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Abstract: Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition
characterized by social communication challenges and repetitive behaviors. Recent research has
increasingly focused on the genetic underpinnings of ASD, with the Neurexin 1 (NRXNT) gene
emerging as a key player. This comprehensive systematic review elucidates the contribution of
NRXNI1 gene variants in the pathophysiology of ASD. Methods: The protocol for this systematic
review was designed a priori and was registered in the PROSPERO database (CRD42023450418). A
risk of bias analysis was conducted using the Joanna Briggs Institute (JBI) critical appraisal tool. We
examined various studies that link NRXN1 gene disruptions with ASD, discussing both the genotypic
variability and the resulting phenotypic expressions. Results: Within this review, there was marked
heterogeneity observed in ASD genotypic and phenotypic manifestations among individuals with
NRXNI1 mutations. The presence of NRXN1 mutations in this population emphasizes the gene’s role
in synaptic function and neural connectivity. Conclusion: This review not only highlights the role of
NRXNT1 in the pathophysiology of ASD but also highlights the need for further research to unravel
the complex genetic underpinnings of the disorder. A better knowledge about the multifaceted role
of NRXNT in ASD can provide crucial insights into the neurobiological foundations of autism and
pave the way for novel therapeutic strategies.

Keywords: NRXN1; autism spectrum disorder; gene variants; synaptic function; genotype—phenotype
correlation; genetic predisposition

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
reduced communication, repetitive behaviors, and restricted interests [1-4]. ASD can vary
in severity from mild to severe. It not only imposes social and personal challenges on the
affected individuals and their families or caregivers but also leads to significant financial
impacts on them and the healthcare system [5]. Individuals diagnosed with ASD often
need comprehensive interventions from an early age, such as physical therapy, occupa-
tional therapy, behavioral therapy, medical treatments, specialized education, and assistive
technology [6,7]. Additionally, the economic implications are further compounded for
those with more severe forms of ASD, who may struggle to achieve financial independence
in adulthood.
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The prevalence of ASD is gradually increasing leading to a growing economic impact.
A study assessed past economic impacts to forecast future financial burdens in the United
States at the state level by 2029. Their findings suggest that, if ASD prevalence remains
consistent with 2019 levels, the economic impact would reach USD 11.5 trillion by 2029.
However, if the prevalence continues to increase as it has in previous decades, the cost
could soar to USD 15 trillion [7]. The financial implications of ASD are comparable to those
of diabetes and exceed those of stroke and hypertension [6]. The escalating prevalence and
substantial economic strain underscore the importance of understanding ASD’s etiology
and identifying potential therapeutic targets. While the causes of ASD are multifaceted,
genetic factors, combined with possible environmental factors, have been significantly
linked to its development [8], with numerous genes potentially associated with it.

The Simons Foundation Autism Research Initiative (SFARI) (https:/ /www.sfari.org/
resource/sfari-gene/; Accessed on 15 October 2023) has assembled an open-access evolving
database to comprehensively evaluate the role of individual genes in ASD, SFARI Gene.
Using stringent and rigorous criteria, SFARI Gene is one of the most reliable databases for
the autism research community to delve into the genetic underpinnings of ASD. A key
feature of this database is the gene scoring system, where each gene is assigned a rating
from 1 to 3, reflecting the robustness of evidence supporting its association with ASD. A
designation of 1 indicates genes that have been clearly implicated in ASD with at least three
de novo likely gene-disrupting mutations reported, each of which meets a threshold false
discovery rate of <0.1. Designations 2 and 3 are genes with two or one reported de novo
gene-disrupting mutations, respectively. Genes with the designation 1 are most likely to be
truly implicated, while those designated 2 and 3 have an increasing likelihood of being a
false positive. In addition, genes can have the designation of S, which means syndromic,
indicating these genes carry a substantially increased risk with repeated evidence of their
role in ASD. While numerous genes have been identified as having potential links to ASD,
establishing a definitive causal relationship presents a greater challenge. SFARI uses an
Evaluation of Autism Gene Link Evidence (EAGLE) score designation to help understand
the causative relationship of a particular gene with ASD. The higher the EAGLE score
for a gene, the higher the probability of it being causative in ASD. For genes with an
EAGLE score of 12 or higher, their causative role in ASD is supported by consistent and
repeated evidence from both research and clinical settings, and this relationship has been
demonstrated over time. A designation of 12 and over also means there are no published
papers that contradict its role in ASD. In this review, we have focused on NRXN1, which is
a category 1 gene with the highest EAGLE score of 146. NRXN1 has been repeatedly and
consistently shown to be strongly associated with ASD [9-17].

