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Abstract: Background: Glucocorticoids may grant a protective effect against postoperative complica-
tions. The evidence on their efficacy, however, has been inconclusive thus far. We investigated the
effects of preoperatively administered glucocorticoids on the overall postoperative complication rate,
and on liver function recovery in patients undergoing major liver surgery. Methods: We performed a
systematic literature search on PubMed, Embase, and CENTRAL in October 2021, and repeated the
search in April 2023. Pre-study protocol was registered on PROSPERO (ID: CRD42021284559). Studies
investigating patients undergoing liver resections or transplantation who were administered glucocor-
ticoids preoperatively and reported postoperative complications were eligible. Meta-analyses were
performed using META and DMETAR packages in R with a random effects model. Risk of bias was
assessed using RoB2. Results: The selection yielded 11 eligible randomized controlled trials (RCTs)
with 964 patients. Data from nine RCTs (n = 837) revealed a tendency toward a lower overall compli-
cation rate with glucocorticoid administration (odds ratio: 0.71; 95% confidence interval: 0.38–1.31,
p = 0.23), but it was not statistically significant. Data pooled from seven RCTs showed a significant
reduction in wound infections with glucocorticoid administration [odds ratio: 0.64; 95% confidence
interval: 0.45–0.92, p = 0.02]. Due to limited data availability, meta-analysis of liver function recovery
parameters was not possible. Conclusions: The preoperative administration of glucocorticoids did
not significantly reduce the overall postoperative complication rate. Future clinical trials should
investigate homogenous patient populations with a specific focus on postoperative liver recovery.

Keywords: glucocorticoid; liver surgery; perioperative mangement

1. Introduction

Despite advancements in surgical techniques, liver surgery remains a relatively high-
risk procedure, with complication rates reaching up to 48% [1]. The most common compli-
cations of liver resections and transplantations include postoperative collections, sepsis,
and wound and organ space infections. Underlying the complications are thought to be
hepatocellular injury and subsequent inflammation, the accumulation of toxic metabolites
due to hepatic dysfunction, and a predisposition to coagulopathy and infections [2,3].

Aside from their other effects, hydrocortisone and methylprednisolone, which are both
glucocorticoids, have been investigated in the past in both human and animal models for
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their anti-inflammatory properties, which could be helpful in reducing the postoperative
hyperinflammatory state [4–6]. Preoperative glucocorticoid administration, based on this
pharmacological basis, has been investigated in multiple fields of surgery for its effect
on reducing postoperative complication rates [7–10]. However, the efficacy of routine
glucocorticoid administration remains controversial.

Clinical trials on preoperative glucocorticoid administration in liver surgery have been
ongoing since 1996. The 2016 Enhanced Recovery After Surgery guideline on liver surgery
recommends glucocorticoids, albeit with a moderate level of recommendation on a weak
level of evidence [11]. This guideline references two systematic reviews by Richardson
et al. [12] and Li et al. [13], which contradict each other in their results on postoperative
complication rates. Since then, two additional systematic reviews have been published on
the subject, in 2019 and 2021, by Yang et al. [14] and Hai et al. [15], respectively. However,
these two papers also reported contradicting results.

Therefore, we decided to perform a systematic review and meta-analysis to update
the current knowledge on the subject. We aimed to summarize and contextualize the
existing evidence, based on two hypotheses: (1) preoperative glucocorticoid administration
can reduce the complication rate following any type of liver surgery; (2) the effect of
glucocorticoids on some complications will be different than on the overall complication
rate. Therefore, we investigated not only the overall postoperative complication rate but
also distinct complications and liver function parameters, to inform future clinical research
and critically appraise the current level of evidence certainty.

2. Methods

We reported our systematic review and meta-analysis in accordance with the PRISMA
2020 Statement [16] (Table S3: PRISMA 2020 Checklist), and we undertook our research
based on the recommendations of the Cochrane Handbook for Systematic Reviews of
Interventions [17]. The study protocol was registered on PROSPERO (registration number:
CRD42021284559). However, we deviated from the registered protocol concerning reporting
our primary outcome, the overall postoperative complication rate. We had initially aimed
to report complications following the Clavien–Dindo Classification System [18]. However,
this was not possible due to inadequate data availability.

