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Abstract: HIV-1 capsid protein (CA) is the molecular target of the recently FDA-approved long
acting injectable (LAI) drug lenacapavir (GS-6207). The quick emergence of CA mutations resistant
to GS-6207 necessitates the design and synthesis of novel sub-chemotypes. We have conducted the
structure-based design of two new sub-chemotypes combining the scaffold of GS-6207 and the N-
terminal cap of PF74 analogs, the other important CA-targeting chemotype. The design was validated
via induced-fit molecular docking. More importantly, we have worked out a general synthetic route
to allow the modular synthesis of novel GS-6207 subtypes. Significantly, the desired stereochemistry
of the skeleton C2 was confirmed via an X-ray crystal structure of the key synthetic intermediate 22a.
Although the newly synthesized analogs did not show significant potency, our efforts herein will
facilitate the future design and synthesis of novel subtypes with improved potency.

Keywords: HIV-1 capsid; GS-6207; PF74; molecular modeling; synthesis

1. Introduction

The multifunctional capsid protein (CA) of HIV-1 has become an increasingly attractive
target for developing novel antiviral drugs [1–5]. Although multiple small-molecule
binding sites at both the N-terminal domain of CA (CANTD) and the C-terminal domain
(CACTD) are known [6], the pocket used by host factors NUP153 [7,8], CPSF6 [9–11], and
Sec24C [2,12] to facilitate nuclear entry and integration is particularly druggable. Notably,
the two most prominent CA inhibitor types, represented by PF74 [11,13–15] (1) and GS-
6207 [16,17] (2), both bind to this pocket to compete against NUP153, CPSF6 [10,11,18],
and Sec24C [2,12] in addition to impacting the capsid stability. As a result, these CA
binders confer potent antiviral phenotypes with dose-dependent multimodal mechanisms
of action [15,16]. PF74 is a phenylalanine-derived peptidomimetic with an aniline cap at the
C-terminus and an indole-3-acetic acid cap at the N-terminus (Figure 1A). Despite its potent
and mechanistically interesting antiviral phenotypes, PF74 is not a viable antiviral lead due to
the prohibitively low metabolic stability [19]. We have chemically profiled PF74 extensively
with the synthesis of a large number of analogs [20], and along with others, have explored
different PF74 subtypes for enhanced metabolic stability [6,19,21–32]. GS-6207 (lenacapavir),
on the other hand, is extraordinarily stable toward oxidative metabolism, presumably
owing to its high fluorine content (Figure 1A). The unusually high metabolic stability, along
with its exceptional antiviral potency, renders GS-6207 a landmark antiviral drug recently
approved as an LAI [33]. However, CA mutations highly resistant to GS-6207 [34–36],
particularly M66I, Q67H, K70R, and N74D, have been selected in vitro and in patients,
suggesting that novel subtypes need to be designed and synthesized to curb resistance.
Such endeavors are expected to be more challenging than those typically encountered
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in developing new subtypes due to the structural complexity of GS-6207 and its snug-fit
binding into the presumed pocket. We report herein our efforts in the design and synthesis
of two GS-6207 subtypes featuring the generic backbone of GS-6207 and the indole-acetic
acid moiety of PF74 (Figure 1C).
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Figure 1. Design of novel HIV CA-targeting chemotypes. (A) Chemical structures of 1, PF74, and 2,
GS-6207. (B) Docking of the two best-known CA inhibitors 1, PF74 (cyan), and 2, GS-6207 (crimson),
into the presumed binding pocket (PDB: 4XFZ). Overlay shows that both chemical scaffolds bind
similarly. (C) Chemical profiling of 1, PF74, identified analog 3 as a potent stabilizer and analog 4
as a unique destabilizer. Molecular hybridization led to the design of hybrids 5 and 6. (D) Modular
synthetic approach entailing the key skeleton C2 (8a,b) and sequential reactions with C1 (7, Suzuki), C4

(10, Sonogashira), and C3 (9a,b, amide coupling). Asterisks (*) indicate stereocenters with undefined
configurations.

2. Results and Discussion
2.1. Design of Novel PF74/GS-6207 Molecular Hybrids 5 and 6

The design of the molecular hybrids is based on the shared binding mode of 1, PF74,
and 2, GS-6207 (Figure 1B). Although vastly different in molecular complexity and func-
tional group density, the two molecules bind to the same pocket at the interface of two
adjacent CA promoters (CA1 and CA2). 2, GS-6207, is well superimposed with 1, PF74,
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through the backbone and the R2 and R3 moieties, with shared key molecular interactions
in the N-terminal domain of CA1 (CA1NTD) and the C-terminal domain of the adjacent CA2
(CA2CTD) (Figure 1B). The additional interactions conferred by 2, GS-6207, with CA2NTD
via the sulfone group of the R4 moiety and CA2CTD via the methanesulfonamide group of
the R1 moiety likely contribute substantially to its superior potency over 1, PF74, and will be
retained in our design. Interestingly, from our previous chemical profiling, 1, PF74 analog
3 showed a drastically improved potency (>27-fold) and superb capsid stabilizing effect,
as indicated by a large positive shift in the thermal shift assay (TSA) [6]. Another PF74
analog 4, featuring a distinct indolone R3 moiety, displayed a highly unusual destabilizing
effect (negative shift in TSA) [6]. An important aim of our redesign is to optimize both
the stabilizer lead (3) and the destabilizer lead (4) through design and synthetic strategies
aligned with improving the resistance profile of 2, GS-6207. Based on these, molecular hy-
brids 5 and 6 were designed, as shown in Figure 1C. To enhance the synthetic accessibility,
the design also features a slightly simplified R1 moiety for both 5 and 6 and undefined
stereochemistry in the indolone ring of hybrid 6. Finally, the newly designed hybrids will
contain the R2 moiety of both 1, PF74 (R = H), and 2, GS-6270 (R = F). The main aim of this
pilot design and synthesis is to develop a general and amenable synthesis to enable the
future redesign and synthesis of structurally more elaborate subtypes of 2, GS-6207.

2.2. Molecular Docking Analysis

To computationally validate the design, we performed induced-fit molecular docking
for all four analogs, 5a, 5b, 6a, and 6b, using the co-crystal structure of PF74-bound HIV-1
CA (PDB code: 4XFZ) [37]. A control docking was conducted with 2, GS-6207 (docked
pose shown in Figure 1B). Overall, these newly designed analogs all docked well into
the 2, GS-6207, binding site (Figure 2), with docking scores comparable to that of 2, GS-
6207. Major molecular interactions observed include (1) H-bonds between the sulfonamide
oxygen and the side chain of Ser41 (CA2NTD) and Asn57 (CA1NTD); (2) H-bonds between
the side chain of Asn57 (CA1NTD) and both the ring-nitrogen atom of the core and the
amide N−H of the inhibitor; (3) H-bonds between the methanesulfonamide and the side
chains of Asn183 (CA2CTD), Gln179 (CA2CTD), Lys70 (CA1NTD), and Asn74 (CA1NTD); and
(4) H-bond between the side chain of Lys70 (CA1NTD) and the carbonyl oxygen of the
inhibitor. For the newly incorporated indole or indolone moiety (R3), the free NH forms
an H-bond with the side chain Arg173 (CA2CTD, 6a), Gln63 (CA1NTD, 5a), and Thr54
(CA1NTD, 6b). In addition, the OH on the indole ring is H-bonded with the side chain
Gln179 (CA2CTD, 6a), Leu172 (CA2CTD, 5a), and Gln63 (CA1NTD, 5b). These docking results
indicate that most of the molecular interactions conferring high potency of 2, GS-6207, are
retained in the newly designed hybrids.

2.3. Synthesis of Hybrids 5 and 6

The general synthetic approach is depicted in Figure 1D. The synthesis is highly
modular based on four synthetic components (C1–C4) for installing R1–R4. C2 is the
core with the proper functional group handles to allow the installation of R1, R4, and
R3 via sequential reactions with C1 (Suzuki), C4 (Sonogashira), and C3 (amide coupling),
respectively. This modular synthesis will support future synthetic needs of structural
diversification in all four structure–activity relationship (SAR) regions (R1–R4), particularly
the regions of R1, R4, and R3.

The synthetic route for the preparation of component C1 is shown in Scheme 1. MnO2
oxidation [38] of commercially available benzyl alcohol 11 afforded benzaldehyde in-
termediate 12. The subsequent conversion to nitrile 13 was effected via the standard
method of oxime formation and dehydration [39]. The nucleophilic aromatic substitution
reaction [40] at the F site by hydrazine followed by the cyclization reaction produced
aminoindazole 14, which was subjected to the palladium-catalyzed borylation [41] with
bis(catecholato)diboron to yield the representative C1, compound 7.
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Figure 2. Docking of the four newly designed analogs into PF74-bound HIV-1 CA (PDB ID: 4XFZ) [37].
Control docking was conducted with 2, GS-6207 (Glide score = −13.41 kcal/mol). Predicted
binding modes of (A) compound 5a (Glide score = −12.31 kcal/mol); (B) compound 6a (Glide
score = −12.73 kcal/mol); (C) compound 5b (Glide score = −14.07 kcal/mol); and (D) compound 6b
(Glide score = −10.32 kcal/mol). Hydrogen bonding interactions are depicted as pink dashed lines.
CANTD is shown in orange cartoon and adjacent CACTD in gold cartoon, with key residues around
binding site shown as orange sticks. The nitrogen, oxygen, fluorine and chlorine atoms are colored
blue, red, light blue, and green, respectively.
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Scheme 1. Synthesis of component C1 (compound 7). Reagents and conditions: (a) MnO2, DCM, rt,
8 h, 87%; (b) H2NOH.H2O, Ac2O, AcOH, 75 ◦C, 6 h, 71%; (c) H2NNH2.H2O, EtOH, 90 ◦C, 4 h, 60%;
(d) B2Pin2, Pd(PPh3)2Cl2, KOAc, 1,4-dioxane 110 ◦C, 18 h, 50%.