Increasingly, there is evidence that dysfunction at the level of the synapse is central
to the pathophysiology of ASD [18-25]. NRXN1, located at 2p16.3, encodes neurexins,
which are a family of presynaptic cell adhesion molecules that are central to creating
and modifying synaptic connections and have been implicated in the pathophysiology
of ASD and other neuropsychiatric disorders (Supplemental Figure S1) [8,11,13,25-38].
Neurexins are encoded by three genes (NRXN1, NRXN2, NRXN3), each of which contain
two promoters, one for a longer alpha isoform and the other for a shorter beta isoform
(Figure 1). The first promoter is located upstream of exon 1 and allows for transcription
of alpha isoforms and the second promoter is located medially, between exon 17 and 18,
to code the beta isoforms. These isoforms undergo extensive alternative splicing yielding
over 1000 neurexin mRNAs. NRXN1 and NRXN3 are two of the largest mammalian genes.
NRXNT is 1.12 Mb long containing 24 exons, and multiple splice sites [8,39-42]. The
translated protein is a transmembrane protein, which contains an extracellular domain,
a transmembrane region, and an intracellular motif that controls downstream events
(Figure 2). Alpha neurexin is comprised of six extracellular domains with three epidermal
growth factor (EGF)-like regions [13,43,44]. Beta neurexins are smaller and contain only
one extracellular domain. Both alpha and beta neurexins have been implicated in the
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pathophysiology of ASD [12,45-47]. The precise structure of neurexins has yet to be fully
elucidated in humans but has been modeled from other mammals such as mice and rats.
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Figure 1. NRXNT1 gene structure. A schematic illustrating the organization of NRXN1 gene. Exons
are depicted as blue boxes and numbered. Asterisks indicate exons where alternative splicing occurs.
This image indicates the relative size and location of its exons and introns, as well as promoters.
* indicates alternative splice site.
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Figure 2. Structural domain organization of both alpha and beta isoforms of neurexin. (a). Alpha

neurexin. (b). Beta neurexin. SP, signal peptide; LNS, laminin/neurexin/sex hormone binding
domain; EGF, epidermal factor-like region; TM, transmembrane domain; PDZ, PSD-95, DLG1, ZO-
1 domains.

NRXNTI is essential for synaptic health in central nervous system (CNS) and pe-
ripheral nervous system (PNS) activity. It has been implicated in various neuropsychi-
atric conditions including ASD, attention deficit hyperactivity disorder (ADHD), seizures,
schizophrenia, psychosis, and bipolar disorder [9,48-53]. NRXN1 plays a major role in the
differentiation of synapses and is found in high concentrations in the supporting cells of the
brain [54-59]. Deficits in NRXN1 have been associated with intellectual/learning disability
and speech/language/global development delay, which are some of the hallmarks of
ASD [12,29,45,60-65]. Moreover, research shows that children who harbor NRXN1 gene
variants have behavioral problems such as aggression and tantrums, as well as balance and
motor skill deficits [66]. These phenotypic expressions are consistent with those commonly
observed in some individuals with ASD, providing important insights that could enhance
our understanding of the relationship between ASD and NRXN1 mutations.

NRXNT1 interacts with protein structures called Neuroligins. Neuroligins are postsy-
naptic molecules that bind with NRXNs to create a calcium-dependent complex [67,68].
This complex is crucial for neurotransmission and allows for the recruitment of neurotrans-
mitter receptors as well as other structural proteins required for effective neurotransmission.
Precise control over excitation and inhibition at the level of the synapse is vital for the
appropriate function of the nervous system, with alterations having been linked to ASD
pathology. Mutations in NRXN1 and other associated gene regions have been linked to both
reduced and increased excitatory synaptic activity as well as decreased neurotransmitter
release [69]. Notably, ASD is related to an imbalance of excitation and inhibition at the level
of the synapse; however, the exact mechanism and direction of the imbalance is still under
investigation [70].

The objective of this systematic review article is to comprehensively review the role of
NRXNT1 gene variants in the manifestations of ASD as well as to analyze the phenotypic
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outcomes. Enhancing our knowledge of the involvement of NRXN1 gene variants in the
pathophysiology of ASD holds important clinical implications. This knowledge would
facilitate the creation of tailored genetic counseling for affected individuals, informing
patients as well as families and caregivers of more individualized disease outcomes and
expectations. Additionally, this understanding could enable the development of effec-
tive treatment approaches, leveraging advanced genomic editing technologies such as
CRISPR/Cas9 as well as more traditional drug regiments [71-75].

2. Materials and Methods
2.1. Search Strategy

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA). The protocol for this sys-
tematic review was designed a priori and was registered in the PROSPERO database
(registration number: CRD42023450418). A literature search was performed in PubMed,
Embase, Web of Science, and SCOPUS databases using the MeSH terms; “NRXN1” AND
“autism”; “Genetic impact of NRXN1” AND “autism”; “NRXN1 in ASD”; “NRXN1-
associated autism”; “Neurexin 1 variants” AND “ASD clinical outcomes”; “Functional
implications of NRXN1” IN “autism spectrum disorders”; and “NRXN1 and ASD/autism
phenotypic manifestations”.

2.2. Study Selection

At least three reviewers (A.K., D.K,, and J.C.) independently reviewed all searched
articles, abstracts, and full-text publications. Any disagreements on the exclusion or
inclusion of results were resolved by a fourth reviewer or senior author. All included
studies required a diagnosis of ASD by gold-standard diagnostic criteria such as DSM 5,
ADOS-2, and ADI. Study inclusion criteria included participant diagnosis of ASD at any
age and publication between November 2018 and September 2023, as there were previous
reviews available that updated the literature until November 2018. Study exclusion criteria
included no formal ASD diagnosis, publication not in a peer-reviewed article, reviews,
commentaries, conference proceedings, case reports/studies, non-human studies, ex-vivo
or in-vitro studies, and studies not originally published in English.