2.1. Search Strategy

Our systematic search was conducted on 15 October 2021, on MEDLINE via PubMed,
Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases,
with no filters and no restrictions on date of publication, language, or article type. This
systematic search was repeated on 1 April 2023 to detect any new literature eligible for
inclusion. During the systematic search, the following search key was used: (((hepatic
OR liver) AND (surgery OR resection OR operation OR intervention)) OR hepatectomy)
AND (steroid OR corticosteroid OR glucocorticoid OR methylprednisolone OR hydro-
cortisone OR cortisol) AND random*. A modified search key was used for the search
on Embase: ((hepatic OR ‘liver’/exp OR liver) AND (‘surgery’/exp OR surgery OR ‘re-
section’/exp OR resection OR ‘operation’/exp OR operation OR ‘intervention’/exp OR
intervention) OR ‘hepatectomy’/exp OR hepatectomy) AND (‘steroid’/exp OR steroid
OR ‘corticosteroid’/exp OR corticosteroid OR ‘glucocorticoid’/exp OR glucocorticoid OR
‘methylprednisolone’/exp OR methylprednisolone OR ‘hydrocortisone’/exp OR hydrocor-
tisone OR ‘cortisol’/exp OR cortisol) AND random*. References from the selected articles
were also searched for additional studies to be included in the selection process.

2.2. Eligibility Criteria

Only randomized controlled trials (RCTs) published in peer-reviewed journals and
investigating the preoperative administration of glucocorticoids (natural or synthetic)
against placebo or non-administration for patients undergoing liver surgery were included
in this study. We report the study framework and eligibility criteria according to the PICOS
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method, where population (P): adult patients (aged 18 or older) of both sexes undergoing
elective or non-elective liver surgery, including open or laparoscopic resection or liver
transplantation; intervention (I): preoperatively administered high-dose glucocorticoids
as a study drug, regardless of dosing strategy, as opposed to standard of care; control
(C): placebo or non-administration; main outcome (O): overall postoperative complication
rate (referring to the number of patients who experienced any postoperative complication
related to the surgical procedure, including but not limited to infections, bile leakage, liver
failure, bleeding, and pleural effusion); and setting (S): perioperative hospital care. We
included studies that fit the inclusion criteria regardless of the preoperative dosage strategy.
Exclusion criteria were study designs other than RCTs, animal studies, and patients who
underwent surgeries that included organs other than the liver. Studies were considered
eligible for synthesis if they satisfied the eligibility criteria and reported raw data for any
or all outcomes under investigation as per our pre-registered study protocol. Publications
in which the study population may have overlapped with an earlier publication were not
eligible for inclusion.

2.3. Selection Process

The selection was performed by two teams of independent review authors (CT as
review author 1, and IA and EHK as review author 2). Duplicates were detected and
removed by both manual and automatic searches. The two reviewer groups then assessed
the results for inclusion, first by title and abstract selection, then by full-text selection
using EndNote 20 software (Clarivate Analytics, Philadelphia, PA, USA). As agreed, any
conflict was resolved by a third independent investigator (FD). To evaluate inter-reviewer
agreement, Cohen’s Kappa was calculated once after title-and-abstract selection and once
after full-text selection, with κ = 0.97 and κ = 1.0, respectively. Regarding studies with
identical patient populations, the reviewers chose to include only the article with the earlier
publication date.

2.4. Data Collection Process

From the eligible articles, data were collected by three authors (CT, IA, and EHK) inde-
pendently. Disagreements were solved by discussion between the authors. The following
data were extracted: (1) study characteristics: first author, the year of publication, study
design, study population (number, age, and sex), study period, study country, and institute;
(2) postoperative complications: overall postoperative complication rate, wound infection,
septic/infectious complications, bile leakage, pleural effusion, gastrointestinal bleeding,
intra-abdominal bleeding, high-grade liver failure, and all grades of liver failure; (3) labora-
tory outcomes (total bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase
(AST), interleukin-6 (IL-6), C-reactive protein (CRP), and prothrombin time–international
normalized ratio (PTT)); (4) perioperative outcomes (length of hospital stay, total operative
time, intraoperative blood loss, blood transfusions, and blood products used (FFP or RBC).

