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Abstract: The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor
crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism,
immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals
(EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and
molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation
between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis,
and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule
in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This
review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of
pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of
pancreatic diseases and cancer.
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1. Introduction

EDCs represent exogenous substances or mixtures that disrupt endocrine system
function, leading to adverse effects in organisms, their progeny, or specific populations.
These substances dysregulate the endocrine system, influencing hormone production,
storage, and secretion, contributing to various detrimental effects on human health. EDCs
can mimic, block, or interfere with the body’s hormone functions. Consequently, exposure
to EDCs is associated with disruptions in sperm count, fertility, reproductive organs,
endometriosis, puberty, cardiovascular function, immune response, nervous system activity,
respiratory function, and metabolism. Ultimately, these disruptions may contribute to the
development of various human diseases and cancers [1–3].

EDCs comprise a broad range of exogenous substances, including bisphenols [4],
phthalates [5], organotin [6], pesticides [7], polychlorinated dibenzo-p-dioxins (PCBs) [8],
dioxin-like compounds [9], polyaromatic hydrocarbons (PAHs) [10], flame retardants [11],
and alkylphenols [12]. Exposure to EDCs is widespread in daily life through various prod-
ucts such as cosmetics, food and beverage packaging, toys, and carpets [13–15]. Naturally
occurring EDCs, like phytoestrogens such as genistein and daidzein, contribute to this di-
verse array [16]. Certain heavy metals, including arsenic, chromium, or cadmium, can also
function as endocrine disruptors [17–19]. Exposure routes to EDCs are diverse, involving
ingestion, water consumption, inhalation, and dermal contact. Notably, many EDCs can
act as agonists or antagonists of the aryl hydrocarbon receptor (AHR), a ligand-activated
transcription factor crucial for environmental sensing and xenobiotic metabolism [20–24].
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2. Aryl Hydrocarbon Receptor (AHR)

The aryl hydrocarbon receptor (AHR) was initially identified as a cytoplasmic receptor
with a high affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [25]. The harmful health
effects resulting from accidental TCDD exposure were first reported in Nitro, West Virginia,
in 1949 [26]. TCDD gained notoriety as a contaminant in Agent Orange, an herbicide and
defoliant mixture widely used during the Vietnam War, composed of N-butyl esters of
2,4-dichlorophenoxyacetic (2,4-D) and 2,4,5-trichlorophenoxyacetic (2,4,5-T) acids. Veterans
with high exposure to Agent Orange have exhibited an increased incidence of cancer and
congenital disabilities in their children [27]. TCDD, the most potent and extensively studied
dioxin, serves as a prototype for dioxins that function as AHR agonists [28].

Basically, AHR functions as a ligand-activated transcription factor integral to cellular
homeostasis, governing various physiological and pathological processes, including xenobi-
otic detoxification, metabolism, cardiovascular regulation, immunomodulation, and cancer
development [29–31]. In its unliganded state, AHR forms an inactive complex, engaging
with two heat shock protein 90 (HSP90) [32,33], AHR interacting protein (AIP) [34,35], and
prostaglandin E synthase 3 (PTGES3 or p23) [36]. This interaction serves to maintain AHR
stability, conformation, and cytoplasmic localization. AIP, in particular, safeguards AHR
from ubiquitylation-induced degradation while contributing to AHR folding and stability
through direct interactions with HSP90 and AHR [37].

Upon ligand binding, the aryl hydrocarbon receptor (AHR) undergoes nuclear translo-
cation, exposing its nuclear localization signal (NLS). Within the nucleus, AHR forms a
complex with the AHR nuclear translocator (ARNT), also known as Hypoxia Inducible
Factor 1 Beta (HIF1β). This AHR/ARNT heterodimer binds specifically to DNA sequences
termed Xenobiotic Response Elements (XREs), with a consensus sequence of 5′-TNGCGTG-
3′. These XREs are situated in the promoter regions of downstream target genes, initiating
the activation of gene expression (Figure 1). The interactions between AHR-ARNT-XRE
lead to the induction of downstream target genes, including phase I detoxification enzymes
such as CYP1A1 and CYP1B1, as well as phase II detoxification enzymes like UGT1A1
and UGT1A6 [36–39]. Following the activation of AHR signaling, the aryl hydrocarbon
receptor repressor (AHRR) protein is induced, exerting inhibitory effects on AHR signaling
activation. AHRR competes with ARNT to bind to AHR, constituting a negative feedback
mechanism [40]. The resultant gene expressions have diverse physiological, pathological,
and toxicological implications in various human diseases and cancers. This canonical
AHR pathway activation, mediated through binding the AHR/ARNT complex to XRE, is
recognized as the primary mechanism of AHR signaling.

