reported the EAT thickness on the free wall of the left ventricle correlated with the
presence and severity of CAD. No such relation was detected for the right ventricle. The
authors claim that the method has low diagnostic value compared to calcium scoring and
CT coronary angiography [163].

Echocardiographic EAT thickness correlated weakly with the Framingham risk score,
which is an algorithm used to estimate 10-year cardiovascular risk [164]. Tanindi et al.
proved that EAT thickness might be used as a powerful predictor of acute MI. Echocardio-
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graphic measurement of EAT may be a useful tool when deciding about aggressive therapy
or as a follow-up parameter [165,166]. It also appeared to be an independent risk factor
of NSTEMI, unstable angina pectoris [167], and restenosis after PCI [168]. Additionally,
the EAT thickness in echocardiography occurred to be significantly predictive of adverse
cardiovascular events in patients presenting with AF [169] and ACS during short-term
and long-term follow-up [170,171]. Moreover, individuals with high echocardiographic
EAT thickness were more likely to require target vessel revascularization. However, there
was no significant dependence when it came to recurrent MI [172]. On the other hand,
EAT thickness measured in CT in right, left, and anterior interventricular fossae predicted
MI in patients with COVID-19 [173]. In a meta-analysis of over 6600 cases EAT thickness
measured in either CT or echocardiography was proven to be increased in patients with
myocardial infarction (MI) [136].

Nevertheless, the ability of echocardiographic EAT thickness to predict major adverse
cardiovascular events (MACE) is denied by some results [174,175], especially in patients
undergoing hemodialysis [176]. Some works deny the existence of any interaction with
GRACE score and TIMI score, which are used to estimate the likelihood of adverse cardiac
events [156,177]. Nonetheless, the latter was indicated by other researchers [167,178].

The EAT thickness measured in transthoracic echocardiography in subjects with MI
corresponded positively with ST—segment resolution, reduction in LVEF, reduction in LV
end-diastolic and end-systolic volume, and larger infarct size [171,179]. Furthermore, thick
EAT was correlated with the presence of coronary collateral vessels (CCVs) in patients
presenting with ACS. It suggests that EAT plays a role in the development of CCVs, which
may contribute to alleviating ACS outcomes [180]. Excess echocardiographic EAT thickness
was an independent predictor of no-reflow phenomenon in STEMI patients who underwent
PCI [179,181], and coronary slow flow phenomenon, which appears as a slowed stream of
contrast without visible stenosis in coronary angiography. It is an indicator of endothelial
dysfunction and the early phase of atherosclerosis [182]. In addition, in STEMI subjects after
PCI thick EAT assessed by echocardiography predicted the new onset of atrial fibrillation
(AF) during hospital follow-up which means that the inflammatory properties of EAT may
take a role in atrial myocardial remodeling [137].

5.2.2. EAT Volume

High EAT volume evaluated in CT showed a correlation with the presence of ACS [183],
thin-capped fibroatheroma and high lipid content in the plaque [184]. Both ROMICAT
trials also revealed the discriminative role of EAT volume assessed in CT for discovering
high-risk lesions [185,186]. Excess EAT volume in CT correlated with vulnerable plaque
characteristics, such as low density, presence of remodeling, and non-calcified component.
However, there were weak associations with the amount of plaque [27–31].

The EAT volume and EAT volume indexed to the body surface (EATvi) measured in
CT showed a correlation with CAC score and was associated with CAD [187–192]—this
was also the case in patients with diabetes [193] and HIV [194]. High EAT volume evalu-
ated in CT positively corresponded with CAC score in three main coronary arteries [195]
and negatively correlated with impairment in myocardial flow reserve but was weaker
than EAT thickness [162]. EAT volume measured in CT significantly correlated with the
severity of CAD [196], but not with the severity of stenoses [189], and when combined
with the calcium scoring it gained little improvement in coronary stenosis diagnosis [197].
Nonetheless, Milanese et al. denied the predictive role of EAT volume measured in CT
regarding CAD [198]. Additionally, Goeller et al. showed in a population of patients
without diagnosed CAD, that EAT volume evaluated in CT was higher in individuals
with early atherosclerosis compared to those with more advanced disease. There was no
correlation between EAT volume and CAC score value. Moreover, EAT volume was a
strong predictor of cardiac death and MI [139].