When unavailable in writing, data estimates from visual sources were collected using
software GetData Graph Digitizer version number: v.2.26), although these estimates were
not used in the quantitative synthesis.

2.5. Study Risk of Bias and Certainty of Evidence Assessment

Two authors (CT, IA) performed the risk of bias assessment independently, according
to the recommendations of the Cochrane Handbook [17], utilizing the RoB 2 tool (ROB2
IRPG beta v6, 25 June 2019) based on the RoB 2 version dated 15 March 2019 [19]. Disagree-
ments were solved by deliberation between the authors. The risk of bias was thus assessed
on five distinct domains, including the randomization process, deviations from intended
intervention, missing outcome data, the measurement of the outcome, the selection of the
reported outcome, and overall bias. The level of certainty of evidence evaluation, using
the GRADE assessment based on the GRADE handbook [20], was made using the online
software GRADE Pro GDT version 20 [21].
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2.6. Statistical Analysis

Meta-analysis was performed for outcomes for which at least 3 distinct included
studies reported data. The statistical analyses were made using R (R Core Team 2021,
v4.1.1) [22]. For calculations and plots, we used the META (Schwarzer 2022, v5.2.0) [23]
and DMETAR (Cuijpers, Furukawa, and Ebert 2022, v0.0.9000) [24] packages.

For dichotomous outcomes, the odds ratio (OR) with a 95% confidence interval (CI)
was used to measure the effect. To calculate the odds ratio, the total number of patients
in each group and those with the event of interest were extracted from each study. Raw
data from the selected studies were pooled using a random effects model via the Mantel–
Haenszel method (Mantel and Haenszel 1959; Robins, Greenland, and Breslow 1986;
Thompson, Turner, and Warn 2001) [25–27]. If the study number for the given outcome was
over five, the Hartung–Knapp adjustment (Knapp and Hartung 2003; IntHout, Ioannidis,
and Borm 2014) [28,29] was applied (below six studies, no adjustment was applied). For
the pooled results, an exact Mantel–Haenszel method (no continuity correction) was used
to handle zero-cell counts (Cooper, Hedges, and Valentine 2009; J. Sweeting, J. Sutton,
and C. Lambert 2004) [30,31]. In individual studies, the zero-cell-count problem was
adjusted using treatment arm continuity correction. To estimate τ2, we used the Paule–
Mandel method (Paule and Mandel 1982) [32], and the Q-profile method for calculating
the confidence interval of τ2 (Harrer et al., 2021) [33]. Statistical heterogeneity across trials
was assessed by means of the Cochrane Q test and the I2 values (Higgins and Thompson
2002) [34]. Raw data were used in all instances; in the case of binary data, numbers of event
and non-event and, in the case of continuous data, mean and standard deviation (SD) were
used. If the mean and SD were not reported in the article, estimations were made using
the given values of medians, quartiles, minimums, and maximums, using the Luo [35] and
Shi [36] methods.

Forest plots (Rücker and Schwarzer 2021; IntHout et al., 2016) [37,38] were used to
graphically summarize the results.

Outlier and influence analyses were carried out following the recommendations of
Harrer et al. (2021) [33] and Viechtbauer and Cheung (2010) [39].

3. Results
3.1. Study Selection and Characteristics

The systematic search yielded 8226 records, and the selection process is detailed in
the flowchart according to PRISMA as presented in Figure 1. Overall, 11 articles [40–50]
were included in our study. The repeat search did not find any further studies eligible for
inclusion.
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Figure 1. PRISMA flowchart of selection describing the systematic search and selection process.

3.2. Main Characteristics of the Included Studies

In summary, we managed to analyze data from 964 patients, of whom 477 were in the
glucocorticoid group, and 487 in the control group. Baseline characteristics, clinical data,
and intervention summaries of the included articles are detailed further in Table 1.

Table 1. The summary of the studies included (author, publication date, country, patient distribution,
and demographic data).