In contrast to the canonical AHR pathway, which relies on AHR/ARNT/XRE interac-
tions, activating the non-canonical AHR pathway occurs through interactions with other
transcription factors. These factors include Kruppel-like factor 6 (KLF6), Estrogen Receptor
α (ERα), and a member of the NF-κB family such as RelB. Independent of AHR/ARNT
complex formation, AHR forms a heterodimer with KLF6 and binds to non-consensus XRE,
inducing gene expression [41]. Ligand-activated AHR inhibits gene expression responses
to the estrogen/ERα complex [42]. The interaction between ligand-bound AHR and RelB
regulates IL8 expression, which is crucial in developing chronic inflammatory diseases [43]
(Figure 1). Additionally, the non-canonical AHR pathway involves PKA (cAMP-dependent
protein kinase)-mediated AHR activation in a ligand-independent manner [44]. The role of
the non-canonical AHR pathway in various human diseases, including pancreatic diseases
and cancer, remains largely unexplored.
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Figure 1. Activation of AHR signaling in canonical and non-canonical manners. Upon ligand bind-
ing, AHR translocates into the nucleus in the canonical pathway, where it forms a heterodimer with 
ARNT. This complex then interacts with Xenobiotic Response Elements (XRE) on target gene pro-
moters, initiating downstream gene transcription. Conversely, in the non-canonical pathway, lig-
and-bound AHR interacts with alternative transcription factors such as KLF6, ERα, and NFκB, lead-
ing to the activation of gene transcription or degradation of transcription factors independent of 
XRE interaction. 

3. AHR Structure and Its Interactions with Various Ligands 
AHR belongs to the basic helix-loop-helix/per-ARNT-sim (bHLH/PAS) superfamily, 

characterized by three functional structural domains: a bHLH domain responsible for 
DNA binding, two PAS structural domains (A and B) facilitating dimerization with ARNT 
and ligand binding, and a transactivating domain for gene expression (Figure 2A). PAS 
domains function as ubiquitous and versatile sensor and interaction modules within sig-
nal transduction proteins. These PAS sensors can detect a diverse range of chemical and 
physical stimuli, consequently regulating the activity of various functionally diverse ef-
fector domains. Despite the extensive chemical, physical, and functional diversity associ-
ated with PAS sensors, the core structures of PAS domains remain broadly conserved [45]. 
AHR belongs to the distinctive bHLH/PAS protein family and is uniquely activated by 
small molecules, including various EDCs. 

Protein–protein interactions occur within the PAS-A domain, which lacks a ligand-
binding cavity. In contrast, the PAS-B domain forms a ligand-binding pocket (LBP) capa-
ble of accommodating diverse ligands. A distinctive feature of AHR is its versatile binding 
capacity to various ligands, including EDCs, phytochemicals, and endogenous metabo-
lites [46–48]. A recent cryo-EM structural analysis of the indirubin-bound AHR complex 
unveiled the structural determinants of the PAS-B domain in promiscuous ligand binding. 
Notably, all secondary structures of the PAS-B domain, including a five-stranded antipar-
allel β-sheet (Aβ, Bβ, Gβ, Hβ, and Iβ) flanked by four consecutive α-helices (Cα, Dα, Eα, 

Figure 1. Activation of AHR signaling in canonical and non-canonical manners. Upon ligand
binding, AHR translocates into the nucleus in the canonical pathway, where it forms a heterodimer
with ARNT. This complex then interacts with Xenobiotic Response Elements (XRE) on target gene
promoters, initiating downstream gene transcription. Conversely, in the non-canonical pathway,
ligand-bound AHR interacts with alternative transcription factors such as KLF6, ERα, and NFκB,
leading to the activation of gene transcription or degradation of transcription factors independent of
XRE interaction.

3. AHR Structure and Its Interactions with Various Ligands

AHR belongs to the basic helix-loop-helix/per-ARNT-sim (bHLH/PAS) superfamily,
characterized by three functional structural domains: a bHLH domain responsible for
DNA binding, two PAS structural domains (A and B) facilitating dimerization with ARNT
and ligand binding, and a transactivating domain for gene expression (Figure 2A). PAS
domains function as ubiquitous and versatile sensor and interaction modules within
signal transduction proteins. These PAS sensors can detect a diverse range of chemical and
physical stimuli, consequently regulating the activity of various functionally diverse effector
domains. Despite the extensive chemical, physical, and functional diversity associated
with PAS sensors, the core structures of PAS domains remain broadly conserved [45]. AHR
belongs to the distinctive bHLH/PAS protein family and is uniquely activated by small
molecules, including various EDCs.