2.3. Data Extraction

Three investigators (A.S., A.K., D.K, and ].C.) independently reviewed included arti-
cles. The information gathered includes: study type, population, comparison/study, ASD
diagnosis criteria, outcomes/conclusions. After initial data extraction, each investigator
gathered data on the zygosity, specific mutation, inheritance, intellectual abilities, speech
abilities, physical characteristics, behavioral diagnoses, consanguinity, and gender.

2.4. Quality Assessment

A Risk of Bias (RoB) analysis was conducted using the Joanna Briggs Institute (JBI)
Critical Appraisal Tool. The appropriate checklist was utilized based on the type of study.
This assessment was completed by four reviewers (A.K., D.K,, A.S,, and ]J.C.) indepen-
dently, with discrepancies resolved by discussion and consensus or discussion with the
senior author.

3. Results and Discussion

A PRISMA diagram showing the criteria for included studies in this systematic review
article is shown in Figure 3. Following the initial search, a total of 594 studies were identified.
Through screening, 296 records were selected excluding duplicates and irrelevant articles.
After conducting a full-text review, 12 articles were chosen for inclusion in this study. This
selection was made after excluding studies for reasons detailed in the PRISMA diagram,
including irrelevance of outcomes to this study or to ASD. Each of the included articles
provided data on mutations in the NRXN1 gene and their association with ASD. A risk of
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bias analysis was performed using the JBI critical appraisal checklist. Risk of bias analyses
for case control, case series, and cross-sectional studies are shown in Figure 4, Figure 5, and
Figure 6, respectively. Overall, the studies included in this systematic review were found to
have a low risk of bias and were deemed to be of suitable quality for inclusion.
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Figure 3. PRISMA flow diagram for study selection: This figure represents a PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram, showing the detailed
process of study selection for this systematic review.
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Figure 4. Risk of bias analysis using Joanna Briggs Institute for case control studies. Green circle
represents low bias, yellow circle represents unclear, and red indicates high bias [60,76,77].
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e  QI: Were there clear criteria for inclusion in the case series?
e  Q2: Was the condition measured in a standard, reliable way for all participants included in the case series?
e Q3: Were valid methods used for identification of the condition for all participants included in the case series?
e Q4: Did the case series have consecutive inclusion of participants?
e Q5: Did the case series have complete inclusion of participants?
e Q6: Was there clear reporting of the demographics of the participants in the study?
e Q7: Was there clear reporting of clinical information of the participants?
e Q8: Were the outcomes or follow up results of cases clearly reported?
e Q9: Was there clear reporting of the presenting site(s)/clinic(s) demographic information?
e QI0: Was statistical analysis appropriate?
Figure 5. Risk of bias analysis using Joanna Briggs Institute for case series studies. Green circle
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Zarrei et al., 2 Low RoB
2019
Williams et al., 2 Low RoB
2019
Cooke et al., 2 Low RoB
2022
Annunziata et 4 Low RoB
al,, 2023
Leblond et al., 4 Low RoB
2019
Cameli et al., 5 Moderate RoB
2021

®  QI: Were the criteria for inclusion in the sample clearly defined?

e Q2: Were the study subjects and the setting described in detail?

®  Q3: Was the exposure measured in a valid and reliable way?

° Q4: Were objective, standard criteria used for measurement of the condition?

®  Q5: Were confounding factors identified?

e Q6: Were strategies to deal with confounding factors stated?

®  Q7: Were the outcomes measured in a valid and reliable way?

o Q8: Was appropriate statistical analysis used?

Figure 6. Risk of bias analysis using Joanna Briggs Institute for cross sectional studies. Green circle
represents low bias, yellow circle represents unclear, and red indicates high bias [27,36,81-84].

3.1. Patient Population and Diagnosis

The total number of individuals with ASD included in this study is 2247, with a subset
of 71 participants found to also carry a mutation in NRXN1. Of those with both ASD and
an NRXN1 mutation 57.8% were male and 21% were female (21% of the cohort had no
gender specified in the study). The diagnostic methods used for ASD in each study has
been summarized in Table 1.

Table 1. Diagnostic tests for ASD.

Study

Diagnostic Test for ASD

Alfieri et al. [78], 2020
Annunziata et al. [81], 2023
Calderoni et al. [79], 2020
Cameli et al. [82], 2021
Cooke et al. [27], 2022
Cosemans et al. [76], 2020
Ishizuka et al. [77], 2020

Leblond et al. [36], 2019

Shehhi et. Al. [60], 2019
Uzunhan et al. [80], 2022
Williams et al. [83], 2019
Zarrei et al. [84], 2019

ADQOS2

DSM5

DSM 5

ADOS

DSM 5 or ICD

DSM 5

DSM 5

ICD-10 criteria for childhood autism/autistic disorder

Gillberg criteria for Asperger syndrome

ICD-10 criteria for atypical autism with the added requirement that a case thus
diagnosed could not meet full criteria for childhood autism or Asperger syndrome
ICD-10 criteria for disintegrative disorder

Gold standard test—unspecified

Gold standard test—unspecified

DSM 4

ICD11 or DSMV

3.2. Genotypic Variants of NRXNT1 in Individuals with ASD

As genetic sequencing becomes more affordable and accessible, delving into the genetic
underpinnings of variable clinical presentations has been at the forefront of research. In
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line with this, each included study in our review conducted genetic testing on groups of
individuals with ASD to explore genetic factors. The estimated rate of NRXN1 variants
in the general population is thought to be around 0.21% [85]. The prevalence of NRXN1
mutation in this population is 3.1% of all patients included who had a diagnosis of ASD.