The synthesis of the core component C2 began with the commercially available 2,5-
dibromopyridine 15 (Scheme 2). Deprotonative formylation [42] of 15 with TMPMgCl.LiCl
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in dry THF followed by the addition of DMF afforded aldehyde intermediate 16, which
set the stage for the key asymmetric induction via a chiral auxiliary. The chiral auxiliary
was introduced via condensation of aldehyde 16 with chiral non-racemic (S)- and (R)-tert-
butanesulfinamides to produce (S)-tert-butanesulfinyl imine 17 and (R)-tert-butanesulfinyl
imine 18, respectively (Scheme 2) [43].
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Scheme 2. Synthesis of C2 (8a and 8b). Reagents and conditions: (a) TMPMgCl.LiCI, THF, DMF,
−20 ◦C, 8 h, 56%; (b) Cs2CO3, NMP, rt, 4 h, 60%; (c) dry THF, −78 ◦C, 2 h, 65%; (d) 4N HCl/dioxane,
MeOH, rt, 3 h, 76%; (e) (Boc)2O, NEt3, DCM, rt, 2 h, 80%.

Both auxiliaries were used to determine the preferred auxiliary/nucleophile combina-
tion for producing the desired stereochemical outcome (S) for C2 (8a and 8b). Specifically,
in four different reactions shown in the table (Scheme 2), commercially available benzyl
magnesium chloride 24 or (3,5-difluorobenzyl)zinc bromide 25 was used as the nucleophile
to react with both sulfinylimines 17 and 18 to afford four pairs of diastereomers (19a/20a,
19b/20b, 21a/22a, and 21b/22b) in ratios of 1-2 favoring the undesired diastereomers.
From these experiments, it was clear that (R)-tert-butanesulfinyl imine 18 is preferred over
the (S)-enantiomer 17 for inducing the desired (S) stereochemistry in C2 (8a and 8b). The
structure and absolute stereochemistry of intermediate 22a were confirmed by single crystal
X-ray diffraction analysis (Figure 3). The crystal selected for the study has chirality at C1 S.
The chains of hydrogen bonds are parallel to the a-axis through the . . .O-S-N-H. . . fragment
(Figure 3). Deprotection of the sulfinamide under HCl yielded intermediates 23a,b, which
were Boc-protected to afford compounds 8a,b as the core C2.
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For this pilot design and synthesis, we used commercially available acids 9a,b as com-
ponent C3. The component C4 (compound 10) was prepared in a single step as described in
Scheme 3. S-alkylation of sodium methanesulfinate [44] (MeSO2Na) with commercially
available chloride 26 yielded compound 10 (Scheme 3).
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60 ◦C, 18 h, 41%.

With all four components in hand, the overall modular synthesis was carried out based
on the core component C2 (compounds 8a,b), as depicted in Scheme 4. The synthesis started
with the Sonogashira coupling [45] of component C2 (compounds 8a,b) with component
C4 (compound 10) to produce intermediates 27a,b. The subsequent Suzuki coupling [46]
of 27a,b with component C1 (compounds 7) under the catalysis of Pd(dppf)2Cl2 afforded
intermediates 28a,b. Protection of the free NH2 group in component C1 with mesylchloride
gave bismesylated intermediates 29a,b, which upon Boc deprotection under TFA produced
advanced intermediates 30a,b. Finally, the installation of component C3 was achieved
under standard peptide coupling conditions with HATU as the coupling agent [47], fol-
lowed by the removal of one mesyl group. As such, commercially available acids 9a,b
were incorporated into final compounds 5a,b and 6a,b. The final compounds, 6a,b, were
produced as a mixture of diastereomers, which were separated by silica gel column chro-
matography to afford the desired diastereomer. Following through the purification process,
the final compounds 5a,b and 6a,b were successfully crystallized from isopropanol with
higher purity.
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the stability of covalently crosslinked HIV capsid (CA) hexamer. Of these compounds, 5b 
demonstrated a positive shift in the melting temperature of the CA hexamer, indicating 
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Scheme 4. The modular synthesis of newly designed hybrids 5a,b and 6a,b. Reagents and conditions:
(a) 10, Pd(PPh3)2Cl2, CuI, Et3N, Dry THF, rt, 6 h, 65%; (b) 7, Pd(dppf)2Cl2, K2CO3, Dioxane/H2O,
110 ◦C, overnight, 61%; (c) Methanesulfonyl chloride, TEA, DCM, rt, 12 h, 73%; (d) TFA, DCM, rt,
12 h; (e) HATU. i-Pr2NEt, DMF, rt, 1 h; (f) 2N NaOH, MeOH, rt, 1 h, 41%. Asterisks (*) indicate
stereocenters with undefined configurations.

2.4. Biological Analysis of Select Compounds

We tested compounds 5a, 5b, 6a, and 6b (using PF74 as a control) for their effect on
the stability of covalently crosslinked HIV capsid (CA) hexamer. Of these compounds, 5b
demonstrated a positive shift in the melting temperature of the CA hexamer, indicating
some stabilization (Table 1). The other three compounds did not provide any stabilization
of the CA hexamer. We further tested these four compounds in cell-based antiviral assays
for the inhibition of HIV virus activity. Significant toxicity was visibly observed during
the antiviral testing, suggesting that the compounds are cytotoxic. This made the EC50s
values difficult to determine reliably (Table 1). Overall, the compounds did not exhibit
much biological activity.
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Table 1. Thermal shift and cell-based antiviral analysis of selected compounds.

Compound ∆Tm (◦C) a EC50 (µM) b,c

5a 0.18 ± 0.21 >11

5b 1.6 ± 0.19 >50

6a 0.12 ± 0.30 >33

6b 0.10 ± 0.24 >100

PF74 5.7 ± 0.48 0.55 ± 0.09
a ∆Tm: melting point change of CA hexamer in presence of compound compared to DMSO control. Mean ± standard
deviation (SD) from at least two independent experiments. b Half maximal effective concentration from at least
two independent experiments. c Cytotoxic effects from compounds were visible during EC50 determination; the
results may be unreliable.

3. Materials and Methods
3.1. Chemistry

All commercial chemicals were used as supplied unless indicated otherwise. Compounds
were purified via flash chromatography using a Combiflash RF-200 (Teledyne ISCO, Lincoln,
NE, USA) with RediSep columns (Teledyne ISCO, Lincoln, NE, USA) (silica) and indicated
mobile phase. 1H and 13C NMR spectra were recorded on a Varian 600 MHz (Agilent
Technologies, Santa Clara, CA, USA) or Bruker 400 spectrometer (Bruker, Billerica, MA,
USA). Diastereomeric ratio was determined by 1H NMR analysis. Mass data were acquired
using an Agilent 6230 TOF LC/MS spectrometer (Agilent Technologies, Santa Clara, CA,
USA). Compound purity analysis was performed using Agilent 1260 Infinity HPLC (Agilent
Technologies, Santa Clara, CA, USA) with an Eclipse C18 column (3.5 µm, 4.6 × 100 mm).
HPLC conditions: flow rate, 1.0 mL/min; solvent A, 0.1% TFA in water; solvent B, 0.1% TFA in
acetonitrile; gradient (B, %): 0–3 min (5–100), 3–11 min (100), 11–13 min (100–5). Determined
purity was >85% for all final compounds.

3.1.1. Procedure for Synthesis of 12

To a solution of commercially available (3-bromo-2-fluorophenyl)methanol (11, 40 g,
1.0 equiv.) in 92 mL of DCM, was added MnO2 (40 g, 1.05 equiv.) slowly under argon. The
reaction mixture was stirred for 8 h at room temperature under an argon balloon. Upon
completion, as confirmed by TLC, the reaction mixture was filtered through a pad of celite.
The reaction mixture was washed by DCM five times. The combined organic layers were
further washed with water and brine, dried over Na2SO4, and concentrated in vacuo to
afford crude intermediate 12, 3-bromo-2-fluorobenzaldehyde as yellow solid (12, 4.34 g,
87%), which was directly used for the next step without further purification. Yield: 87%.
1H NMR (600 MHz, CDCl3) δ 7.42 (ddd, J = 8.1, 6.4, 1.6 Hz, 2H), 7.19 (d, J = 2.3 Hz, 1H), 6.97
(d, 1H). 13C NMR (100 MHz, CDCl3) δ 158.0, 133.0, 129.5, 129.4, 128.2, 128.1, 125.2, 125.2,
77.2, 59.3, 59.3. HRMS (ESI+) m/z calcd for C7H5BrFO [M+H]+ 202.9508, found: 202.9503.