Protein–protein interactions occur within the PAS-A domain, which lacks a ligand-
binding cavity. In contrast, the PAS-B domain forms a ligand-binding pocket (LBP) capable
of accommodating diverse ligands. A distinctive feature of AHR is its versatile binding
capacity to various ligands, including EDCs, phytochemicals, and endogenous metabo-
lites [46–48]. A recent cryo-EM structural analysis of the indirubin-bound AHR complex
unveiled the structural determinants of the PAS-B domain in promiscuous ligand binding.
Notably, all secondary structures of the PAS-B domain, including a five-stranded antiparal-



Int. J. Mol. Sci. 2024, 25, 3818 4 of 19

lel β-sheet (Aβ, Bβ, Gβ, Hβ, and Iβ) flanked by four consecutive α-helices (Cα, Dα, Eα, and
Fα), contribute to the ligand binding pocket (LBP). This elongated channel—perpendicular
to two helical structures—partially occupies the LBP, leaving a significant portion void,
suggesting its capability to accommodate various small molecules of different sizes [49]
(Figure 2B). A comparative study investigating the ligand-binding pockets (LBPs) of
drosophila AHR (dAHR) and mouse AHR (mAHR) revealed that the larger size and struc-
tural variation of the mAHR PAS-B domain, which forms the LBP, contribute to its extensive
ligand adaptability [50–52]. In contrast, dAHR possesses a smaller LBP and demonstrates
constitutive activation in the absence of ligand binding, suggesting a species-dependent
disparity in AHR actions [53].
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level of sequence homology between mouse Ahr and human AHR (approximately 85%). 
For example, mouse AHR exhibits a ten-fold higher affinity for TCDD than human AHR 
[54–56]. In comparison, human AHR shows a much higher affinity for indirubin than 
mouse AHR, highlighting that variations in the ligand-binding pocket finely tune the 
specificity of ligand–AHR interactions despite its inherent promiscuity [57]. However, the 
ligand-dependent interactions between the PAS-A and PAS-B domains, which are likely 
responsible for recruiting different transcription factors and coregulators for activating a 

Figure 2. AHR structure and ligand binding pocket (LBP). The domain structure of human AHR
contains bHLH, PAS A, PASB, and TAD, totaling 850 amino acids. (A) A close-up view of the ligand
binding pocket (LBP in magenta color) shows a transparent surface with the ligand indirubin (middle).
The AHR LBP interacts with the AHR agonist indirubin (B).

Another notable aspect of AHR signaling involves the planar structure of AHR ligands.
For instance, indirubin, characterized by its planar molecular structure and asymmetric
double indole structure, intercalates between two layers of amino acid residues in the ligand-
binding pocket (LBP). This characteristic underscores the crucial role of planarity in AHR
ligands for selective ligand–AHR interactions [54–57]. Moreover, an interspecies difference
exists in the binding affinity of AHR for the same ligand, despite a high level of sequence
homology between mouse Ahr and human AHR (approximately 85%). For example, mouse
AHR exhibits a ten-fold higher affinity for TCDD than human AHR [54–56]. In comparison,
human AHR shows a much higher affinity for indirubin than mouse AHR, highlighting
that variations in the ligand-binding pocket finely tune the specificity of ligand–AHR inter-
actions despite its inherent promiscuity [57]. However, the ligand-dependent interactions
between the PAS-A and PAS-B domains, which are likely responsible for recruiting different
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transcription factors and coregulators for activating a specific battery of genes, depending
on ligand type (agonist vs. antagonist), remain to be further investigated.

4. EDCs from Environmental Pollutants and AHR
4.1. Dioxins and Dioxin-like Compounds

These compounds, identified and defined by the Stockholm Convention in 2001 as
persistent organic pollutants (POPs), encompass polychlorinated dibenzofurans (PCDFs),
polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and polychlorinated
biphenyls (PCBs). Recognizing their adverse effects on human health and the environment,
the convention aimed to restrict their production. POPs, resistant to degradation through
chemical, biological, and photolytic processes, are carbon-based substances. Their high
stability and lipophilic nature lead to accumulation in the fatty tissues of humans and
animals, causing adverse health effects. Beyond dioxin-like compounds, POPs encom-
pass organochlorine pesticides (DDT, chlordane, dieldrin, heptachlor, hexachlorobenzene,
mirex, and toxaphene) [58,59]. Accumulating evidence suggests that many POPs, includ-
ing dioxins and dioxin-like compounds, exert biologically harmful effects by activating
AHR function [60–62]. Dioxins and dioxin-like compounds are inadvertent byproducts
resulting from high-temperature processes, including incomplete combustion of waste,
coal, and wood, as well as automobile emissions. Industrial activities such as manufac-
turing chemicals, smelting, chlorine bleaching of paper pulp, and herbicide or pesticide
production also contribute to their formation. The carbon skeleton of dioxins is represented
by dibenzodioxin or dibenzo-p-dioxin. These compounds encompass polychlorinated
dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF) congeners, coplanar poly-
chlorinated biphenyls (PCBs), and polybrominated biphenyl (PBB), which are bromine
analogs of PCBs [63,64]. Natural disasters, including volcanic eruptions or forest fires,
can also generate these toxic compounds [65]. Cigarette smoke contains elevated levels of
dioxins or dioxin-like compounds.