In all studies, the parents of affected children who also harbored NRXN1 mutations
were found to be undiagnosed with ASD, thereby serving as carriers of the genetic varia-
tions. This finding highlights the multifaceted nature of ASD and the idea that multiple
factors occurring together may be needed for the phenotypic clinical expression. The
predominant trend observed was exonic deletion mutations [49,63,71-75,85]. An overview
of genotypic information is shown in Table 2. Exons are segments of the gene that are trans-
lated into proteins, thereby directly affecting synaptic health and function. This finding is
particularly significant given that NRXN1 expression is predominantly found in the CNS
and reaches its highest expression levels during periods of critical neurodevelopment [8,86].
As previously stated, the two main isoforms for NRXNT1 are a longer alpha isoform and
a shorter beta isoform. Six of the included studies observed that the alpha isoforms were
affected, comprising 20 individuals, and two studies found the beta isoform to be affected
across three individuals [78,80,83]. There is a low penetrance of NRXN1 mutations, as
evidenced by the lack of ASD manifestation in all parental or sibling carriers involved in
these studies as well as data from previous studies [87]. However, it appears that these
mutations still confer a risk for ASD development when combined with other genetic
factors or exposure to environmental factors such as environmental toxins, drugs, pollution,
or gestational /perinatal events. In the studies reviewed, three reported participants with
heterozygous mutations, one observed a homozygous mutation, and six did not specify
the mutation status of the patients. Previously, heterozygous NRXN1 mutations have
been associated with ASD among other reported neuropsychiatric disorders [46]. Overall,
deletions comprised a majority of the mutations described in these studies. Given the
observed association between NRXN1 mutations and ASD, these genetic modifications
are considered crucial in understanding not only ASD but also other neuropsychiatric
and behavioral disorders. Therefore, a deeper examination of the connection between the
NRXNT1 gene and ASD is vital to comprehend how this gene influences the ASD phenotype
and its prognosis. Table 3 has an overview of the mutations found in each patient from the
included studies.

This review focuses on the mutations found within NRXN1 and its subsequent pheno-
typic and genotypic profiles. When examining the included articles an unexpected finding
was the role of non-coding RNA regions, which affected the expression of genes. These
were discussed by Williams et al., Zarrei et al., and Annunziata et al. While not a focal
point of this review, these adjacent mutations are important to discuss. Williams et al.
found that SNV in miR-873-5p affect the expression of 109 SFARI candidate genes. Zarrei
et al. and Annunziata et al. found mutations that disrupted the transcription of AK127244
(LOC?730100), which is a non-coding RNA of unknown function adjacent to NRXN1 [81,84].
Annunziata et al. also found a mutation in a small segment distal to NRXNT1 that similarly
impacted the functioning of the gene products. This emerging field of study involving the
pathological effects of long non-coding RNAs (IncRNAs) is gaining interest, especially since
they are more abundant in the human brain when compared to protein-coding RNAs [88].
This abundance hints at their potential role in neuropsychiatric diseases [77]. IncRNAs also
play a critical role in the normal functioning of various physiological systems in humans
and are associated with various disease states, including cancers, neurological disorders,
and cardiovascular diseases [83]. AK127244 is associated with deletions in 2p16.3, which
is located within close proximity to NRXN1 and has been noted to induce similar clinical
characteristics as mutations directly affecting NRXN1 [89,90]. These mutations are not, on
their own, causative of ASD. However, in conjunction with another mutation, such as those
from the SFARI database, they play a role in expression of the ASD phenotype.
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Table 2. An overview of genotypic information.

Total ASD arf\(:;?\lllé)fll\?l Mutation in Mutation in Unspecified Numbe'r of Numbel: of Frequen'cy of Frequenc‘y of Homozygous  Heterozygous
Reference C . Alpha Mutated Exonic Intronic Exonic Intronic . 4
ases Nutation Beta Isoform . . . . Mutation Mutation
Cases Isoform Isoform Deletion Deletions Deletion Deletion
Alfieri et al. [78], 2020 5 3 NR NR 3 0 0 NR NR 0 3
Annunziata et al. [81], 2023 209 3 NR NR 3 0 0 NR NR NR NR
Calderoniet al. [79], 2020 93 2 NR NR 2 0 0 NR NR NR NR
Cameli et al. [82], 2021 104 1 1 1 0 1 0 1 0 NR NR
Cooke et al. [27], 2022 69 12 NR NR 12 0 0 NR NR NR NR
Cosemans et al. [76], 2020 43 17 NR NR 17 0 0 NR NR NR NR
Ishizuka et al. [77], 2020 192 5 3 0 2 3 0 0.6 0 0 5
Leblond et al. [36], 2019 36 1 1 0 0 1 0 1 0 NR NR
Shehhi et. Al. [60], 2019 20 20 13 2 5 13 7 0.65 0.35 NR NR
Uzunhan et al. [80], 2022 1 1 1 0 0 1 0 1 0 1 0
Williams et al. [83], 2019 48 1 1 0 0 0 0 NR NR 0 1
Zarrei et al. [84], 2019 1838 6 NR NR 6 6 0 1 0 NR NR

NR: not recorded.
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Table 3. Mutations in the review population.