First Author and
Publication Date Intervention Control Surgery Type Patient Distribution Age, Years Sex, Female % of Total

Intervention Control Intervention Control Intervention Control

Aldrighetti L.
2006 [40]

IV Methylpred-
nisolone 500 mg Unclear Hepatic

resection 36 37 61.8 (21–78) c 63 (31–85) c 37.83 38.88

Steinthorsdottir K.
J. 2021 [41]

IV Methylpred-
nisolone

10 mg/kg

Standard of
care including
IV Dexametha-

sone 8 mg

Open liver
surgery

without biliary
reconstruction

86 88 65.2 ± 11.2 b 64.4 ± 12.0 b 34 30.6

Bressan A. K.
2022 [42]

IV Methylpred-
nisolone 500 mg Placebo Hepatic

resection 74 77 63.9 a 62.4 a 47.2 38.9

Hasegawa Y. 2019
[43]

IV Methylpred-
nisolone 500 mg Placebo Hepatic

resection 50 50 67 (59–74) c 68 (62–75) c 38 40

Donadon M. 2016
[44]

IV Methylpred-
nisolone 500 mg Placebo Hepatic

resection 16 16 65 (27–80) c 63 (22–77) c 44 37.5

Hayashi Y. 2011
[45]

IV
Hydrocortisone
500-300-100 mg
consecutively

Non-
administration

Hepatic
resection 98 102 69 (39–81) c 70 (35–82) c No data No data

Yamashita Y. 2001
[46]

IV Methylpred-
nisolone 500 mg

Non-
administration

Hepatic
resection 16 17 56.8 a 60.3 a 31.25 23.52
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Table 1. Cont.

First Author and
Publication Date Intervention Control Surgery Type Patient Distribution Age, Years Sex, Female % of Total

Intervention Control Intervention Control Intervention Control

Muratore A. 2002
[47]

IV Methylpred-
nisolone 30

mg/kg

Non-
administration

Hepatic
resection 28 25 64.1 a 65.4 a 60.7 32

Onoe S. 2021 [48]

IV
Hydrocortisone

500-300-200-
100 mg

Placebo

Combined liver
and

extrahepatic
bile duct
resection

46 48 70 (39–83) c 71 (39–84) c 33 40

Schmidt S. C.
2007 [49]

Methylprednisolone
30 mg/kg Placebo Hepatic

resection 10 10 65 a 57 a 60 70

Turner S. 2006
[50]

IV Methylpred-
nisolone

10 mg/kg
Placebo

Orthotopic
liver

transplantation
17 17 53.4 a 57.7 a 35.3 35.3

RCT: randomized controlled trial, a = mean, b = mean ± standard deviation, c = median (range).

3.3. Postoperative Complications

Nine [43–51] (n = 836) out of the eleven eligible articles in our study reported the
overall postoperative complication rate as an outcome. This outcome did not distinguish
between major and minor complications or different pathomechanisms. In this analysis,
418 patients were in the intervention group and received glucocorticoids preoperatively, and
419 patients in the control group received either saline or a placebo or nothing. There was a
tendency toward a lower overall postoperative complication rate in the intervention group
(OR:0.71; 95% CI: 0.38–1.31, p = 0.23), but the result did not reach statistical significance (see
Figure 2A). There was substantial heterogeneity as defined by the Cochrane Handbook [17]
[I2 = 54% (2%; 78%), p = 0.03].

Five studies [40–42,45,47] (n = 651) reported the rate of pleural effusion as an outcome.
Our analysis found no statistically significant difference between the groups with a tendency
toward a lower rate in the intervention group (OR: 0.81; 95% CI: 0.44–1.48, p = 0.4963) (see
Figure 2B). Seven studies [40–42,45,46,48,49] (n = 745) reported the rate of wound infection
as an outcome. Our analysis found that the intervention significantly reduced wound
infections (OR = 0.64; 95% CI: 0.45–0.92, p = 0.0241) (see Figure 2C). Four studies [40–42,45]
(n = 598) reported septic/infectious complications as an outcome. Our analysis found no
statistically significant difference between the groups with a tendency toward a lower rate
in the intervention group (OR: 0.73; 95% CI: 0.24–2.20, p = 0.577) (see Figure 2D). Seven
studies [40–42,45,46,48,49] (n = 745) reported the rate of bile leakage as an outcome. Our
analysis found no statistically significant difference between the groups (OR: 1.12; 95%
CI: 0.59–2.13, p = 0.7263) with a tendency toward a higher rate in the intervention group
(see Figure 2E). Five studies [40,42,45,46,48] (n = 551) reported liver failure as an outcome.
Our analysis found no statistically significant difference between the groups (OR: 0.96; 95%
CI = 0.49–1.88, p = 0.9034) (see Figure 2F).