TCDD, a prototypical dioxin and a most potent AHR agonist, exhibits a long half-
life of 8 years in humans [66,67]. Short-term high exposure to dioxin can result in skin
lesions, such as chloracne, and abnormal liver function [68–70]. Epidemiological studies
have demonstrated that chronic dioxin exposure leads to impairments in the immune,
nervous, cardiovascular, and reproductive systems and is associated with various types of
cancers [61,71]. The International Agency for Research on Cancer (IARC) classifies dioxin
as a Group 1 carcinogen [72]. The next section will describe the effects of the dioxin and
dioxin-like compound-regulated AHR signaling axis on the pathogenesis of pancreatic
diseases and cancer.

4.2. Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are organic compounds characterized by multiple aromatic rings. Exposure
to PAHs can occur through various routes, including smoking, consumption of food
and beverages, and inhalation of air. Major PAHs include benz[a]anthracene, chrysene,
benzo[b]fluoranthene, and benzo[a]pyrene (BaP), with BaP being extensively studied for
its carcinogenic and genotoxic properties [73,74]. Unlike persistent organic pollutants
(POPs), PAHs have relatively short half-lives, ranging from 2.5 to 6.1 h [75,76]. The liver
predominantly metabolizes PAHs through CYP enzymes, and the resulting metabolites
are excreted in feces and urine. PAHs constitute a significant class of organic chemicals in
particulate matter (PM) [77,78]. Multiple studies have robustly established an association
between exposure to particulate matter (PM) and adverse human health effects, primarily
attributed to the carcinogenic and mutagenic properties of polycyclic aromatic hydrocar-
bons (PAHs) [79,80]. Furthermore, many reports have underscored the correlation of PAH
exposure with pancreatic diseases and cancer [81–83]. Nevertheless, the underlying mecha-
nisms by which PAH exposure mediates the development of pancreatic diseases and cancer
through the aryl hydrocarbon receptor (AHR) signaling pathway remain unexplored.
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4.3. Hexachlorobenzene (HCB)

HCB is a chlorinated hydrocarbon that was historically employed as a fungicide
or pesticide. Owing to its highly lipophilic nature, HCB is a pervasive pollutant that
accumulates in biological systems and the environment [84]. Oral absorption represents
a major route of HCB exposure. The accidental poisoning through HCB in Turkey from
1955–1959 highlighted the severe health consequences, with 4000 individuals exhibiting
porphyria and skin lesions, and later developing arthritis [85]. In cell culture, HCB exposure
has been shown to enhance cancer cell proliferation, migration, and invasion by activating
AHR as a weak agonist [86]. Unlike polycyclic aromatic hydrocarbons (PAHs), HCB is
classified as a weak AHR agonist and nongenotoxic carcinogen. Despite the fact that HCB
exposure is a risk factor for the development of pancreatic diseases and cancer [87–89], the
role of the HCB-AHR signaling axis remains uninvestigated.

4.4. Bisphenol A (BPA)

BPA is a chemical that produces various polycarbonate plastics, including food con-
tainers, baby bottles, water bottles, medical devices, and hygiene products. It has been
a widely used endocrine-disrupting chemical (EDC) since the early 1950s. It is a major
constituent of polycarbonate plastics used in manufacturing epoxy resins, dental sealants,
and recycled paper, and is used in the lining of food cans [90,91]. BPA is detectable in
urine, blood, breast milk, and other tissues, with the primary human exposure route being
ingestion. Upon ingestion, BPA is rapidly absorbed and metabolized in the liver, becoming
hydrophilic and subsequently excreted primarily in urine, with a known half-life of less
than six hours [92,93]. Despite being a non-persistent EDC with a short half-life, over
90% of individuals exhibit detectable urine BPA levels. Many studies have reported a
positive correlation between urine BPA levels and diabetes in adults and children [94,95].
Many studies have also reported that BPA exposure disrupts pancreatic β-cell function by
targeting estrogen receptors α or β [96–100]. Additionally, BPA activates aryl hydrocarbon
receptor (AHR) signaling and inhibits mouse ovarian follicle growth [101]. Exposure to
BPA during mouse embryo development increases the expression of AHR and its down-
stream target genes [102]. Additionally, low-dose BPA exposure activates AHR in breast
cancer cells, increasing their aggressive cancer cell phenotype [103]. However, the effects of
BPA on AHR signaling involving development of pancreatic diseases and cancer remain
to be further investigated. A recent report demonstrated that exposure to bisphenol A
(BPA) in a mouse model activated the aryl hydrocarbon receptor (AHR) in pancreatic islets,
indicating a potentially harmful role of BPA-AHR signaling activation in the pancreas [104].
Nevertheless, further mechanistic studies investigating the role of BPA-regulated AHR
pathways in the pathogenesis of pancreatic diseases and cancer are warranted.