3.1.2. Procedure for Synthesis of 13

To a solution of 3-bromo-2-fluorobenzaldehyde, (12, 49.25 g, 1.0 equiv.) was added
acetic anhydride (52.5 g, 1.2 equiv.) and acetic acid (310.5 g) at room temperature, and
the reaction mixture was heated to about 45 ◦C, and hydroxyl amine hydrochloride
(15.75 g) was added into the mixture. The reaction was heated at 75 ◦C and agitated
for about 6 h until the reaction was complete. Upon completion, as confirmed by TLC,
the product was isolated from the reaction mixture by adding water at about 45 ◦C. The
mixture was cooled to room temperature, and then the slurry was filtered. The filtered
cake was washed with water and brine, dried over Na2SO4, and concentrated to yield
3-bromo-2-fluorobenzonitrile as yellow solid (13, 42.0 g, 71%), which was directly used for
the next step without further purification. 1H NMR (600 MHz, CDCl3) δ 8.29 (s, 1H), 7.62 (t,
J = 6.9 Hz, 1H), 7.55–7.47 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 207.4, 158.3, 143.6, 143.6,
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134.7, 126.0, 126.0, 125.7, 125.3, 125.3, 121.6, 121.5, 109.9, 109.7, 77.2. HRMS (ESI+) m/z calcd
for C7H3BrFNNa [M+Na]+ 221.9331, found: 221.9327.

3.1.3. Procedure for Synthesis of 14

To a solution of 3-bromo-2-fluorobenzonitrile (13, 42.0 g, 102 mmol) in isopropanol
(100 mL) and water (30 mL) was added with hydrazine hydrate (20 wt% in water, 89 kg),
and the mixture was heated to about 80 ◦C for about 4 h. Upon completion, as confirmed by
TLC, the reaction mixture was filtered, and the filtered cake was washed with a mixture of
isopropanol (500 mL) and water (2 × 200 mL). The filtrate was concentrated under reduced
pressure to afford 7-bromo-1H-indazol-3-amine as brown oil (14, 32 g, 60%). 1H NMR
(400 MHz, CDCl3) δ 9.56 (s, 1H), 8.01 (s, 1H), 7.85 (ddd, J = 8.0, 6.3, 1.6 Hz, 1H), 7.57 (ddd,
J = 8.1, 6.6, 1.6 Hz, 1H), 7.07 (t, J = 7.9 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 173.7, 158.8,
156.3, 135.7, 135.7, 134.7, 125.7, 125.7, 125.3, 125.3, 123.3, 123.2, 109.8, 109.6, 77.2. HRMS
(ESI+) m/z calcd for C7H7BrN3 [M+H]+ 211.9823, found: 211.9819.

3.1.4. Procedure for Synthesis of 7

To a solution of 7-bromo-1H-indazol-3-amine (14, 73 mg, 0.44 mmol, 1.00 equiv.) in
1,4-dioxane (2.20 mL) was added KOAc (86.65 mg, 1.77 mmol, 4.00 equiv.), 4,4,5,5-tetramethyl-
2-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (168.10 mg, 1.32 mmol, 3.00 equiv.),
and Pd(PPh3)2Cl2 (15.50 mg, 0.044 mmol, 0.1 equiv.). The mixture was heated to about
110 ◦C overnight. Upon completion, as confirmed by TLC, the reaction mixture was cooled
to room temperature and quenched by the addition of iced water followed by EtOAc
(∼100 mL) was added. The combined organic layer was further washed with water
and brine, dried over Na2SO4, and concentrated. The crude product was purified by
Combi-flash on silica get using 2–15% Hexane/EtOAc to afford 7-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-1H-indazol-3-amine intermediate as yellowish solid (7, 42.00 mg, 50%).
1H NMR (600 MHz, DMSO-d6) δ 7.56 (td, J = 7.5, 2.1 Hz, 1H), 7.49 (ddd, J = 7.5, 5.7, 2.0 Hz,
1H), 7.15 (t, J = 7.4 Hz, 1H), 5.20 (t, J = 5.7 Hz, 1H), 4.50 (d, J = 5.7 Hz, 3H), 1.26 (s, 12H). 13C
NMR (100 MHz, CDCl3) δ 166.1, 163.6, 159.4, 136.2, 136.2, 132.6, 132.5, 132.5, 128.1, 128.1,
127.7, 127.6, 123.9, 123.8, 123.6, 123.6, 77.3, 75.1, 60.8, 60.7, 59.5, 59.4, 59.4, 59.3, 59.3, 59.1,
30.9, 25.0, 24.8, 24.6, 24.5, 20.9. HRMS (ESI+) m/z calcd for C13H19BrN3O2 [M+H]+ 338.1346,
found: 338.1337.

3.1.5. Procedure for Synthesis of 16

To a stirred solution of 2,5-dibromopyridine (15, 1 g, 1.0 equiv.) in dry THF (1.0 L),
was added a nitrogen gas balloon. Separately, 2,2,6,6-tetramethylpiperidinylmagnesium
chloride and lithium chloride complex (TMPMgCl.LiCI) (5.8 mL, 6.3 mmol) was added
to a round bottom flask. The TMPMgCl.LiCl solution was agitated and cooled to about
−20 ◦C. Then, compound 15 solution was added to the TMPMgCl.LiCl solution over about
30 min, maintaining a temperature below about −20 ◦C. Upon completing the addition,
the flask was maintained at about −20 for about 1 h. A solution of dry-dimethylformamide
(1.6 mL, 20 mmol) in THF (1.6 mL) was added to the mixture over about 30 min. The
reaction mixture was stirred for a further 15 min. and quenched by the addition of a
solution of acetic acid (1.9 mL, 34 mmol) in water (10 mL) over about 30 min, maintaining
a temperature of about 0 ◦C. To the flask was added isopropyl acetate (10 mL) and the
mixture was allowed to room temperature for 30 min, the mixture was filtered through
celite and rinsed with a mixture of isopropyl acetate (10 mL), saturated ammonium chloride
and 0.2 M hydrochloric acid. The pH of the combined reaction mixture was adjusted to
about 8–9 by the addition of a 10% aqueous sodium hydroxide solution. The mixture
was filtered a second time to remove magnesium salts and transferred to a separatory
funnel. The phases were separated, and the aqueous phase was extracted with isopropyl
acetate. The combined organic extracts were washed with brine, dried over Na2SO4, and
concentrated. The crude product was purified by Combi-flash on silica gel using 0–70%
Hexane/EtOAc to afford 3,6-dibromopicolinaldehyde intermediate as orange solid (16,
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97.9 g, 56%).1H NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.47 (d,
J = 8.5 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 188.1, 150.2, 140.1, 131.8, 128.4, 118.9, 76.4.
HRMS (ESI+) m/z calcd for C6H4BrNO [M+H]+ 263.8659, found: 263.8651.

3.1.6. Procedure for Synthesis of 17

To a stirred solution of 3,6-dibromopicolinaldehyde (16, 0.20 g, 0.38 mol, 1.00 equiv.)
was added Cs2CO3 (0.29 g, 0.453 mmol), (S)-(+)-tert-butanesulfinamide (0.10 g, 0.415 mmol)
in DCM (5 mL) at room temperature. The reaction mixture was stirred for 2 h in the same
condition. Upon completion, as confirmed by TLC, DCM (∼100 mL) was added to extract.
The combined organic layer was further washed with water and brine, dried over Na2SO4,
and concentrated in vacuo. The crude product was purified by Combi-flash on silica
get using 5–25% Hexane/EtOAc to afford (S)-N-((3,6-dibromopyridin-2-yl)methylene)-2-
methylpropane-2-sulfinamide intermediate (17, 9.91 g, 76%). 1H NMR (400 MHz, CDCl3)
δ 8.87 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 1.31 (s, 9H). 13C NMR
(100 MHz, CDCl3) δ 151.2, 142.5, 141.1, 140.8, 140.4, 132.8, 129.4, 124.0, 119.9, 114.5, 77.2,
30.9. HRMS (ESI-) m/z calcd for C10H11Br2N2OS [M−H]− 364.8959, found 364.8953.

3.1.7. Procedure for Synthesis of 18

To a stirred solution of 3,6-dibromopicolinaldehyde (16, 0.20 g, 0.38 mol, 1.00 equiv.)
was added Cs2CO3 (0.29 g, 0.453 mmol), (R)-(-)-tert-butanesulfinamide (0.11 g, 0.415 mmol)
in DCM (5 mL) at room temperature. The reaction mixture was stirred for 2 h in the
same condition. Upon completion, as confirmed by TLC, DCM (∼100 mL) was added
for extraction. The combined organic layer was further washed with water and brine,
dried over Na2SO4 and concentrated in vacuo. The crude product was purified by Combi-
flash on silica get using 5–25% Hexane/EtOAc to afford (R)-N-((3,6-dibromopyridin-2-
yl)methylene)-2-methylpropane-2-sulfinamide as yellow solid, 82.5 g (18, 60%). 1H NMR
(400 MHz, CDCl3) δ 8.80 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 8.3 Hz, 1H), 1.24 (s,
9H). 13C NMR (100 MHz, CDCl3) δ 206.9, 160.0, 149.6, 144.8, 143.9, 141.0, 132.8, 131.2, 128.4,
121.9, 77.3, 58.8, 58.6, 58.4, 32.3, 31.6, 31.2, 30.9, 24.2, 23.8, 22.9, 22.7, 21.6. HRMS (ESI-) m/z
calcd for C10H11Br2N2OS [M−H]− 364.8959, found 364.8947.