3.4. Laboratory Outcomes

Due to the discrepancy in the methodology of measurements and the reporting of the
laboratory outcomes between the included studies, we could not perform a meta-analysis
for these parameters. Hence, we included these only in the systematic review. Nevertheless,
several individual studies reported statistically significant results. A detailed summary of
the measurement time points, results and, where available, p-values of each included study
are depicted in Table S1.

3.5. Other Outcomes

Our analysis also included perioperative outcomes. There were no statistically sig-
nificant differences between the glucocorticoid and control groups with respect to these
outcomes. Eight studies [43,44,46–50,52] (n = 759) reported on the length of hospital stay
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(days), (MD: −0.12; 95% CI: −0.57–0.34) (see Figure 3A). Seven studies [43,44,46–49,52]
(n = 709) reported on the total operative time (minutes), (MD: −2.82; 95% CI = −19.46–13.83)
(see Figure 3B). Eight studies [43–49,52] (n = 857) reported on the blood loss (milliliters),
(MD = 3.41; 95% CI: −33.33–40.16) (see Figure 3C). Five studies (n = 572) reported on the
number of patients who needed to be administered blood transfusion intraoperatively,
(OR: 1.04; 95% CI = 0.63–1.71, p = 0.89) (see Figure 3D).
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3.6. Risk of Bias and Study Heterogeneity Assessment

The results of the risk of bias assessment for the outcomes are presented in Figure 4.
All outcomes meta-analyzed in this paper received the same score; therefore, Figure 4
represents the results of the assessments of all outcomes.

Overall, most of the included studies were adequately randomized, and no studies had
issues arising from missing outcomes. The main risk of bias was related to the inadequate
elaboration of the study designs in some cases, which led to some concerns and, in other
cases, bias arising from the reporting of the outcomes represented a critical risk.

Levels of heterogeneity are interpreted according to the Cochrane Handbook [17] using
τ2, I2, and Cochrane Q test statistics [32–34]. Moderate heterogeneity (I2 = 54% [2%;78%],
p = 0.03) was observed in the analysis of the overall postoperative complication rate. This
may be due to the fact that fewer than ten studies were included in the analysis, and the
fact that patients who underwent different liver surgeries were pooled together. Moderate
heterogeneity was observed in the analyses of the length of hospital stay (I2 = 38% [0%;73%],
p = 0.12) and blood loss (I2 = 40% [0%;73%], p = 0.11), possibly due to the difference in the
surgical characteristics of the included patients. Severe heterogeneity (I2 = 65%, [0%;88%],
p = 0.03) was observed in the analysis of septic/infectious complications. This could be
explained by the size of the patient pool (n = 200), given that this analysis only incorporated
four studies. No severe heterogeneity has been detected in any other analyses.
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3.7. Certainty of Evidence Assessment

Studies were also evaluated for their level of certainty of evidence using the GRADE
assessment system. Results of the GRADE assessment of meta-analyzed outcomes are
presented on Table S2. Overall, the certainty of the evidence was assessed as weak to very
weak.

4. Discussion

This is the largest and most comprehensive systematic review and meta-analysis on
the effects of preoperative glucocorticoid administration in liver surgery to date. Our
results revealed that glucocorticoid prophylaxis did not reduce the overall complication
rate in patients undergoing major liver surgery (OR: 0.71, p = 0.23), and hence its routine
use in this patient population is not supported by sufficient evidence.

Liver surgery presents a unique challenge, being unlike most other major abdominal
surgeries in the context of postoperative complications. It has been postulated in the past
that underlying the relatively high risk involved in liver surgeries is the cascade of dys-
functional systemic metabolic and hematological responses to injury, which is the result of
and also the cause of hepatic dysfunction [51]. When the liver parenchyma is injured, the
protective functions of the liver, which would have otherwise compensated for the response
to insult, may become impaired or dysregulated [52]. The resulting dysfunction is associ-
ated with the typical post-hepatectomy complications such as hepatic insufficiency, bile
leakage, wound infections, abdominal infections, pleural effusion, pulmonary atelectasis,
and hemorrhage [53]. Liver transplantation follows a similar logic, and the complications
may be even more severe [54].