4.5. Heavy Metals

Exposure to heavy metals, such as arsenic, cadmium, or chromium, can result in
cellular injury, genetic alterations, or a combination of both [105,106]. Arsenic, a prevalent
toxic metal in the environment, induces the generation of reactive oxygen species (ROS)
upon exposure, disrupting antioxidant defense mechanisms and impacting mitochondrial
morphology and integrity. Chromium, particularly in its hexavalent form [Cr(VI)], is
highly toxic, mutagenic, and carcinogenic, producing hydroxy radicals and superoxide,
contributing to adverse effects. Cadmium, identified as a human carcinogen, also induces
oxidative stress. The toxicity and carcinogenicity associated with heavy metals often involve
the production of ROS [107,108]. ROS generated by heavy metal exposure likely indirectly
activate AHR signaling. Exposure to arsenic or cadmium alone increases AHR activity
and the expression of downstream target genes, such as CYP1A1 [109,110], and is possibly
linked to the generation of oxidative stress that increases the production of biliverdin
or bilirubin, an AHR ligand [111]. Similarly, oxidative stress induced by chromium (VI)
exposure activates AHR signaling by increasing the production of oxindole, an AHR ligand.
Cadmium exposure also elevates AHR signaling and downstream gene expression [112].
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Moreover, heavy metal exposure and AHR ligand treatment further enhance AHR signaling
activation [113,114]. These reports emphasize the pivotal role of oxidative stress in heavy
metal exposure-regulated aryl hydrocarbon receptor (AHR) actions. Many studies have
identified heavy metal exposure as a significant risk factor for pancreatic cancer [115–117].
However, the underlying mechanisms connecting heavy metal exposure-mediated AHR
signaling regulation to the development of pancreatic diseases and cancer remain unknown.

Collectively, we summarize the interplay between endocrine-disrupting chemicals
(EDCs) and aryl hydrocarbon receptor (AHR) signaling, as well as epidemiological studies
and relevant findings on the roles of these EDC-mediated AHR signaling regulations
(Table 1).

Table 1. A summary of the interplays between endocrine-disrupting chemicals (EDCs), AHR sig-
naling, epidemiological reports, and relevant findings on the roles of these EDC-mediated AHR
signaling regulations in the development of pancreatic diseases and cancer. References are indicated
as [ ].

EDC Regulation of AHR Signaling
Epidemiological Studies

Relevant to Pancreatic
Diseases or Cancer

Mechanistic Role of AHR in
Pancreatic Diseases

and Cancer

Dioxin and dioxin-like
compounds AHR agonists [60–62]

See 5. Roles of EDC–AHR
Interactions in the

Pathogenesis of Pancreatic
Diseases and Cancer

See 5. Roles of EDC–AHR
Interactions in the

Pathogenesis of Pancreatic
Diseases and Cancer

Polycyclic aromatic
hydrocarbons

AHR agonists and oxidative stress
inducers [73–80] [81–83] Unknown

Hexachlorobenzene Weak AHR agonist [86] [87–89] Unknown

Bisphenol A Weak AHR agonist
[101–104] [94–100] Unknown

Heavy metals AHR agonists and oxidative stress
inducers [109–114] [115–117] Unknown

5. Roles of EDC–AHR Interactions in the Pathogenesis of Pancreatic Diseases
and Cancer

In its multifunctional role, the pancreas plays a crucial part in the endocrine and
exocrine systems. Regarding endocrine function, the islets of Langerhans within the
pancreas consist of five distinct cell types—alpha, beta, delta, epsilon, and upsilon—each
responsible for secreting specific hormones. These hormones include glucagon, insulin,
somatostatin, ghrelin, and pancreatic polypeptide. On the other hand, exocrine function
involves acinar cells releasing digestive enzymes such as amylase, lipase, and proteases.
These enzymes are channeled into the pancreatic duct, which merges with the common
bile duct, and their combined secretions enter the duodenum, aiding in the breakdown of
carbohydrates, fats, and proteins from ingested food.

Exposure to EDC can have adverse effects on the pancreas, contributing to conditions
such as obesity, diabetes, insulin resistance, hyperinsulinemia, and pancreatitis. Impor-
tantly, these conditions also serve as known risk factors for the development of pancreatic
cancer [118,119]. Understanding the impact of EDC exposure on the intricate functions of
the pancreas is essential for comprehending the potential health risks associated with these
environmental contaminants.

5.1. Role of EDC-Regulated AHR in Diabetes Mellitus

Diabetes mellitus (DM) is a chronic metabolic disorder marked by elevated blood
glucose levels due to compromised insulin secretion and disrupted glucose homeostasis.
According to the IDF Diabetes Atlas, 537 million adults aged 20–79 had diabetes globally in
2021. Projections indicate an increase to 643 million by 2030 and 783 million by 2045 [120].
Two primary types of DM exist: type 1 DM (T1DM), characterized by total insulin absence,
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frequently found in children; and type 2 DM (T2DM), primarily found in adults, resulting
from diminished insulin secretion and functionality.