3.2. General Procedure for Synthesis of 19a,b and 20a,b

To a solution of (S)-N-((3,6-dibromopyridin-2-yl)methylene)-2-methylpropane-2-
sulfinamide intermediate (17, 11.41 g, 15.51 mol, 1.0 equiv.) in dry THF (150 mL) was
added (3,5-difluorobenzyl)zinc bromide (25, 0.5 M in THF, 125 mL, 31.01 mmol) or benzyl
magnesium chloride (24, 0.5 M in THF, 125 mL, 31.01 mmol) dropwise by additional funnel
for about 30 min at 0 ◦C. The reaction mixture was warmed to room temperature and
stirred at that temperature for 2 h. Upon completion, as confirmed by TLC, the mixture was
quenched with saturated NH4Cl (~200 mL) and diluted with EtOAc (~200 mL), and then it
was washed with water (~0.5 L) and then brine (~0.5 L). The organic solution was dried
over Na2SO4, filtered, and then concentrated in vacuo. The crude product was purified
by Combi-flash on silica gel using 5–50% Hexane/EtOAc to afford methanesulfonamide
intermediate (19a,b, 20a,b, 10.21 g, 65%).

3.2.1. (S)-N-((R)-1-(3,6-Dibromopyridin-2-yl)-2-phenylethyl)-2-methylpropane-2-sulfinamide
(19a)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.11 (s, 1H), 7.09 (s, 1H), 7.00 (d, J = 7.4 Hz,
2H), 6.96 (d, J = 7.2 Hz, 3H), 5.00 (s, 1H), 4.51 (d, J = 7.7 Hz, 1H), 4.38 (d, J = 8.6 Hz, 1H),
3.20 (d, J = 7.8 Hz, 2H), 1.05 (d, J = 1.6 Hz, 9H). 13C NMR (100 MHz, CDCl3) δ 159.1, 150.1,
149.8, 141.6, 140.7, 140.0, 139.7, 139.3, 138.8, 136.3, 129.7, 128.7, 128.4, 128.1, 127.9, 127.4,
127.3, 127.0, 126.8, 126.3, 125.6, 125.1, 124.9, 118.9, 76.3, 42.1, 36.9, 29.3, 29.3. HRMS (ESI+)
m/z calcd for C17H20Br2N2OSNa [M+Na]+ 480.9561, found 480.9553.
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3.2.2. (S)-N-((S)-1-(3,6-Dibromopyridin-2-yl)-2-phenylethyl)-2-methylpropane-2-sulfinamide
(20a)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.55–7.40 (m, 1H), 7.19–7.07 (m, 1H), 3.56–3.46
(m, 3H), 2.92 (d, J = 11.8 Hz, 10H). HRMS (ESI+) m/z calcd for C17H20Br2N2OSNa [M+Na]+

480.9561, found 480.9555.

3.2.3. (S)-N-((R)-1-(3,6-Dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)-2-methylpropane-
2-sulfinamide (19b)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.68–7.59 (m, 1H), 7.21–7.14 (m, 1H), 6.82
(h, J = 4.0 Hz, 2H), 6.62 (tt, J = 9.1, 2.4 Hz, 1H), 4.61 (s, 2H), 3.93 (s, 1H), 3.01 (d, J = 2.2 Hz,
1H), 1.31–1.29 (m, 9H). 13C NMR (100 MHz, CDCl3) δ 164.0, 163.9, 161.5, 161.4, 159.2, 155.8,
142.8, 140.6, 140.5, 140.4, 140.1, 128.4, 119.2, 112.5, 112.4, 112.3, 112.2, 102.4, 102.1, 101.9,
77.2, 53.6, 41.1, 41.1, 41.1. HRMS (ESI-) m/z calcd for C17H17Br2F2N2OS [M−H]− 492.9397,
found 492.9381.3.5.4. (S)-N-((S)-1-(3,6-dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)-
2-methylpropane-2-sulfinamide (20b).

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.32–7.26 (m, 3H), 7.10 (d, J = 7.7 Hz, 2H),
6.96 (d, J = 7.2 Hz, 5H), 6.88 (d, J = 7.4 Hz, 1H), 5.00 (s, 1H), 4.51 (d, J = 7.8 Hz, 1H), 4.38 (d,
J = 8.5 Hz, 1H), 3.20 (d, J = 8.3 Hz, 4H), 1.01 (s, 9H). HRMS (ESI-) m/z calcd for C17H17Br2
F2N2OS [M−H]− 492.9397, found 492.9390.

3.3. General Procedure for Synthesis of 21a,b and 22a,b

To a solution of (R)-N-((3,6-dibromopyridin-2-yl)methylene)-2-methylpropane-2-
sulfinamide (18, 11.41 g, 15.51 mol, 1.0 equiv.) in dry THF (150 mL) was added (3,5-
difluorobenzyl)zinc bromide (25, 0.5 M in THF, 125 mL, 31.01 mmol) or Benzyl magnesium
chloride (24, 0.5 M in THF, 125 mL, 31.01 mmol) dropwise by additional funnel for about
30 min at 0 ◦C. The reaction mixture was warmed to room temperature and stirred at that
temperature for 2 h. Upon completion, as confirmed by TLC, the mixture was quenched
with saturated NH4Cl (~200 mL) and diluted with EtOAc (~200 mL) and then was washed
with water (~0.5 L), and then brine (~0.5 L). The organic solution was dried over Na2SO4;
filtered, and then concentrated in vacuo. The crude product was purified by Combi-flash on
silica gel using 5–50% Hexane/EtOAc to afford methanesulfonamide intermediate (21a,b
and 22a,b, 28.36 g, 86%).

3.3.1. (R)-N-((R)-1-(3,6-Dibromopyridin-2-yl)-2-phenylethyl)-2-methylpropane-2-sulfinamide
(21a)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.3 Hz, 1H), 7.33–7.19 (m, 1H),
7.17–7.12 (m, 3H), 7.03–6.99 (m, 2H), 6.91 (d, J = 7.5 Hz, 1H), 5.08 (q, J = 7.5 Hz, 1H), 4.76 (d,
J = 9.4 Hz, 1H), 4.19 (d, J = 8.9 Hz, 1H), 3.95–3.90 (m, 1H), 3.17 (d, J = 7.2 Hz, 1H), 1.04 (d,
J = 13.3 Hz, 9H). 13C NMR (100 MHz, CDCl3) δ 163.9, 161.3, 158.4, 155.9, 155.0, 141.1, 128.8,
124.4, 111.9, 101.7, 101.4, 87.3, 85.5, 76.8, 58.0, 52.8, 35.2, 28.3, 24.8, 22.8. HRMS (ESI-) m/z
calcd for C17H19Br2N2OS [M−H]− 456.9585, found 456.9576.

3.3.2. (R)-N-((S)-1-(3,6-Dibromopyridin-2-yl)-2-phenylethyl)-2-methylpropane-2-sulfinamide
(22a)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.0 Hz, 1H), 7.17 (s, 1H), 7.12
(d, J = 7.3 Hz, 2H), 7.00 (d, J = 7.3 Hz, 2H), 6.96 (d, J = 7.2 Hz, 3H), 5.00 (s, 1H), 4.51 (d,
J = 7.8 Hz, 1H), 4.38 (d, J = 8.5 Hz, 1H), 3.20 (d, J = 8.3 Hz, 3H), 1.05 (s, 9H). HRMS (ESI-)
m/z calcd for C17H19Br2N2OS [M−H]− 456.9585, found 456.9578.

3.3.3. (R)-N-((R)-1-(3,6-Dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)-2-
methylpropane-2-sulfinamide (21b)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.50 (dd, J = 8.3, 1.7 Hz, 1H), 7.19–7.12 (m,
3H), 7.03–6.99 (m, 2H), 6.91 (d, J = 8.0 Hz, 1H), 5.12–5.04 (m, 1H), 4.77 (d, J = 9.6 Hz, 1H),
4.20 (d, J = 8.9 Hz, 1H), 3.17 (d, J = 7.1 Hz, 2H), 1.05 (d, J = 1.7 Hz, 9H). HRMS (ESI-) m/z
calcd for C17H17Br2F2N2OS [M−H]− 492.9397, found 492.9389.
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3.3.4. (R)-N-((S)-1-(3,6-Dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)-2-methylpropane-
2-sulfinamide (22b)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.0 Hz, 1H), 7.17 (s, 1H), 7.12
(d, J = 7.3 Hz, 2H), 7.00 (d, J = 7.3 Hz, 2H), 6.96 (d, J = 7.2 Hz, 3H), 5.00 (s, 1H), 4.51 (d,
J = 7.8 Hz, 1H), 4.38 (d, J = 8.5 Hz, 1H), 3.20 (d, J = 8.3 Hz, 3H), 1.05 (s, 9H). HRMS (ESI-)
m/z calcd for C17H17Br2F2N2OS [M−H]− 492.9397, found 492.9387.

3.4. General Procedure for Synthesis of 23a,b

To a solution of (S)-N-((S)-1-(3,6-dibromopyridin-2-yl)-2-phenylethyl)-2-methylpropane-
2-sulfinamide (20a, 6.62 g, 13.34 mol, 1.0 equiv.) or (S)-N-((S)-1-(3,6-dibromopyridin-2-
yl)-2-(3,5-difluorophenyl)ethyl)-2-methylpropane-2-sulfinamide (22b, 6.62 g, 13.34 mol,
1.0 equiv.) in MeOH (30 mL) at 0 ◦C was added 4N HCl in EtOAc (7.50 mL) at room
temperature for about 2 h. Upon completion, as confirmed by TLC, the reaction mix-
ture was formed a thick slurry and filtered and washed with MeOH to get deprotected
methanesulfonamide intermediate (23a,b, 6.05 g, 76%), which was used directly in the
next step.