Investigations into the use of glucocorticoids for their hypothesized protective effect
against postoperative complications have been ongoing for decades. One of the earliest
clinical trials was published in 1996 by Shimada et al. [55]. The authors investigated
the effects of steroid administration on postoperative cytokine release and found that
a short-term pulse of methylprednisolone might be effective in reducing surgical stress
by decreasing cytokine release. Steroids were chosen by researchers for their significant
anti-inflammatory effects, which have been hypothesized by trialists as being able to
reduce the extent of hepatic dysregulation, allow for a more rapid liver function recovery,
and reduce the risk of developing systemic dysregulation in relation to the uncontrolled
immune response. However, it should be noted that steroids have long been considered
a double-edged sword when it comes to use, as their potential side effects are risky and
undesirable [4].

Since the two systematic reviews published in 2014, there have been contradictory
results published by clinical trialists on the subject of steroids and liver surgery, which
necessitated further systematic reviews. While Richardson et al. [12], Li et al. [13], and Yang
et al. [14] all reported in their meta-analyses a tendency toward lower overall postoperative
complication rates (p-values of 0.09, 0.09, and 0.13, respectively), the recent meta-analysis
by Hao-Han et al. [15] found a statistically significant decrease in overall complications
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(p = 0.04). However, we cannot validate these results with our updated study. None of the
previous meta-analyses were able to detect a statistically significant difference between the
intervention and control groups in terms of specific complications, namely, bile leakage,
liver failure, wound complications, infectious complications, and pleural effusion. Our
analysis of particular complications did not provide a sufficiently high level of evidence,
due to the unavailability and/or the improper reporting of these complications. Especially
for liver failure, there was an observable difference between the reporting of Onoe et al. [48]
and that of other studies. This is possibly due to the different assessments made on
what constitutes liver failure. In our meta-analysis, we detected a statistically significant
reduction in wound infections, but we have reservations about the quality of the evidence.
Firstly, both the sample size and the number of studies are limited, and the intervention
groups with zero complications may have introduced a bias toward a reduced odds ratio
in the analysis.

Increased total bilirubin is an indicator of an imbalance between production and
excretion and, ultimately, is considered a reflection of liver function [56]. Most of the
included studies investigated this outcome as a measure of liver health and, except for
Muratore et al. [47], found that steroid administration significantly reduced levels of total
bilirubin. Combined with aminotransferases ALT and AST, these are indicators of liver
health commonly used in clinical practice. Although the investigation was not as thorough,
and the findings were not as consistent as with total bilirubin, there were many significant
findings of reduced levels of ALT in the intervention groups. This could signal a liver-
protective effect that was bestowed by the intervention, since an increase in ALT is found
primarily in the liver and is considered a marker of liver disease [57]. C-reactive protein is
an acute-phase protein synthesized by the liver and, along with interleukin 6, is a marker
of inflammation. Increases in CRP levels have been associated with liver failure [58].
The studies we reviewed consistently reported significantly reduced levels, signaling a
protective effect on the liver. Lastly, prolonged prothrombin time is associated with liver
failure [59], as the liver produces many of the factors and components of the coagulation
system. Hayashi et al.’s finding [45] on the PTT-INR contradicts other articles included
in this review. Coagulation parameters should be considered a critical component of the
assessment of liver function; thus, future clinical trials should be designed to generate
further high-quality evidence on the effects of the intervention on coagulation.

All previous meta-analyses found significantly reduced levels of total bilirubin in the
intervention groups. Although we could not perform a meta-analysis on this outcome,
available evidence suggests future clinical trials could validate these findings. All meta-
analyses, except for that of Hao-Han et al. [15], have also found significantly reduced levels
of IL-6 in the intervention groups. However, IL-6 has not been measured in recent clinical
trials. We recommend that IL-6 be included in future clinical trial designs as an outcome
measure.