Reference

Mutation Location

Alfieri et al. [78], 2020
Annunziata et al. [81], 2023

Calderoni et al. [79], 2020
Cameli et al. [82], 2021
Cooke et al. [27], 2022

Cosemans et al. [76], 2020

Ishizuka et al. [77], 2020
Leblond et al. [36], 2019

Shehhi et. Al [60], 2019

Uzunhan et al. [80], 2022
Williams et al. [83], 2019

Zarrei et al. [84], 2019

arr[GRCh37] 2p16.3(50432664_50536137)x1 mat, arr[GRCh37] 2p16.3(51086847_51411126) x1 mat, arr [GRCh37] 2p16.3(51037104_52339655)x1 pat.
arr[GRCh37/hg19] 2p16.3(51066578_51100412)x1, arrfGRCh37/hg19] 2p16.3(51175725_51328842)x1 mat, arrf[GRCh37/hg19]
2p16.3(50039172_50735499)x1 mat,

arr[GRCh37/hg19] 2p16.3 (50909765_51083469) 1x pat

2p16.3 (NC_000002.11:g.50170766_50982172del)

unspecified from SynaG cohort

arr[GRCh37/hg19] 2p16.3 (50453695_50662935), arrfGRCh37 /hg19] 2p16.3 (50879191_50953066) mat, arr[GRCh37 /hg19] 2p16.3 (50620243_50970739),
arr[GRCh37 /hg19] 2p16.3 (51017528_51302432) mat, arr[GRCh37 /hg19] 2p16.3 (50898653_51104632) pat, arr[GRCh37 /hg19] 2p16.3
(50923553_51034676) pat, arrffGRCh37/hg19] 2p16.3 (51033135_51074619), arr[ GRCh37 /hg19] 2p16.3 (51033989_51062766), arr[GRCh37/hg19] 2p16.3
(50992089_51026709), arr[GRCh37 /hg19] 2p16.3 (51027631_51390231), arr[GRCh37 /hg19] 2p16.3 (51039779_51297569) mat, arr[GRCh37 /hg19] 2p16.3
(50497204 _50514746) mat, arr[GRCh37/hg19] 2p16.3 (50497204_50514746) mat, arr[GRCh37/hg19] 2p16.3 (51053925_51319222) mat, arrffGRCh37/hg19]
2p16.3 (50975806_51005275), arrfGRCh37 /hg19] 2p16.3 (51063155_51278187), arr[GRCh37/hg19] 2p16.3 (51160878_51356269) pat

rs201336161, rs201881725, rs1457374261, rs199970666

del(2p16:51125625-51255427)

Del(2p16.3:50,138,031-50,214,776), Del(2p16.3: Del(2p16.3:50,138,031-50,214,776), Del(2p16.3: Del(2p16.3: 50,483,652-50,495,891), Del(2p16.3: Del(2p16.3:
50,483,652-50,495,891), Del(2p16.3: Del(2p16.3: 50,690,984-50,870,064), Del(2p16.3: Del(2p16.3: 50,881,995-50,947,729), Del(2p16.3: Del(2p16.3:
50,947,670-50,964,907), Del(2p16.3: Del(2p16.3: 50,957,455-51,251,557), Del(2p16.3: Del(2p16.3: 50,964,848-51,251,557), Del(2p16.3: Del(2p16.3:
50,968,453-51,260,612), Del(2p16.3: Del(2p16.3: 50,982,113-51,446,873), Del(2p16.3: Del(2p16.3: 51,057,824-51,142,908), Del(2p16.3: Del(2p16.3:
51,083,410-51,172,182), Del(2p16.3: Del(2p16.3: 51,122,091-51,314,430), Del(2p16.3: Del(2p16.3: 51,122,091-51,382,872), Del(2p16.3: Del(2p16.3:
51,122,091-51,606,257), Del(2p16.3: Del(2p16.3: 51,137,071-51,314,430), Del(2p16.3: Del(2p16.3: 51,148,508-51,251,557), Del(2p16.3: Del(2p16.3:
51,153,052-51,260,612), Del(2p16.3: Del(2p16.3: 51,237,000-51,260,612)

Del(2p16.3:chr2:51149007-51255411)

chr2:50847195; rs78540316

Del(2p16.3:50,138,031-50,996,179)pat, Del(2p16.3: 50,986,743-51,644,735), Del(2p16.3: 51,125,058-51,263,149), Del(2p16.3: 51,141,571-51,363,855)pat,
Del(2p16.3: 51,163,235-51,285,498)pat, Del(2p16.3: 51,163,990-51,285,498)pat
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Consanguinity is often investigated in relation to genetic disorders, particularly those
that are transmitted recessively across generations, such as NRXN1. When two individu-
als who are closely related have children, it increases the occurrence of recessive genetic
disorders when compared with unrelated pairings. Uzunhan et al. studied two specific
cases—two siblings with consanguineous parents, each with an NRXN1 deletion. One
sibling had a diagnosis of West syndrome while the other had a diagnosis of ASD. West
syndrome is an encephalopathy that presents as infantile spasms and may include neu-
rodevelopmental delays/regression. It should be noted that up to 20% of people with
West syndrome have a diagnosis of ASD at some point in their lifetime [80,91-93]. CNV
analyses of these patients found an NRXN1 exon 2-5 homozygous deletion that affected
the alpha-isoform in both siblings. This mutation was confirmed with gel electrophoresis
and compared with four healthy control individuals.