3.4.1. (S)-1-(3,6-Dibromopyridin-2-yl)-2-phenylethan-1-amine (23a)

Yield: 76%. 1H NMR (600 MHz, CDCl3) δ 7.57 (d, J = 8.3 Hz, 1H), 7.23 (d, J = 8.5 Hz,
2H), 7.09 (d, J = 8.0 Hz, 1H), 6.95–6.91 (m, 2H), 5.18 (s, 1H), 3.95 (s, 1H), 3.73 (s, 1H), 3.31
(dd, J = 13.8, 7.1 Hz, 1H), 3.26–3.19 (m, 1H). 13C NMR (100 MHz, DMSO-d6) δ 209.9, 154.9,
144.1, 140.2, 134.6, 130.3, 129.7, 129.2, 129.0, 127.9, 120.5, 54.1, 31.0, 25.6. HRMS (ESI+) m/z
calcd for C13H13Br2N2 [M+H]+ 354.9445, found 354.9437.

3.4.2. (S)-1-(3,6-Dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethan-1-amine (23b)

Yield: 76%. 1H NMR (600 MHz, CDCl3) δ 7.65 (d, J = 8.3 Hz, 1H), 7.31 (d, J = 8.2 Hz,
1H), 6.65 (dd, J = 28.3, 7.9 Hz, 3H), 5.25 (s, 1H), 3.33 (dd, J = 13.4, 7.5 Hz, 1H), 2.68 (s, 1H).
13C NMR (100 MHz, CDCl3) δ 164.2, 164.1, 161.7, 161.6, 153.9, 143.0, 140.3, 137.9, 137.8,
137.7, 129.7, 120.0, 113.1, 113.0, 112.9, 112.8, 103.3, 103.1, 102.8, 77.2, 54.5, 53.9, 39.0, 31.6,
25.1, 23.8. HRMS (ESI+) m/z calcd for C13H11Br2F2N2 [M+H]+ 390.9257, found 390.9248.

3.5. General Procedure for Synthesis of 8a,b

To a solution of (S)-1-(3,6-dibromopyridin-2-yl)-2-phenylethan-1-amine (23a, 6.30 g,
0.12 mol, 1.0 equiv.) or (S)-1-(3,6-dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethan-1-amine
(18b, 6.00 g, 0.12 mol, 1.0 equiv.) in DCM (100 mL) at room temperature was added
triethylamine (3.7 mL, 26.68 mmol) and di-tert-butyl dicarbonate (3.5 g, 16.01 mmol). The
mixture was stirred at room temperature for 4 h. Upon completion, as confirmed by TLC,
diluted with ethyl acetate, then the combined organic layer was further washed with
water and brine, dried over Na2SO4 and concentrated. The crude product was purified
by Combi-flash on silica get using 10–80% hexane/EtOAc to afford boc group protected
methanesulfonamide intermediate (8a,b, 6.00 g, 80%).

3.5.1. Tert-butyl (S)-(1-(3,6-dibromopyridin-2-yl)-2-phenylethyl)carbamate (8a)

Yield: 80%. 1H NMR (600 MHz, CDCl3) δ 7.66–7.55 (m, 1H), 7.37–7.28 (m, 1H), 7.24–7.18
(m, 1H), 7.17–7.08 (m, 1H), 7.03 (s, 1H), 4.94 (dd, J = 12.7, 6.5 Hz, 1H), 4.79–4.71 (m, 1H),
3.25–3.10 (m, 1H), 3.02–2.92 (m, 1H), 1.23 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 171.2, 151.2,
142.7, 141.1, 140.2, 136.3, 129.8, 128.7, 127.0, 126.6, 119.4, 78.5, 75.1, 60.4, 55.5, 24.9. HRMS
(ESI+) m/z calcd for C18H21Br2N2O2 [M+H]+ 454.9970, found 454.9961.

3.5.2. Tert-butyl (S)-(1-(3,6-dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)carbamate (8b)

Yield: 80%. 1H NMR (400 MHz, CDCl3) δ 7.74–7.62 (m, 1H), 7.47–7.40 (m, 1H), 6.91–6.84
(m, 2H), 5.70–5.48 (m, 2H), 3.41 (s, 0H), 3.16–2.85 (m, 1H), 1.45 (s, 9H). 13C NMR (100 MHz,
CDCl3) δ 164.1, 163.9, 161.6, 161.5, 158.9, 154.9, 142.7, 140.7, 140.6, 140.5, 140.2, 128.4, 119.0,
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112.5, 112.5, 112.4, 112.3, 102.4, 102.2, 101.9, 79.9, 77.2, 65.7, 57.1, 54.1, 41.5, 28.5, 28.3, 27.4, 21.6,
15.8. HRMS (ESI+) m/z calcd for C18H18Br2F2N2O2Na [M+Na]+ 514.9575, found 514.9578.

3.6. Procedure for Synthesis of 21

To a solution of MeSO2Na (26, 6 g, 29.26 mmol, 1.0 equiv.) in DMF (100 mL) was
added copper(I) chloride (0.48 g, 2.4 mmol) slowly. The reaction mixture was heated to
40 ◦C and maintained at that temperature for 18 h. Upon completion, as confirmed by TLC,
the reaction mixture was cooled to room temperature and concentrated under reduced
pressure. The resulting residue was diluted with water and extracted with EtOAc to remove
unreacted starting material. The aqueous layer was acidified with 0.5 M citric acid and
followed by 1 N NaOH. The combined organic layers were washed with water, brine
(1.0 L); dried over Na2SO4; filtered and then concentrated in vacuo. The crude product
was purified by Combi-flash on silica get using 0–5% Hexane/EtOAc to afford 3-methyl-
3-(methylsulfonyl)but-1-yne (21, 2.92 g, 41%). 1H NMR (600 MHz, CDCl3) δ 3.04 (s, 3H),
2.58 (d, J = 1.5 Hz, 1H), 1.67 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 159.2, 70.2, 58.0,
54.5, 35.3, 25.5, 23.7, 22.6. HRMS (ESI+) m/z calcd for C6H10O2SNa [M+Na]+ 169.0294,
found 169.0289.

3.7. General Procedure for Synthesis of 27a,b

To a solution of tert-butyl (S)-(1-(3,6-dibromopyridin-2-yl)-2-phenylethyl)carbamate
(8a, 0.80 g, 0.813 mmol 1.0 equiv.) or tert-butyl (S)-(1-(3,6-dibromopyridin-2-yl)-2-(3,5-
difluorophenyl)ethyl)carbamate (8b, 0.80 g, 0.813 mmol 1.0 equiv.), 3-methyl-3-(methylsul
fonyl)but-1-yne (10, 0.286 g, 0.975 mmol), in DMF (10 mL) was added triethyl amine (0.70 mL,
2.44 mmol). At the room temperature, Bis(triphenylphosphine)palladium(II)dichloride (70 mg,
0.0406 mmol) and copper(I) iodide (15.45 mg, 0.0406 mmol) were added to the reaction mixture
and was stirred at room temperature for another 6 h. Upon completion, confirmed by TLC,
the reaction mixture was concentrated under reduced pressure. The resulting residue was
diluted with water and extracted with EtOAc to remove unreacted starting material. The
combined organic layers were washed with water, brine; dried over Na2SO4; filtered and
then concentrated in vacuo. The crude product was purified by Combi-flash on silica get
using 20–50% Hexane/EtOAc to afford carbamate intermediate (27a,b, 0.59 g, 65%).

3.7.1. Tert-butyl (S)-(1-(3-bromo-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)pyridin-2-
yl)-2-phenylethyl)carbamate (27a)

Yield: 65%. 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 8.3 Hz,
1H), 7.42 (d, J = 18.1 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 6.62 (s, 3H), 5.69 (d, J = 8.7 Hz, 1H),
5.57 (s, 1H), 3.11 (s, 4H), 2.90 (d, J = 14.5 Hz, 1H), 1.80 (s, 6H), 1.55 (s, 5H), 1.41 (s, 9H).
13C NMR (100 MHz, CDCl3) δ 189.3, 160.0, 149.6, 148.9, 144.8, 143.9, 141.1, 141.0, 132.8,
131.2, 122.0, 77.2, 58.6, 31.6, 24.5, 22.8. HRMS (ESI-) m/z calcd for C24H28BrN2O4S [M−H]−

521.1031, found 521.1028.

3.7.2. Tert-butyl (S)-(1-(3-bromo-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)pyridin-2-
yl)-2-(3,5-difluorophenyl)ethyl)carbamate (27b)

Yield: 65%. 1H NMR (400 MHz, MeOD) δ 7.81 (d, J = 8.2 Hz, 1H), 7.23 (d, J = 8.2 Hz, 1H),
6.63 (d, J = 16.8 Hz, 2H), 5.70 (d, J = 9.0 Hz, 1H), 5.50 (d, J = 7.7 Hz, 1H), 3.12 (d, J = 7.7 Hz, 3H),
2.93–2.87 (m, 1H), 1.80 (s, 7H), 1.56 (s, 9H), 1.43 (d, J = 7.4 Hz, 8H). 13C NMR (100 MHz, CDCl3)
δ 164.0, 161.6, 159.0, 155.0, 142.7, 140.6, 140.2, 128.4, 119.1, 112.5, 112.5, 112.4, 112.3, 102.4, 102.2,
101.9, 79.9, 77.2, 54.1, 45.8, 41.5, 28.3, 8.7. HRMS (ESI-) m/z calcd for C24H26BrF2N2O4S [M−H]−

555.0763, found 555.0757.