The reporting of laboratory measurements as outcomes was not always consistent
across the included studies. Although we did not detect a considerable risk of bias using
Cochrane’s tools, in the clinical context, it might have been more useful to have explicitly
detailed and consistent measurements taken throughout the follow-up period. Further-
more, the mathematical analysis of the aggregated data should always be presented in the
publication along with distribution, in order to enable reliable meta-analyses. Laboratory
outcomes should be examined and reported in a way that is consistent with complications
and patient subgroups. Peak values should also be examined alongside means, and the
measurements should be documented clearly with their time points to reduce the risk of
bias. Measurement results and time points left out of the reports without a clear explanation
presented a challenge in conducting our meta-analysis. Another challenge was results
reported without reliable distribution figures, which made meta-analyzing these outcomes
by pooling medians and means unreliable.

We recommend that trialists design future randomized clinical trials around an interna-
tionally acknowledged postoperative complication classification system such as the Clavien–



J. Clin. Med. 2024, 13, 2097 11 of 15

Dindo Classification System [60] or the Comprehensive Complication Index (CCI) [18],
which is an integrated complication-reporting algorithm.

On the other hand, we recommend that future clinical trials put emphasis on dif-
ferentiating the benefits for patient subgroups, categorized according to the indication
for liver surgery, as well as patient severity scoring systems. We recommend utilizing
the APACHE IV scoring system [61] for assessing critically ill patients, and the Ameri-
can Society of Anesthesiologists (ASA) physical status classification system [62] to group
patients according to the assessed surgical risk. Furthermore, trialists ought to consider
the potential difference in benefits derived for patients undergoing liver transplantation
versus open or laparoscopic hepatic resections. Researchers may be able to detect differ-
ences in benefits derived between different regimes of preoperative steroid administration.
Therefore, designing future clinical trials around contrasting single high-dose preoperative
administration versus progressively decreasing doses of perioperative administration on
subsequent days, as designed by Onoe S. et al. [48], might yield a higher level of evidence.

The ERAS Society’s recommendation on perioperative steroid administration in their
2016 guideline [11] is currently stated as a weak recommendation based on a moderate level
of evidence. In light of our systematic review and other studies that have been published
since 2016, we recommend that the guidelines on this intervention be updated with new
levels of evidence and a new grade of recommendation.

4.1. Strengths and Limitations

Our study had certain strengths and limitations that should illuminate clinical decision
making and future clinical trial designs. Our study included the most recent publications
on the topic and had considerably more patients in the analysis compared to the previous
meta-analyses. All included articles were randomized controlled trials which were critically
appraised using the GRADE approach to the level of evidence certainty, which was missing
from the literature. As such, the qualitative assessment within this manuscript describes
where there is uncertainty in the currently available literature.

Our study was limited by data availability, which prevented us from performing
subgroup analyses, and meta-analyses on postoperative laboratory outcomes. Differences
in intervention regimes may limit the generalizability of our findings. Furthermore, the
analyses were limited by the considerable heterogeneity between studies, which limited the
applicability of our findings. Finally, we could not perform an assessment of publication
bias due to the low number of studies.

4.2. Implications for Practice and Research

We were unable to show any convincing benefits to using glucocorticoids preopera-
tively in liver surgery, and hence the routine use of preoperative glucocorticoids in major
liver surgery cannot be supported by evidence. However, it should be noted that there
were no reported cases of adverse events associated with its use either. Therefore, its use
should only be warranted within the domain of clinical research.

Further prospective data collection is needed to assess the benefits of perioperative
steroid administration on particular postoperative complications. Mainly, the effects on
liver dysfunction or failure, shock, septic complications, and coagulation-related complica-
tions should be investigated.

It is crucially important to bring scientific results to the bedside [63,64]. As such,
research on this particular topic should focus on outcomes that are specific to patient
populations and direct clinical outcomes with rigorous postoperative follow-ups.

5. Conclusions

In conclusion, our meta-analysis did not show any statistically significant reduction in
postoperative complications for patients undergoing liver surgery, except for in the rate
of developing wound infections. However, further investigation is needed to clarify this
finding. Most clinical trials reported significant improvements in postoperative laboratory
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values at different time points, which signifies a protective effect against liver injury and
dysfunction, but further research is needed for a higher grade of evidence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm13072097/s1, Table S1: Summary table of the laboratory
outcomes reported by the included studies, Table S2: Results of the GRADE assessments carried out
using GRADEPro GDT software, Table S3: PRISMA 2020 Checklist.
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