The genotypic findings of these articles are non-uniform and cannot be used to make
conclusive relationships between NRXN1 mutations and ASD. Many included articles had
only a handful of participants with both ASD and NRXN1 mutations and contain inconsis-
tent reporting of genetic information across studies. Further studies having large cohorts
are warranted to decipher the precise role of NRXN1 mutations in the pathophysiology
of ASD.

3.3. Phenotypic Features of NRXN1 Mutations and ASD
3.3.1. Intellectual Abilities

The phenotype of individuals harboring NRXN1 variants is vast and heterogenous.
ASD is known to affect males at a rate almost four times higher than for females, which
is reflected in this cohort [94]. Intellectual abilities were recorded in six studies, 24% of
participants with both ASD and a NRXN1 mutation were observed to have an intellectual
disability and 14% were found to have no intellectual disability as measured by a standard
questionnaire. The remaining 62% of participants had no recording of intellectual ability or
were unable to complete the required tests for a determination of intellectual ability, which
is in line with previous findings of diagnosed intellectual disability in those with NRXN1
mutations [66].

3.3.2. Speech Abilities

One major challenge was the lack of consistent reporting on both genotypic and
phenotypic data from all included articles, many primarily focused on the genetic or
phenotypic aspects of ASD, with minimal emphasis on the alternative aspect. In the
included individuals with ASD and an NRXN1 mutation, 2.7% were verbal, 5.5% were
non-verbal, and 29% were designated as having a speech delay; the remainder had no
recorded information on verbal abilities [60,78,79,82,95].

3.3.3. Behavior/Neuropsychiatric Diagnosis

Many of the participants had behavioral problems including aggression and attention
deficits. Alfieri et al. found two of their three individuals with ASD to be aggressive and
Ishizuka et al. found one patient with a diagnosis of oppositional defiant disorder. Al
Shehhi et al. and Ishizuka et al. had participants with diagnosed ADHD. Cameli et al.
found their participant with ASD and an NRXN1 mutation to have hyperactive behaviors,
but no confirmed ADHD diagnosis. The remainder of the studies did not collect data on
comorbid ADHD, or it was not reported. These behavioral findings coincide with prior
studies that found NRXN1 to be associated with aggression and attention deficits in animal
models [96,97].

Cosemans et al. evaluated the association between having a diagnosis of a neurode-
velopmental or neuropsychiatric condition and possessing the NRXN1 deletion [76]. This
study used two cohorts of patients: a literature cohort of 670 individuals and a Leuven
cohort of 43 individuals. Controls included patients who were screened for intellectual
disability, developmental disorder, ASD, or schizophrenia. In this study, they found that
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individuals in the literature cohort who did not have a confirmed neurodevelopmental and
neuropsychiatric condition were less likely to have the NRXN1 deletion than those who
had the phenotype. The authors suggested that this relationship had concerns about report-
ing bias as the phenotypes associated with intrinsic patients are not commonly reported.
Two exon deletions were analyzed: exons 1-5 and 5-24. The deletions for exon 1-5 was
seen in 20 controls (12.59 penetrance) and the deletions for exon 6-24 was seen 2 times in
100,000 individuals (32.43 penetrance). In patients who were diagnosed with intellectual or
developmental disability, 133/260 had deletions in the NRXN1 gene. Deletions were seen
in 245/458 individuals with a psychiatric diagnosis. Additionally, psychiatric diagnoses
were seen the most with deletions in exon 1- 5 and intron 5. Deletions in exons 6-24
had the greatest association with diagnoses of intellectual and developmental disability
(43/68). Our analysis only included that of the Leuven cohort as these data are previously
unanalyzed. In the Leuven cohort, they found that patients with de novo deletions of
exons 1-5 had phenotypes of intellectual disability and autism. Patients with a maternally
inherited deletion of exons 1-5 had ASD with some intellectual disability and psychiatric
symptoms (delusions and psychotic episodes). Patients with maternally inherited dele-
tions of exons 6-9 had developmental delay, hypertelorism, and inner epicanthal folds.
Patients with a de novo exon 19 deletion had ASD, intellectual disability, and anxiogenic
and behavioral deficits. These NRXN1 deletions were also seen in 143/258, 73/144, 63/125,
and 44/88 individuals with ASD, schizophrenia, congenital abnormalities, and epilepsy,
respectively. This study serves as an outstanding model for integrating genotypic as well
as phenotypic information and should be a guiding reference for future analyses involving
NRXN1 and ASD.

3.3.4. Physical Characteristics

Physically, there were no recurrent abnormalities observed to be present across the
included cohorts. Macrocephaly or relative macrocephaly was noted in two participants
and facial dysmorphia in four. There are single incidences of physical abnormalities such
as pyloric stenosis, sensorineural hearing loss and pectus excavatum but no incidences of
repeated patterns of these disorders. Prior studies have noted the presence of epilepsy in
those with ASD and NRXNI mutations. Eight participants were noted to have seizures
but no documented epilepsy diagnoses. There were no incidences of brain, cardiac, or
urogenital abnormalities in the included cohort.