5.1.1. Type 1 Diabetes Mellitus (T1DM)

T1DM is an autoimmune disorder characterized by the destruction of pancreatic β cells
by self-reactive T cells, resulting in insulin deficiency. The incidence of T1DM has markedly
increased over past decades, and this surge cannot be exclusively attributed to genetic
factors. A potential contributing factor is the heightened exposure to endocrine-disrupting
chemicals (EDCs) during prenatal and early developmental stages. This exposure may
disrupt immune homeostasis, which regulates the maintenance and survival of pancreatic
β cells. Numerous epidemiological studies suggest that exposure to environmental contam-
inants, such as dioxins, PCBs, bisphenol A, and air pollutants containing PAHs, increases
the risk of type 1 diabetes mellitus (T1DM) [121,122].

AHR is expressed in various immune cell types, including dendritic and T cells, with
T cells playing a pivotal role in destroying pancreatic β cells [123]. In the non-obese
diabetic (NOD) mouse model of type 1 diabetes mellitus (T1DM) development, TCDD
activated AHR, increasing Foxp3+ T cells that exert anti-inflammatory effects against
effector T cells, preventing T1DM development [124]. In the same mouse model, AHR
activation by the exogenous ligand 10-CI-BBQ inhibited T1DM development [125]. These
findings suggest that AHR signaling activation, depending on the immune cell type, is
immunosuppressive and can modulate immune responses during T1DM development,
highlighting the potential of AHR targeting in T1DM. In contrast to the role of AHR
in T1DM, a recent study reported that high levels of urinary metabolites of polycyclic
aromatic hydrocarbons (PAHs) are associated with an increased risk of T1DM in children
and adolescents [126]. In animal studies, prenatal exposure to a mixture of PAHs resulted
in dysfunctional pancreatic islets associated with T1DM [127]. PAHs may increase the risk
of T1DM development through other unknown mechanisms.

High urinary levels of bisphenol A (BPA) in children and adolescents are associated
with increased T1DM development [128]. In animal studies, transmaternal exposure to
BPA significantly increases insulitis severity and diabetes incidence in female offspring in a
dose-dependent manner [129]. The progeny of BPA-exposed mothers exhibit heightened
apoptosis of both pancreatic α and β cells, promoting the development of T1DM in NOD
mice [130]. In another streptozotocin (STZ)-induced T1DM murine model, low-dose multi-
ple oral BPA exposures facilitated diabetes induction, potentially through BPA-mediated
immunomodulation of T cells or reduced cytokine levels, suggesting that BPA acts as a risk
factor for diabetes by altering immune modulatory activity [131]. A recent report showed
that BPA-activated AHR in pancreatic islets disrupted glucose homeostasis and altered
insulin sensitivity, implying that BPA-mediated AHR signaling activation plays a role in
T1D development [104]. Epidemiological evidence and molecular studies linking BPA
exposure, AHR, and T1DM development need further investigation.

Elevated levels of arsenic and fluoride in drinking water have been associated with
an increased incidence of type 1 diabetes mellitus (T1DM) [132]. The high plasma level
of arsenic is associated with an increased risk of T1DM development [133]. Low-level
sub-chronic arsenic exposure from the prenatal stage has been shown to impair glucose
metabolism in adult life [134]. It has been previously reported that arsenic and other heavy
metals regulate AHR signaling [109–114]. However, the effects of arsenic exposure on
AHR activity in the pancreas associated with T1DM development remain unclear. Further
human studies and longitudinal evidence are needed to explore this relationship.

5.1.2. Type 2 Diabetes Mellitus (T2DM)

Many epidemiological studies have consistently indicated a connection between dioxin
exposure and the development of type 2 diabetes mellitus (T2DM). American war veterans
who engaged in defoliant spraying containing TCDD during the Vietnam War showed
a correlation between their TCDD exposure levels and the incidence of T2DM [135]. A
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significant dose–response relationship was observed between the serum concentration
of six selected persistent organic pollutants (POPs)—including dioxin and dioxin-like
compounds—and the prevalence of diabetes [136]. Furthermore, prolonged exposure
to persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and
organochlorine pesticides, was associated with lower serum insulin levels. Correspond-
ingly, in vitro studies consistently demonstrated impaired insulin secretion in pancreatic
β-cells following low-level POP exposure [137].