The Framingham Heart Study and The Heinz Nixdorf Recall Study presented a
significant relation between EAT volume measured in CT and the prevalence of fatal and
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non-fatal coronary events [138,199]. This is supported by many trials which confirmed
that increased EAT volume evaluated in CT, EATvi, and EAT indexed to the BMI are
independent predictors of MI, cardiac death, and other coronary events [195,200–203],
amongst patients with type 2 diabetes [204] and those with HIV [205]. EAT volume assessed
in CT was positively associated with the prevalence of myocardial ischemia in diabetic
patients. However, it did not correlate with its severity and there are conflicting results
regarding the comparison of EAT and the CAC score performances [206–208]. Furthermore,
EAT volume measured in CT was an independent factor related to the presence of coronary
slow-flow phenomenon [209]. Nonetheless, no relation was observed between EAT volume
and either fractional flow reserve (FFR) [210], or CT perfusion imaging [211].

Recently, AI has attracted much interest in the field of medical studies, including
cardiology [212,213]. Deep learning (DL) models can be used to automatically quantify
EAT from coronary CT angiography images [195]. Commandeur et al. used the machine
learning (ML) model to predict the long-term risk of MI and cardiac death in asymptomatic
subjects. Apart from many clinical parameters, the algorithm used CAC and EAT volume.
The latter was calculated automatically with the use of a DL-based method. The ML model
significantly better predicted the risks than the atherosclerotic cardiovascular disease risk
score or CAC score alone [214]. In another study with a similar design, apart from clinical
and imaging features, serum concentrations of biomarkers were also implemented in the
ML model. This resulted in superior prediction of CV events than contemporary tools used
for risk assessment [215].

In a retrospective analysis, Fisser et al. showed that EAT volume measured in MRI
positively correlated with prevalence of MI, number of vessels obstructed, and amplitude
of ST-elevation. However, there was no association with myocardial salvage index which is
a tool presenting the treatment efficacy [216]. On the other hand, multiple studies exposed
that more excess EAT volume evaluated in MRI goes along with smaller infarct size and
lower number of vessels obstructed [217]. Nevertheless, there was still a positive correlation
between EAT volume and myocardial salvage index [218]. A cross-sectional UK Biobank
cardiovascular magnetic resonance imaging substudy acknowledged that CAD or history
of MI did not correspond with the EATvi [219]. Homsi et al. demonstrated that more excess
volume of EAT assessed in MRI predicted myocardial infarction in hypertensive men, yet
there was no correlation with CAD or number of affected vessels [220].

5.2.3. EAT Attenuation and Mass

EAT attenuation measured in CT negatively correlated with CAC score [221] and CAC
score in each of the three main coronary arteries, but not regarding the left circumflex
coronary artery (LCx) [195]. In another study, there was no significant relation between the
severity of CAD [196] and the presence of high-risk lesions in coronary arteries [186].

Patients presenting with MI had significantly higher EAT attenuation assessed in
CT [202]. However, another study showed no significant difference between ischemic
or non-ischemic lesions and EAT attenuation [222]. Goeller et al. presented that EAT
attenuation measured in CT was relevantly lower in patients with early atherosclerosis
when compared to ones with more advanced disease. In his study, no correlation was
shown with the CAC score, yet EAT attenuation was a better predictor than EAT volume of
cardiac death and MI [139]. Nonetheless, another study exhibited EAT attenuation to be
a weaker predictor of myocardial ischemia and CAC score than EAT volume [208]. EAT
attenuation evaluated in CT independently predicted long-term MACE in asymptomatic
patients [195].