3.8. General Procedure for Synthesis of 28a,b

To a solution of tert-butyl (S)-(1-(3-bromo-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-
yl)pyridin-2-yl)-2-phenylethyl)carbamate (27a, 228 g, 0.21 mmol) or tert-butyl (S)-(1-(3-
bromo-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)pyridin-2-yl)-2-(3,5-difluorophenyl)
ethyl)carbamate (27b, 228 g, 0.21 mmol) in 1,4-dioxane (4 mL) and water (0.4 mL) were
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added [1,1′bis(diphenylphosphino)-ferrocene]dichloropalladium(II) (35.0 mg, 0.0205 mmol),
potassium carbonate (170.0 mg, 1.35 mmol) and 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)-1H-indazol-3-amine (7, 200 mg, 0.266 mmol) at room temperature. The red solution was
stirred in a heated condition at 110 ◦C for about 4 h. Upon completion, as confirmed by
TLC, the solution was concentrated under reduced pressure, and the resulting residue was
dissolved in EtOAc for extraction. The combined organic layers were washed with water,
brine; dried over Na2SO4; filtered and then concentrated in vacuo. The crude product was
purified by Combi-flash on silica get using 40–90% Hexane/EtOAc to afford the desired
intermediate (28a,b, 0.10 g, 51%).

3.8.1. Tert-butyl (S)-(1-(3-(3-amino-1H-indazol-7-yl)-6-(3-methyl-3-(methylsulfonyl)but-1-
yn-1-yl)pyridin-2-yl)-2-phenylethyl)carbamate (28a)

Yield: 61%. 1H NMR (400 MHz, CDCl3) δ 7.56–7.46 (m, 1H), 7.40 (d, J = 7.7 Hz, 2H),
7.03–6.89 (m, 1H), 6.51 (t, J = 8.6 Hz, 2H), 6.15 (d, J = 7.6 Hz, 3H), 5.52 (s, 2H), 4.94–4.70 (m,
7H), 4.56 (s, 1H), 4.12 (q, J = 7.1 Hz, 1H), 2.84–2.66 (m, 2H), 2.01–1.95 (m, 8H), 1.41 (s, 9H).
HRMS (ESI-) m/z calcd for C31H34N5O4S [M−H]− 572.2332, found 572.2326.

3.8.2. Tert-butyl (S)-(1-(3-(3-amino-1H-indazol-7-yl)-6-(3-methyl-3-(methylsulfonyl)but-1-
yn-1-yl)pyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)carbamate (28b)

Yield: 61%. 1H NMR (400 MHz, CDCl3) δ 7.70–7.64 (m, 2H), 7.55 (td, J = 7.3, 1.5 Hz,
1H), 7.49–7.40 (m, 4H), 7.24 (d, J = 7.7 Hz, 1H), 6.54 (t, J = 9.3 Hz, 1H), 6.17 (s, 2H), 5.65
(d, J = 9.4 Hz, 1H), 4.83 (d, J = 6.0 Hz, 1H), 4.48 (s, 1H), 3.16 (s, 3H), 2.93 (s, 3H), 1.84 (s,
7H), 1.24 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 164.1, 164.0, 161.6, 161.5, 159.0, 154.9, 142.7,
140.7, 140.6, 140.5, 140.2, 128.4, 119.0, 112.5, 112.5, 112.4, 112.3, 102.4, 102.2, 101.9, 79.9, 77.2,
65.7, 57.1, 54.1, 41.5, 28.5, 28.3, 27.4, 21.6, 15.8. HRMS (ESI-) m/z calcd for C31H32F2N5O4S
[M−H]− 608.2143, found 608.2137.

3.9. General Procedure for Synthesis of 29a,b

To a solution of tert-butyl (S)-(1-(3-(3-amino-1H-indazol-7-yl)-6-(3-methyl-3-(methylsul
fonyl)but-1-yn-1-yl)pyridin-2-yl)-2-phenylethyl)carbamate (28a, 0.10 g, 0.14 mmol, 1.0 equiv.)
or tert-butyl (S)-(1-(3-(3-amino-1H-indazol-7-yl)-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-
yl)pyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)carbamate (28b, 0.1 g, 0.14 mmol, 1.0 equiv.) in
3 mL of DCM and triethylamine (80 µL, 0.0486 mmol) was added methanesulfonyl chloride
(0.2 g, 1.05 equiv.), and the reaction mixture was stirred for 2 h at room temperature. Upon
completion, as confirmed by TLC, the reaction mixture was concentrated, diluted with
water, and extracted with ethyl acetate. The combined organic layer was further washed
with water and brine, dried over Na2SO4 and concentrated. The crude product was purified
by Combi-flash on silica get using 15–35% EtOAc/Hexane to afford desired intermediate
as yellow solid (29a,b, 3.34 g, 73%).

3.9.1. Tert-butyl (S)-(1-(6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)-3-(3-(N-
(methylsulfonyl)methylsulfonamido)-1H-indazol-7-yl)pyridin-2-yl)-2-
phenylethyl)carbamate (29a)

Yield: 73%. 1H NMR (400 MHz, CDCl3) δ 7.60 (t, J = 8.7 Hz, 2H), 7.47 (t, J = 7.0 Hz,
1H), 7.17–6.99 (m, 5H), 6.92–6.84 (m, 1H), 5.55 (d, J = 9.0 Hz, 1H), 5.47 (d, J = 7.5 Hz, 1H),
4.10 (d, J = 4.2 Hz, 2H), 3.99 (dd, J = 28.7, 6.9 Hz, 2H), 3.78–3.55 (m, 1H), 3.11 (dd, J = 13.5,
5.9 Hz, 1H), 2.94 (dd, J = 13.5, 7.4 Hz, 1H), 1.56–1.43 (m, 6H). 13C NMR (100 MHz, CDCl3)
δ 159.8, 155.0, 144.4, 143.2, 142. 6, 142.1, 140.0, 136.6, 135.8, 132. 8, 132.4, 132.1, 132.0, 129.9,
129.6, 129.3, 129.3, 129.2, 129.2, 129.1, 128.8, 128.7, 128.5, 128.4, 128.3, 128.3, 128.2, 128.0,
127.8, 127.7, 127.6, 127.0, 126.6, 126.4, 123.8, 119.2, 114.6, 82.3, 79.7, 68.7, 54.5, 41.7, 41.5,
41.0, 28.6, 28.3, 27.8, 27.5, 22.4. HRMS (ESI+) m/z calcd for C33H40N5O8S3 [M+H]+ 730.2039,
found 730.2035.
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3.9.2. Tert-butyl (S)-(2-(3,5-difluorophenyl)-1-(6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)-3-(3-
(N-(methylsulfonyl)methylsulfonamido)-1H-indazol-7-yl)pyridin-2-yl)ethyl)carbamate (29b)

Yield: 73%. 1H NMR (400 MHz, CDCl3) δ 7.52–7.43 (m, 2H), 7.27 (d, J = 2.4 Hz, 1H),
6.74 (s, 1H), 6.59 (t, J = 9.0 Hz, 1H), 6.50 (s, 1H), 6.16 (d, J = 7.0 Hz, 1H), 5.90 (d, J = 9.1 Hz,
1H), 5.56 (d, J = 13.7 Hz, 1H), 4.54 (d, J = 13.7 Hz, 1H), 4.12 (qd, J = 7.3, 1.8 Hz, 1H), 3.65–3.57
(m, 3H), 3.57–3.50 (m, 4H), 3.16 (s, 3H), 3.14–3.07 (m, 4H), 2.86 (s, 1H), 2.76 (t, J = 10.3 Hz,
1H), 1.84 (s, 6H), 1.39 (s, 7H). HRMS (ESI+) m/z calcd for C33H38F2N5O8S3 [M+H]+ 766.1852,
found 766.1845.

3.10. General Procedure for Synthesis of 30a,b

To a solution of tert-butyl (S)-(1-(6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)-3-(3-(N-
(methylsulfonyl)methylsulfonamido)-1H-indazol-7-yl)pyridin-2-yl)-2-phenylethyl)carbamate
(29a, 0.10 g, 0.113 mmol, 1.0 equiv.) or tert-butyl (S)-(2-(3,5-difluorophenyl)-1-(6-(3-methyl-3-
(methylsulfonyl)but-1-yn-1-yl)-3-(3-(N-(methylsulfonyl)methylsulfonamido)-1H-indazol-7-yl)
pyridin-2-yl)ethyl)carbamate (29b, 0.10 g, 0.113 mmol, 1.0 equiv.) in 5 mL of dichloromethane
was added Trifluoroacetic acid (2.5 mL, 7.7 mmol, 3.0 equiv.) at room temperature, and the
reaction mixture was stirred at room temperature for 4 h. Upon completion, as confirmed by
TLC, the reaction mixture was carefully neutralized to about pH 7 with a saturated sodium
bicarbonate solution and the organic layer was separated. The aqueous layer was further
extracted with dichloromethane. The combined organic layer was further washed with
water and brine, dried over Na2SO4, and concentrated to afford desired intermediate as
yellow oil (30a,b, 2.51 g, 50–51%).

3.10.1. (S)-N-(7-(2-(1-Amino-2-phenylethyl)-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-
yl)pyridin-3-yl)-1H-indazol-3-yl)-N-(methylsulfonyl)methanesulfonamide (30a)

Yield: 51%. 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 7.2 Hz, 1H), 7.43 (s, 1H), 7.26 (d,
J = 1.7 Hz, 7H), 7.14 (s, 1H), 6.59 (s, 1H), 6.37 (s, 1H), 6.17 (s, 1H), 4.65 (s, 1H), 3.30 (s, 4H),
3.17 (q, J = 4.7 Hz, 8H), 3.04 (s, 1H), 1.83 (s, 6H), 1.44 (s, 6H). HRMS (ESI+) m/z calcd for
C28H32N5O6S3 [M+H]+ 630.1516, found 630.1510.