Mounting evidence suggests that exposure to TCDD targets pancreatic β-cells, dis-
rupting insulin secretion regulation. Isolated pancreatic islet cells from rats exposed to low
chronic TCDD exhibited impaired glucose-stimulated insulin secretion [138]. Similarly,
low TCDD exposure to the insulin-secreting pancreatic β-cell line INS-1E significantly
impaired insulin secretion, accompanied by increased pancreatic β-cell death, implicating
the sensitivity of pancreatic β-cells to dioxin exposure [139]. TCDD exposure to human
embryonic stem cells compromised pancreatic lineage differentiation and altered DNA
methylation and gene expression, highlighting that early embryonic TCDD exposure dys-
regulates pancreatic function and increases the risk of type 2 diabetes mellitus (T2DM) [140].
Furthermore, several animal studies revealed that TCDD-activated AHR reduced insulin
secretion. Exposure to TCDD suppressed insulin secretion and increased pancreatic β

cell death [141]. Intriguingly, in CYP1A1 and CYP1A2 knockout islets, the toxic effects of
TCDD or 3-MC were decreased, emphasizing the crucial role of CYP1 enzyme activities in
pancreatic beta cell survival and death [142]. In an experimental model of T2DM induced
by streptozotocin (STZ), significantly elevated CYP1A1 activity levels were observed in
diabetic rats, supporting the role of the AHR-CYP1 axis in pancreatic β-cell pathophysiol-
ogy [143]. Moreover, the crucial role of AHR in TCDD-mediated toxic effects on insulin
secretion and glucose homeostasis was emphasized through the use of AHR knockout mice,
which demonstrated imbalanced glucose homeostasis and reduced insulin levels [144]. A
single instance of acute dioxin exposure to mice suppressed insulin secretion for up to
6 weeks, suggesting that the toxic effects of acute dioxin exposure on pancreatic β-cells can
have long-term consequences, even if the exposure is transient [145]. Low levels of POP
exposure, including organochlorine pesticides and PCBs, decreased insulin secretion by
disrupting pancreatic β cell function [146].

Exposure to BPA, PAHs, hexachlorobenzene, or heavy metals has been acknowledged
as a risk factor for the development of T2DM [147–151]. As detailed in the preceding
sections, these EDCs act as positive or negative AHR signaling regulators. Nevertheless,
the underlying mechanisms through which EDC exposure modulates AHR signaling in the
context of T2DM development remain to be further investigated.

5.1.3. Role of EDC-Regulated AHR in Pancreatitis

Pancreatitis is an inflammatory disease of the pancreas, accompanied by the gradual re-
placement of the pancreas by fibrotic tissue compartments. Heavy alcohol consumption and
cigarette smoke are major risk factors of pancreatitis [152]. Notably, cigarette smoke con-
tains high levels of dioxins—dioxin-like compounds that activate the AHR signaling path-
way [153,154]. Pancreatitis is a key risk factor for pancreatic cancer development [155,156].

Acute pancreatitis, characterized by inflammatory damage to the pancreatic acini,
leads to extensive necrosis and multi-organ failure, contributing to severe cases’ mortality.
The aryl hydrocarbon receptor (AHR) emerges as a critical transcription factor pivotal
for the production of IL22, a protective cytokine in acute pancreatitis. In a murine model
induced by caerulein, AHR inactivation using the antagonist CH223191 decreased IL22
production. At the same time, AHR activation by biliverdin, an AHR agonist, increased
pancreatic IL22 levels and provided protection against acute pancreatitis [157]. Conversely,
acute exposure to benzo(a)pyrene or TCDD induces pancreatitis accompanied by oxidative
stress-related mitochondrial respiratory dysfunction. Resveratrol, an AHR antagonist, pre-
vents the harmful effects of pancreatitis and mitigates mitochondrial damage [158]. TCDD
exposure also upregulates long noncoding RNA MALAT1 expression in pancreatic cancer
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cells and tissue. MALAT1 interacts with the histone methyltransferase EZH2, enhancing its
enzymatic activity. Consequently, AHR-mediated MALAT1 induction amplifies EZH2’s
histone methyltransferase activity, revealing a novel pathway through which TCDD expo-
sure alters epigenetic status via activation of the AHR-MALAT1-EZH2 signaling axis [159].
In experimental autoimmune pancreatitis, AHR activation augments IL22 production
in pancreatic α cells, suppressing chronic fibrotic and inflammatory processes via IL22
production [160].

Chronic pancreatitis is a progressive inflammatory condition characterized by in-
creased fibrosis, serving as a predisposing factor for pancreatic cancer. Cigarette smoke—a
significant risk factor for chronic pancreatitis—contains elevated levels of dioxin-like com-
pounds that activate aryl hydrocarbon receptor (AHR) signaling. In a murine model of
chronic pancreatitis, exposure to cigarette smoke resulted in increased IL22 production
in T cells, promoting pancreatic fibrosis and contributing to the development of chronic
pancreatitis. Consistently, cigarette smokers in this model exhibited higher serum levels of
IL22 than non-smokers [161]. These reports suggest that the context-dependent effects of
AHR activation, influenced by the disease model or AHR ligand type, add complexity to
the nature of AHR signaling.