In patients with heart failure, the whole EAT mass evaluated in MRI was significantly
lower than in healthy controls [223]. Moreover, it was lower in individuals with reduced
LVEF separately from CAD. It indicates that the correlation between EAT mass and CAD
severity is highly dependent on LVEF [224]. Furthermore, it was revealed that EAT mass
(assessed in MRI) indexed to the body surface lower than 22 g/m2 was a predictor of
cardiac death [225].
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5.2.4. Pericoronary Adipose Tissue (PCAT)

Pericoronary adipose tissue is part of EAT which stays in direct contact with coronary
vessels thus it has a paracrine effect on them. It can be measured using CT and cardiac
MRI. Therefore, this subchapter describes associations of PCAT volume or attenuation with
coronary arteries and cardiovascular outcomes [226].

In the CRISP-CT study, the authors revealed a relevant association between high fat
attenuation index around LAD and RCA, and prospective cardiac mortality risk. However,
it was diminished amongst patients who had been put on statins or aspirin therapy and
there was no such correlation regarding LCx [227]. Combining PCAT volume measured in
CT around RCA, LAD, and LCx showed statistically significant potential in distinguishing
NSTEMI from unstable angina pectoris in contrast to EAT volume [228]. RCA-PCAT atten-
uation assessed in CT positively correlated with total atherosclerotic plaque burden and
amount of calcified plaque, however, there was no relationship regarding the prevalence of
MI, cardiac death or revascularization [229]. PCAT volume was found to be significantly
associated with the presence of a culprit lesion in the artery. However, such a relation was
absent for PCAT attenuation [230]. In another study, PCAT attenuation, but not PCAT
volume, was markedly higher in patients with acute MI compared to individuals with
stable CAD [196].

Shan et al. showed that only LAD-PCAT volume evaluated in CT correlated with
myocardial ischemia measured by fractional flow reserve (FFR) and when combined with
CAD-RADS categories it gave a huge improvement in the prediction of myocardial is-
chemia [210]. In contrast, Duncker et al. showed that only RCA-PCAT attenuation and
average PCAT attenuation, both measured in CT were significantly related to myocardial
ischemia assessed by FFR, which was false for every other PCAT volume and its attenuation
as well as EAT and paracardial adipose tissue volume and attenuation [231]. Zhou et al.
demonstrated that combining radiomics features of PCAT evaluated using CT with or with-
out plaque characteristics was significantly related to FFR. However, plaque characteristics
themselves gave poor performance. The authors conclude that PCAT characteristics may
be of better predictive value regarding myocardial ischemia than the whole EAT [232].

Toya et al. presented the predictive ability of PCAT measured in MRI regarding
MACE, especially those around the superior interventricular groove [233]. Amongst
PCAT thickness indexed to the body surface, only the one measured in the superior
interventricular groove using MRI showed statistical significance in prediction of MACE
after STEMI [234].

Mazurek et al. presented nine patients with non-ST segment elevation ACS with
PCAT showing higher FDG uptake evaluated in PET/CT than other fat depots, which
indicates its pro-inflammatory properties. FDG uptake was also related to negative plaque
characteristics and revealed a positive correlation with plaque burden and necrotic core
rate as well as a negative correlation with fibrous plaque rate [147]. Furthermore, the
authors exhibited that PCAT FDG uptake significantly paralleled with CAD presence. In
overweight patients, it positively correlated with the percent of coronary stenosis indicating
that weight gain influences PCAT inflammatory activity. Moreover, PCAT FDG uptake
was an independent predictor of stenoses in RCA and LAD [235]. In another study, PCAT
FDG uptake was higher in patients with vasospastic angina (VSA) in LAD and positively
corresponded with the density of vasa vasorum in the artery. It suggests that VSA has an
inflammatory background related to the activity of PCAT [236].

6. Conclusions

Numerous studies have confirmed that EAT contributes to the pathogenesis of CAD
and can be useful in the prediction of ACS. EAT evaluation during routine imaging studies
like echocardiography and CT could be potentially implemented in risk assessment scores.
Additionally, EAT plays a role in cardiac remodeling following MI, primarily by promoting
fibrosis, and medications that reduce the secretion of fibrokines from EAT may mitigate this
adverse cardiac remodeling. Conversely, EAT can exhibit cardioprotective properties and
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can be a source of SCs capable of enhancing myocardial regeneration after MI. Therefore,
we need significantly more research on the dual role of EAT before we can proceed with its
application in clinical practice.
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