3.10.2. (S)-N-(7-(2-(1-Amino-2-(3,5-difluorophenyl)ethyl)-6-(3-methyl-3-(methylsulfonyl)but-
1-yn-1-yl)pyridin-3-yl)-1H-indazol-3-yl)-N-(methylsulfonyl)methanesulfonamide (30b)

Yield: 51%. 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 7.4 Hz, 1H), 7.43 (s, 1H), 7.26 (s,
2H), 7.14 (s, 1H), 6.59 (s, 1H), 6.37 (s, 1H), 6.16 (s, 1H), 4.44 (s, 1H), 3.69 (s, 1H), 3.30 (s, 4H),
3.17 (d, J = 7.7 Hz, 7H), 3.04 (s, 1H), 1.83 (s, 4H), 1.44 (s, 6H). 13C NMR (100 MHz, CDCl3)
δ 164.3, 164.2, 164.0, 161.8, 161.7, 161.6, 158.6, 157.3, 156.1, 141.6, 141.4, 130.4, 130.4, 130.3,
129.3, 128.9, 128.9, 128.8, 128.7, 128.6, 127.8, 124.8, 123.7, 123.7, 123.6, 123.3, 123.3, 123.2,
123.1, 112.1, 111.8, 111.6, 101.8, 101.5, 101.3, 74.5, 64.1, 57.8, 57.5, 38.6, 34.2, 34.1, 33.9, 23.6,
21.7. HRMS (ESI-) m/z calcd for C28H29F2N5O6S3 [M−H]− 664.1170, found 664.1164.

3.11. General Procedure for Synthesis of 5a,b and 6a,b

To a solution of desired acid (0.45 g, 14.7 mmol, 1.1 equiv.) in 2 mL of DMF was added
HATU (0.51 g, 0.13 mmol, 1.05 equiv.) at 0 ◦C, and the reaction mixture was stirred for
30 min. Followed by addition of a solution of amine intermediate, (S)-N-(7-(2-(1-amino-2-
phenylethyl)-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)pyridin-3-yl)-1H-indazol-3-yl)-N-
(methylsulfonyl)methanesulfonamide (30a, 0.30 g, 1.0 equiv.) or (S)-N-(7-(2-(1-amino-2-(3,5-
difluorophenyl)ethyl)-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)pyridin-3-yl)-1H-indazol-
3-yl)-N-(methylsulfonyl)methanesulfonamide (30b, 0.30 g, 1.0 equiv.) in 1 mL DMF and
DIPEA (0.51 mL, 32.71 mmol, 3.0 equiv.). The reaction mixture was then slowly warmed
to room temperature and stirred for 12 h. To the reaction mixture was added a solution
of ammonia in MeOH (2 M, 10 mL), and the mixture was then stirred for 10 min. Upon
completion, as confirmed by TLC, the reaction mixture was concentrated, diluted with
water, and extracted with ethyl acetate and washed with aq 1 M HCl solution. The com-
bined organic layer was further washed with water and brine, dried over Na2SO4, and
concentrated. The crude product was purified by Combi-flash on silica gel using 20–100%
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DCM/MeOH with 0.1% TFA to remove some impurities. The mixture was concentrated
under reduced pressure and the fractions containing each diastereomer were combined
and back extracted with EtOAc, dried, and concentrated to afford the final compounds.

3.11.1. 2-(4,7-Dimethyl-2-oxoindolin-3-yl)-N-((S)-1-(6-(3-methyl-3-(methylsulfonyl)but-1-yn-
1-yl)-3-(3-(methylsulfonamido)-1H-indazol-7-yl)pyridin-2-yl)-2-phenylethyl)acetamide (6a)

Yield: 41%. 1H NMR (600 MHz, MeOD) δ 7.65 (dd, J = 12.1, 7.7 Hz, 2H), 7.54 (t,
J = 7.6 Hz, 1H), 7.48–7.43 (m, 7H), 7.41–7.36 (m, 2H), 7.26 (h, J = 7.7 Hz, 4H), 6.93 (dt,
J = 16.6, 8.0 Hz, 1H), 6.73 (t, J = 8.5 Hz, 1H), 5.75 (s, 3H), 4.80 (d, J = 6.6 Hz, 6H), 3.25–3.12 (m,
1H), 2.81 (s, 2H), 1.88 (s, 1H), 1.63 (s, 4H), 1.33–1.19 (m, 2H). 13C NMR (100 MHz, MeOD)
δ 158.6, 158.6, 157.9, 156.1, 156.1, 155.4, 141.2, 133.9, 131.8, 131.6, 130.4, 130.4, 130.4, 128.9,
128.9, 128.9, 128.7, 128.7, 128.6, 128.6, 125.6, 125. 6, 125.2, 125.2, 123.7, 123.7, 123.7, 123.3,
123.3, 123.2, 123.2, 122.5, 122.5, 122.4, 122.4, 109.0, 108.8, 57.6, 57.6, 57.5, 48.1, 47.9, 47.9, 47.7,
47.7, 47.5, 47.5, 47.2, 47.0. HRMS (ESI-) m/z calcd for C39H39N6O6S2 [M−H]− 751.2373,
found 751.2367.

3.11.2. N-((S)-2-(3,5-Difluorophenyl)-1-(6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)-3-
(3-(methylsulfonamido)-1H-indazol-7-yl)pyridin-2-yl)ethyl)-2-(4,7-dimethyl-2-
oxoindolin-3-yl)acetamide (6b)

Yield: 41%. 1H NMR (600 MHz, MeOD) δ 7.81 (d, J = 7.6 Hz, 0H), 7.65 (d, J = 7.8 Hz,
2H), 7.48 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.34 (s, 1H), 7.19 (d, J = 7.9 Hz, 2H),
6.83 (s, 1H), 6.23 (d, J = 13.0 Hz, 1H), 4.98 (d, J = 15.9 Hz, 1H), 4.79–4.68 (m, 1H), 4.58–4.46
(m, 1H), 3.58 (d, J = 13.8 Hz, 1H), 3.19 (s, 1H), 3.04 (s, 1H), 2.87 (s, 5H), 2.58 (s, 6H), 1.69 (s,
9H), 1.38 (s, 1H), 1.30 (t, J = 6.8 Hz, 2H). 13C NMR (100 MHz, MeOD) δ 184.3, 184.2, 175.5,
173.3, 172.7, 172.3, 170.0, 155.4, 144.7, 144.6, 138.2, 136.7, 136.3, 136.1, 134.8, 134.5, 134.3,
134.2, 134.2, 129.4, 129.3, 128.1, 125.2, 124.9, 120.7, 120.7, 96.8, 79.5, 79.4, 79.3, 64.1, 53.1, 52.9,
52.2, 52.0, 51.8, 51.6, 51.4, 51.2, 50.9, 49.5, 49.2, 46.2, 44.2, 43.8, 43.1, 43.1, 42.5, 41.5, 41.2,
39.0, 38.8, 38.5, 33.3, 33.3, 28.7, 27.2, 26.9, 26.8, 23.9, 23.8, 23.7, 23.6, 23. 5, 23.4, 23.2, 23.1,
23.1, 22.9, 21. 9, 20.1, 20.1, 20.0, 19.9, 19.8, 19.4, 18.9, 17.5, 17.1. HRMS (ESI-) m/z calcd for
C39H37F2N6O6S2 [M−H]− 787.2182, found 787.2178.

3.11.3. (S)-2-(5-Hydroxy-1H-indol-3-yl)-N-(1-(6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-
yl)-3-(3-(methylsulfonamido)-1H-indazol-7-yl)pyridin-2-yl)-2-phenylethyl)acetamide (5a)

Yield: 41%. 1H NMR (400 MHz, MeOD) δ 8.62 (d, J = 4.6 Hz, 1H), 8.32 (dd, J = 19.9,
11.1 Hz, 1H), 7.45 (d, J = 6.7 Hz, 4H), 7.36–7.30 (m, 1H), 7.27 (t, J = 5.4 Hz, 3H), 7.19–7.10 (m,
3H), 7.06 (d, J = 18.8 Hz, 1H), 7.03 (s, 1H), 6.95–6.86 (m, 1H), 6.74 (d, J = 8.7 Hz, 1H), 5.72 (d,
J = 8.2 Hz, 1H), 4.78 (s, 6H), 4.11 (q, J = 7.3 Hz, 1H), 3.25 (s, 1H), 3.18 (s, 1H), 3.01 (s, 1H),
1.85–1.72 (m, 1H), 1.66 (s, 2H), 1.35–1.17 (m, 3H). 13C NMR (100 MHz, MeOD) δ 159.4, 159.0,
158.6, 157.7, 156.9, 156.47, 156.1, 155.29, 151.4, 151.3, 151.3, 139.7, 139.6, 135.2, 134.8, 132.4,
132.3, 132.1, 132.0, 131.9, 131.9, 131.6, 131.6, 130.8, 130.7, 130.4, 130.4, 130.4, 130.3, 130.2,
129.2, 129.1, 129.1, 128.9, 128.9, 128.9, 128.8, 128.7, 127.5, 127.4, 125.8, 125.6, 125.5, 125.3,
125.2, 125.1, 125.0, 124.2, 124.1, 124.1, 124.0, 123.9, 123.9, 123.8, 123.8, 123.7, 123.7, 123.7,
123.4, 123.3, 121.0, 108.8, 108.0, 77.9, 76.1, 76.0, 75.9, 69.3, 57.8, 38.8, 36.8, 34.2, 31. 7, 29.4,
23.7, 21.4. HRMS (ESI-) m/z calcd for C37H35N6O6S2 [M−H]− 723.2060, found 723.2054.