Many of the participants in this review had comorbid motor and behavioral symp-
toms; however, the precise symptoms varied greatly. A comprehensive overview of the
phenotypic manifestations reported in the included studies along with patient population
summary and diagnosis has been shown in Table 4. Expanding the scope of research to
include larger studies that meticulously document all phenotypic information of the partic-
ipants could lead to a more comprehensive understanding of phenotypic patterns. These
studies, by encompassing a broader range of phenotypic data, can provide deeper insights
into variations and commonalities among individuals. This in turn might reveal subtler
correlations or trends that smaller studies might miss. By gathering a comprehensive range
of phenotypic information, researchers are able to more effectively identify and understand
the subtleties within these patterns, potentially leading to more targeted and effective
interventions or therapies.

This review provides insights into the genotypic and phenotypic outcomes observed
in the included studies. It reveals significant diversity in both the genetic variants and
physical characteristics of individuals harboring the NRXN1 gene variants in line with
previous findings [98]. There is speculation that the size and the location of the NRXN1
mutation may influence the phenotypic presentation of autism [27]. Large studies with a
dual focus on genotype and phenotype are essential to understanding the relationship of
NRXNI1 mutations with its various clinical presentations.
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Table 4. A comprehensive summary of included studies in this systematic review.
Motor Sensory
NRXN1 Other . i I .
Parental Family Developmental Intellectual . Abnormalities abnormalities  Behavioral
Reference llisé(f)igtr;?i l\l/:[ionlgf;léasr Consanguinity History Delay Disability Seizures EEG (Movement, (Hearing, Abnormalities Other
Speech) Vision)
Calderoni et al. Normal IQ Verbal /non-
[79], 2020. NR NR NR NR NR NR NR none none n/a
Case 1 (>70) verbal
Calderoni et al. duplication
[79], 2020. NR altlg(pCZaZ 5?3 NR NR NR Low IQ (<70) NR NR none none none n/a
Case 2 :
Tantrums
_ Below . Py . . .
Alfieri et al. [78], B B Hypotonia, aggression, Trichotillomania,
2020. Case 1 NR None NR NR NR oo no speech none self-injurious teeth grinding
behavior
. Smoking and
- Below Chewing ng.
Alfieri et al. [78], NR None NR NR NR average TDQ - - difficulties none none medication
2020. Case 2 (44) only babbles exposure in
y utero
Alfieri et al. [78], NR None NR NR NR a?z?elr(;we + ) Motor dys- none Attention Multiple ear
2020. Case 3 NVIQ ?7 4) regulation problems infections
. allergies, sIgA
Alfieri et al. [78] Below I;sg:ggf deficiency,
2020. Cas;e 4 ’ NR None NR NR NR average FSIQ - - none none a ggressiv,e recurrent
(50) behavior re splra'tory
infections
Shy,
Alfieri et al. [75], NR None NR NR NR a]\gl(élr(:ge n/a n/a none soliloquy withdrawing, IUGR, sleep
2020. Case 5 NVIQ (72) avoidant problems
behavior
Zarrel et al. [84], NR AK12724 NR NR NR NR NR NR NR NR NR NR
Repetitive
ASD, ADHD, Below Eye move- P
Cookezgtzgl. (271, Alptl;a,tbeta, n/a n/a anxiety, yes average to no yes ments/ gaze no tar}c}t. n/a
eta depression average patterns restneive
behaviors
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Table 4. Cont.

Ref. i\l RfXNl MO]therl Parental Family Developmental Intellectual Sei EEG Abrll\gl?r?arlities abrslf)e?:l‘:\lﬁ,ties Behavioral Oth
ererence Es?f)e(c)tr::?i Fi‘;gﬁ: asr Consanguinity History Delay Disability elzures (Movement, (Hearing, Abnormalities er
8 Speech) Vision)
ASD,
hiatric .
Cosemans et al. ek Repetitive Anxiety
[76], 2020 beta n/a n/a iﬁigﬁéﬁﬂ; yes yes no no movements no behaviors n/a
disability, IQ
Congenital
heart disease, Speech and
global language
. development Hallucinations ; delay,
Shehhi et. Al Alpha and h 4 Gross motor  Sensorineural 7
[60], 2019 beta n/a n/a . ;i;ysfy yes yes yes in some yes delay hearing loss dﬁ:lr;ﬁli?}g— n/a
intellectual 32/34 had
disability, speech dela
h del P Y
speech delay
Maternal Epileptiform
inheritance discharge
Annunziata et al. / in4/s / / Developmental Intellectual / while / / / /
[81], 2023 n/a subjects; n/a n/a delay disability n/a sleeping or n/a n/sa n/sa n/sa
incomplete falling
penetrance asleep
Paternal
inheritance
of
miR-873-5p
Williams et al. variant;
[83], 2019 Alpha maternal n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
inheritance
of NRXN1
loss of
function
Congenital
Pl a0t alpha none yes NR NR Intellectual no NR NR NR NR torticollis and
g y dental carries
Macrocephaly,
frontal bossing,
bitemporal
Uz[lgg?azrézeé al. NR alpha yes no NR NR No NR Yes NR Yes narrowing,

wide forehead,
long face, thin

upper lip
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Motor Sensory
Reference i\; (I){f)(()lr\lnll Moolte}éflrlar Parenta! . Fa.imily Developmental Int‘ellegt.ual Seizures EEG Abnormalities abnormplities Behavior‘al. Other
Effected Findines Consanguinity History Delay Disability (Movement, (Hearing, Abnormalities
g Speech) Vision)
Predominance Yes, delayed .
Maternal of a slow with motor Yes,l ;}irgpu- Yes
Other rare history of back- stereotypies ! .
Cameli et al. NR variants NR mutation— Y NR NR ground (hand materials for hype;actmty,
[82], 2021 found no family €s activity in flapping); visual, short
unspecified history of the R limited acougltlc, attention
ASD temporal speech (four ; tacil g span
region words) stimulation
[ODD
(oppositional