5.1.4. Role of EDC-Regulated AHR in Pancreatic Cancer

Pancreatic cancer stands as the seventh leading cause of global cancer-related mortality,
characterized by its formidable nature, with symptoms often emerging only at an advanced
stage, resulting in elevated mortality rates. In 2018, approximately 450,000 new cases of
pancreatic cancer were reported worldwide, leading to 432,242 deaths [162]. In the United
States, pancreatic cancer accounts for 3% of overall cancer incidence and contributes to 7%
of cancer-related deaths. Projections for 2023 estimate 64,050 new cases with 50,550 fatalities.
The five-year survival rate for pancreatic cancer is a mere 12%, emphasizing the challenge
posed by late-stage diagnoses, with only 12% identified at an early, surgically removable
stage. Over 50% of individuals receive diagnoses at later stages, characterized by distal
metastasis. Current therapeutic modalities lack efficacy for advanced stages, and options
for efficacious early diagnosis remain limited [163,164]. Pancreatic ductal epithelial cells,
among the different pancreatic cell types, are the origin of pancreatic adenocarcinomas, a
major type of pancreatic cancer.

Epidemiological studies have indicated a moderate increase in the risk of pancre-
atic cancer associated with high serum concentrations of persistent organic pollutants
(POPs) [165,166]. However, further research is needed to substantiate these findings. No-
tably, cigarette smoking stands out as a significant risk factor for pancreatic cancer, with
high levels of dioxin-like compounds present in cigarette smoke [153]. Cigarette smoke has
been shown to induce aryl hydrocarbon receptor (AHR) activation [154]. These observa-
tions highlight a potential molecular link between dioxin exposure, AHR activation, and
the development of pancreatic cancer, prompting further investigation.

Using rats as a model, it was found that chronic exposure of dioxin or dioxin-like
compounds in the pancreas increased cytoplasmic vacuolation, inflammation, and atrophy
in the exocrine pancreas, accompanied with low incidence of pancreatic acini adenoma
and carcinoma, indicating that pancreatic acini is a target tissue of dioxin and dioxin-like
compounds [167]. AHR displays heightened expression in the cytoplasm of pancreatic
cancer tissues, and its activation by AHR agonists such as DIM (diindolymethane) inhibits
the growth of pancreatic cancer cells [168]. Similarly, omeprazole, functioning as an AHR
agonist, hampers the migration and invasion of pancreatic cancer cells [169]. Carbidopa,
an FDA-approved drug for Parkinson’s disease, acts as an AHR agonist, impeding the
growth of pancreatic cancer cells by inhibiting IDO1 (indoleamine 2,3-dioxygenase-1) [170].
Depletion of AHR using small interfering RNAs targeting AHR in pancreatic cancer cells
heightens sensitivity to gemcitabine, a chemotherapeutic agent, and diminishes cells’ in-
vasive and migratory potential [171]. However, the effects of ligand-dependent AHR
activation or inhibition on pancreatic cancer cell proliferation, invasion, and migration
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have not been investigated. Oct4, a master transcription factor of pluripotency that medi-
ates cancer stem cell features, is suppressed by the tryptophan-derived AHR ligand ITE.
ITE interacts with AHR and suppresses Oct4 expression, directing cancer stemness and
growth [172]. These reports introduced additional layers of complexity in AHR activities;
the type of ligand appears to dictate the regulation of distinct gene subsets, potentially
encompassing both pro-oncogenic and tumor-suppressive genes.

AHR also functions as a sensor of microbiome-derived metabolites, modulating im-
mune function within the tumor microenvironment. Notably, tumor-associated macrophages
(TAMs) express high levels of AHR. The depletion of AHR in myeloid cells or the inhibition
of AHR by antagonistic treatment reduces the progression of pancreatic ductal adenocarci-
noma (PDAC) by diminishing the immunosuppressive function of TAMs and enhancing
immune surveillance by CD8+ T cells. Correspondingly, high AHR expression in PDAC
patients correlates with poor clinical outcomes and features of immunosuppressive TAMs,
supporting the tumor-promoting role of AHR in PDAC [173]. These findings underscore
the immunomodulatory functions of AHR in TAMs while emphasizing the necessity for
further investigations into the interactions between immune cell types and ductal epithelial
cells during the development of pancreatic cancer. The role of AHR as a molecular interface
between EDC exposure and the development of various pancreatic diseases, including
cancer, is summarized below (Figure 3).
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In summary, numerous epidemiological studies substantiate a positive correlation
between exposure to various EDCs and the incidence of diverse pancreatic diseases, in-
cluding cancer. Mounting evidence suggests that many EDCs activate or interfere with
aryl hydrocarbon receptor (AHR) signaling. However, there is a gap in our understanding
regarding AHR’s molecular and mechanistic roles in the EDC-mediated development of
various pancreatic diseases and cancer. Moreover, the intricate nature of AHR signaling,
manifesting as activation or inhibition depending on ligand type, tissue/cell context, or dis-
ease model, poses a major obstacle in investigating the Janus-like role of AHR in promoting
or inhibiting pancreatic pathogenesis. Despite these challenges, the ligand-dependent acti-
vation or inhibition of AHR’s actions by selective AHR modulators (SAhRMS) underscore
its potential as a promising molecular target [174].
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