3.11.4. (S)-N-(2-(3,5-Difluorophenyl)-1-(6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)-3-
(3-(methylsulfonamido)-1H-indazol-7-yl)pyridin-2-yl)ethyl)-2-(5-hydroxy-1H-indol-3-
yl)acetamide (5b)

Yield: 41%. 1H NMR (400 MHz, MeOD) δ 7.49 (t, J = 5.9 Hz, 4H), 7.21 (t, J = 7.7 Hz,
1H), 7.09 (d, J = 8.6 Hz, 1H), 6.93 (s, 1H), 6.87 (s, 1H), 6.72 (d, J = 12.8 Hz, 1H), 6.59 (s, 1H),
6.56 (d, J = 2.3 Hz, 1H), 6.28 (d, J = 7.4 Hz, 2H), 4.32 (d, J = 13.8 Hz, 1H), 4.16 (d, J = 14.0 Hz,
1H), 4.00 (q, J = 7.1 Hz, 1H), 3.21 (p, J = 1.6 Hz, 6H), 2.92 (d, J = 6.7 Hz, 1H), 1.71 (s, 7H),
1.14 (t, J = 7.1 Hz, 1H), 1.05 (s, 2H). 13C NMR (101 MHz, MeOD) δ 167.5, 164.2, 161.8, 158.6,
157.3, 155.6, 148.6, 141.4, 131.7, 130.4, 130.4, 128.9, 128.8, 128.7, 124.1, 123.7, 123.3, 116.5,
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111.8, 101.8, 101.5, 90.5, 84.9, 78.2, 77. 9, 77. 6, 64.1, 57. 8, 57.5, 54.3, 34.1, 31.7, 29.4, 23.6, 21.7,
21.1. HRMS (ESI-) m/z calcd for C37H33F2N6O6S2 [M−H]− 759.1869, found 759.1862.

3.12. Modeling and Docking Analysis

Molecular modeling was performed using the Schrödinger small molecule drug dis-
covery suite 2021-3 (Schrödinger Inc., New York, NY, USA) [48]. We analyzed PF74-bound
full length native HIV-1 CA (PDB ID: 4XFZ) by using Maestro (Schrödinger Inc.) [49].
Standard docking protocols were following protein preparation, grid generation, ligand
preparation, and molecular docking. Protein preparation conducted by using the Protein
preparation wizard (Schrödinger Inc.) [50] and involved the refinement of the protein struc-
ture. By using prime, the missing hydrogen atoms, side chains, and loops were refined into
the protein. The OPLS3e force field was used to minimize the hydrogen bonding network
and readjusting the heavy atoms to a rmsd of 0.3 Å [51]. The receptor grid generation tool
in Maestro (Schrödinger Inc.) was utilized to standardize the binding site around the native
ligand, surrounding all the key residues within the range of 12 Å. After sketching ligands
in Maestro 2D Sketch tab, different conformers were generated in LigPrep [52] at pH of
7 ± 2 to serve as initial step for docking process. Finally, docking was conducted using
the Glide XP (Glide, version 8.2, New York, NY, USA) [53] with a command as the van der
Waals radii of nonpolar atoms for each of the ligands fixed by a factor of 0.8. After docking
refinement and minimization, protein flexibility was also regarded under implicit solvent.
All docked poses were subjected to analysis to cut off a small number of poses within the
field of the receptor and binding pocket to generate better desired poses. Each docked pose
was furtherance and presented in publication format using PyMOL (SchrodingerLLC) [54].
The numbering of residues of HIV-1 CA used in this paper for description was based on
the full-length native HIV-1 CA.

3.13. Thermal Shift Assays (TSAs)

TSAs used purified covalently crosslinked hexameric CAA14C/E45C/W184A/M185A
(CA121). CA121, cloned in a pET11a expression plasmid, was kindly provided by Dr. Owen
Pornillos (University of Virginia, Charlottesville, VA, USA). CA121 was expressed in Es-
cherichia coli BL21(DE3)RIL and purified according to reported protocols [55]. The TSAs
were performed as previously described [56–58], with each reaction containing 7.5 µmol/L
CA121 in 50 mmol/L sodium phosphate buffer (pH 8.0), 1× Sypro Orange Protein Gel
Stain (Life Technologies, Carlsbad, CA, USA), and either 1% DMSO (control) or 20 µmol/L
compound (1% DMSO final). The plate was heated from 25 to 95 ◦C with a heating rate
of 0.2 ◦C every 10 s in the QuantStudio 3 Real-Time PCR system (Thermo Fisher Scien-
tific, Waltham, MA, USA). The fluorescence intensity was measured with an Ex range of
475–500 nm and an Em range of 520–590 nm. The differences in the melting temperature
(∆Tm) of CA121 in DMSO (T0) verses in the presence of compound (Tm) were calculated
using the following Equation (1):

∆Tm (◦C) = Tm − T0 (1)

3.14. Virus Production

The wild-type laboratory HIV-1 strain, HIV-1NL4-3 [59], was produced using a pNL4-3
vector (NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH, Bethesda, MD, USA).
HIV-1NL4-3 was generated by transfecting HEK 293FT cells with 10 µg of pNL4-3 vector
and FuGENE®HD Transfection Reagent (Promega, Madison, WI, USA) in a T75 flask.
The supernatant was harvested 48–72 h post-transfection and transferred to MT2 cells
for viral propagation. The virus was harvested upon observation of syncytia formation,
typically after 3–5 days. The viral supernatant was then concentrated using 8% w/v PEG
8000 overnight at 4 ◦C, followed by centrifugation for 40 min at 3500 rpm. The resulting
viral-containing pellet was concentrated 10-fold by resuspension in DMEM without FBS
and stored at −80 ◦C.
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3.15. Anti-HIV-1 Assays

The anti-HIV-1 activity of compounds was examined in TZM-GFP cells. The potency
of HIV-1 inhibition was determined based on the inhibition of viral LTR-activated GFP ex-
pression in the presence of compounds compared to DMSO controls. Briefly, TZM-GFP cells
were plated at a density of 1 × 104 cells per well in a 96-well plate. After 24 h, media was
replaced with increasing concentrations of compound. Cells were exposed to HIV-1NL4-3
(MOI = 1) 24 h post treatment. After 48 h incubation, anti-HIV-1 activity was determined
by counting the amount of GFP-positive cells on a CytationTM 5 Imaging Reader (BioTek,
Winooski, VT, USA), and 50% effective concentration (EC50) values were determined. All
cell-based assays were conducted in duplicate and in at least two independent experiments.
Final values were calculated for each independent assay, and average values for all assays
were calculated. Cells were observed periodically by microscope during the antiviral assays,
and cell apoptosis was observed during the course of the assays, suggesting significant
cytotoxicity effects from the compounds.

4. Conclusions

Based on the shared binding modes of 1, PF74, and 2, GS-6207, and necessitated
by the need for novel sub-chemotypes of 2, GS-6207, we have designed and synthesized
molecular hybrids 5a,b and 6a,b, featuring the 1, PF74, R3 moiety and R1 and R4 moieties
of 2, GS-6207. Per the induced-fit molecular docking, all four analogs bind to the CA-CA
interface favorably. Synthetically, the newly designed analogs were constructed via a
modular synthesis from the core component, C2, and the other three components, C1, C3,
and C4, using highly reliable synthetic procedures. Although the current analogs only
showed weak activities, the design and synthesis described herein contribute significantly
to developing novel sub-chemotypes of 2, GS-6207. The modular synthesis, in particular,
can be adapted for synthesizing further designed analogs.
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HATU 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo [4,5-b]pyridinium3-oxid
hexafluorophosphate

TSA Thermal shift assay
EtOAc Ethyl acetate
MeOH Methanol
EtOH Ethanol
DCM Dichloromethane
DMF N, N-Dimethylformamide
THF Tetrahydrofuran
MeCN Acetonitrile
IPA Isopropyl alcohol
MnO2 Manganese dioxide
H2NOH.H2O Hydroxylamine
Ac2O Acetic anhydride
AcOH Acetic acid
H2NNH2.H2O Hydrazine hydrate
B2Pin2 4,4,5,5-tetramethyl-2-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane
(Boc)2O Di-tert-butyl pyrocarbonate
KOAc Potassium acetate
NH4Cl Ammonium chloride
NaOH Sodium hydroxide
Cs2CO3 Cesium carbonate
K2CO3 Potassium carbonate
Na2SO4 Sodium sulfate
HCl Hydrogen chloride
TFA Trifluoroacetic acid
TEA Triethylamine
DIPEA N, N-Diisopropylethylamine
Pd(PPh3)2Cl2 Bis(triphenylphosphine)palladium(II)dichloride
Cu(I)Cl Copper(I) chloride
Cu(I)I Copper(I) iodide
TMPMgCl.LiCI 2,2,6,6-tetramethylpiperidinylmagnesium chloride, lithium chloride complex
Pd(dppf)2Cl2 [1,1′bis(diphenylphosphino)-ferrocene]dichloropalladium(II)
MeSO2Na Sodium methanesulfonate
i-Pr2NEt N, N-Diisopropylethylamine
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