Ishizuka et al. Maternally defiant

[77], 2020 Alpha NR NR inherited NR Yes, No NR NR NR NR NR disorder)],
[Depression,
ADHD]
NR: not recorded.
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4. Limitations

A significant limitation of our review stems from the limited pool of participants
exhibiting both ASD and NRXNT genetic variations within the studies we have analyzed
for this article. The dearth of individuals with this specific combination of traits may impact
the generalizability and reliability of our findings. The small sample size not only hinders
statistical power but also raises concerns about the applicability for a broader population.
It is essential to acknowledge this limitation as it highlights the need for further research
with more extensive and diverse cohorts to establish more robust conclusions regarding the
relationship between ASD and NRXN1 variations. Additionally, there were inconsistencies
in the information reported in the included studies. The articles predominantly focused
on either the genotype or phenotype, offering limited information on the other aspect. To
compensate for this, the reviewers had to rely on Supplemental Information, especially
for articles centered on genotypes, to gain a clearer understanding of the phenotypic
outcomes. Ultimately, more comprehensive research involving individuals with ASD
is necessary to better understand the relationship between NRXN1 gene variants and
phenotypic expression.

5. Conclusions and Future Directions

This systematic review article delves deep into the phenotypic manifestations of ASD
in individuals carrying NRXN1 gene variants. The included studies suggest heterogeneity
in both the genotype and phenotype of individuals harboring NRXN1 gene variants.
While the genotype and phenotype associated with NRXNT1 is not fully elucidated, this
review continues to shed light on the implication of this mutation on neuropsychiatric
disorders, including ASD. Our findings were consistent with prior literature, which found
exonic mutations to be commonly associated with neuropsychiatric disease and NRXN1
mutations [99], as well as found a low prevalence of dysmorphic features and a relatively
high frequency of seizure disorders.

Although there have been advances in understanding the role of NRXN1 in ASD, there
remain major research gaps. There is a need for more in-depth studies to elucidate the
precise mechanisms by which NRXN1 gene variants contribute to the development and
manifestation of ASD. Understanding the biological pathways involved is essential for
targeted therapeutic strategies. Research has not fully explored the range of phenotypes
associated with different NRXN1 mutations in ASD. Further studies are needed to clarify
the relationship between specific NRXN1 variants and the spectrum of autism symptoms.
In addition, the interaction between NRXN1 gene variants and environmental factors in the
development of ASD is not well understood. Research in this area could provide insights
into potential triggers or protective factors. Furthermore, much of the current research has
been conducted in limited populations. There is a gap in studies involving diverse ethnic
geographical, and gender populations, which is crucial for understanding the global impact
of NRXN1 variants on ASD. Furthermore, there is a lack of long-term, longitudinal studies
following individuals with NRXN1 gene variants from early childhood into adulthood.
Such studies could offer valuable insights into how these variants influence the progression
and outcomes of autism over time.

Despite these research gaps, NRXN1 gene variants have been strongly associated
with ASD. Thus, focusing on this specific gene could enhance the prognosis of ASD. It is
well-known that treating genetic disorders is a complex challenge, typically addressed by a
comprehensive, multi-faceted team employing various therapeutic modalities. One of the
emerging approaches in treating genetic disorders involves gene editing [100-102]. This
technique uses a biological system, such as CRISPR/Cas9, to precisely excise a specific
gene segment and employ a biological vector to insert a desired sequence [103-106]. These
treatments are ideal, as they are permanent, unlike the multimodal management that is
currently being utilized [107]. Identifying likely genetic etiologies of ASD is the first major
step in creating gene editing for this disease. In addition to genetic therapies, targeted drug
therapies for NRXN1 related molecules may be useful in treating the associated clinical
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symptoms [108]. These therapies include RNAi, protein replacement, small molecule
therapy, and chaperone therapy [109-114].

While ASD is believed to be influenced by multiple factors, NRXN1 stands out as a
well-researched genetic factor in ASD. With an EAGLE score of 143.75, it has consistently
been linked to, and potentially implicated in, the development of ASD. This positions it as
an ideal candidate for gene-editing technologies. Conducting genetic testing in individuals
with ASD, along with in-depth studies on the phenotypic effects of NRXN1 mutations, can
enhance our understanding of how NRXN1 contributes to ASD. By directly targeting this
gene, we could pave the way for developing innovative therapeutic approaches, potentially
leading to improved treatment outcomes and prognoses for ASD in the future in pursuit of
improving quality of life of affected individuals.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm13072067 /s1, Figure S1: Location of neurexins and their binding
partners, neuroligins, in the synapse. Several neurexin-neuroligin pathway proteins are shown as well
as synaptic vesicle-binding proteins. NMDAR, N-methyl-Daspartate receptor; mGluR5, metabolic
glutamate receptor 5; PSD-95, post-synaptic density protein 95; Shank, SH3 and multiple ankyrin
repeat domains protein. Taken from [29] under the terms of the Creative Com-mons Attribution
License, which permits unrestricted use, provided the original author and source are credited.
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