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Abstract: Objectives: The purpose of this paper is to assess the determination of male and female sex
from trabecular bone structures in the pelvic region. The study involved analyzing digital radiographs
for 343 patients and identifying fourteen areas of interest based on their medical significance, with
seven regions on each side of the body for symmetry. Methods: Textural parameters for each region
were obtained using various methods, and a thorough investigation of data normalization was
conducted. Feature selection approaches were then evaluated to determine a small set of the most
representative features, which were input into several classification machine learning models. Results:
The findings revealed a sex-dependent correlation in the bone structure observed in X-ray images,
with the degree of dependency varying based on the anatomical location. Notably, the femoral neck
and ischium regions exhibited distinctive characteristics between sexes. Conclusions: This insight is
crucial for medical professionals seeking to estimate sex dependencies from such image data. For
these four specific areas, the balanced accuracy exceeded 70%. The results demonstrated symmetry,
confirming the genuine dependencies in the trabecular bone structures.

Keywords: textural analysis; radiographs; pelvic regions; sex estimation; machine learning

1. Introduction

There are noticeable disparities between the bone structures of males and females.
These differences are attributable to estrogen-induced periosteal growth inhibition, directly
proportional to a two-year-earlier maturation in girls than boys [1]. Additionally, hormonal
and related structural phenomena resulting from developmental variations in boys and
girls lead to different bone geometries, greater bone mass, and increased trabecular thick-
ness in boys [2,3]. Conversely, the inhibitory action of estrogen on osteoclasts throughout
adulthood is responsible for bone protection. In postmenopausal women, when estrogen
influence is diminished, metabolic changes result in osteoporosis and fragile bones [4]. The
differences in trabeculae between men and women are primarily influenced by hormone
levels, which are recognized as the most critical factor in sex differences in bone mechan-
ics [5,6]. However, decreased protein intake in elderly individuals with regional differences
between men and women was also identified as a possible factor with implications for
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bone structure diversity [7]. Furthermore, there are differences in the activity bias between
men and women, which can impact bone remodeling differently [8].

In our work, we utilized biology-driven variations in bone structure to determine an
individual’s sex. Certain bone features, such as trabecular structure, are indistinguishable
even to experienced observers like radiologists when examined by the human eye. How-
ever, these features can be highlighted through textural analyses [9]. Determining bone
morphology, which reflects an individual’s unique features, is crucial in forensic medicine
and trauma management. Sex estimation is the initial step in creating an osteological profile,
where bones are the only remaining human remains. Differences in sex estimation are
influenced, in part, by sex-related variations in pelvic shape due to pubertal dimorphism
and different postures and gaits [10]. Subjective and visual methods are commonly used
for sex estimation, but they may be inaccurate, and reproducible results are essential [11].
Applying geometric and morphometric methods can achieve high accuracy rates, up to
100%, under conditions where well-defined landmarks are present [12]. However, these
techniques are not applicable when only parts of the pelvic bone are available, and other
objective bone analyses, such as X-ray analyses, must be performed [13]. Textural analyses
can also reflect bone quality, making them helpful in determining the ideal locations for
implementing surgical hardware during fracture fixation [14–16]. It should be noted that
various techniques have been used for age or sex estimation [14–16]. In ref. [14], radiograms
of different bone structures are utilized to discriminate between specific age ranges of living
individuals from the Indian population for legal purposes. For children aged 3 months
to 16 years, specific carpal bones and their appearance in anteroposterior (AP) wrist ra-
diographs are associated with particular ages. Additionally, for children over 14 years
old, AP radiographs of the pelvis and elbow are performed to discern ages around pre-
and early puberty. AP radiographs of the elbow, wrist, or shoulder joint for late puberty
are analyzed to enhance age determination. Furthermore, chest radiographs distinguish
whether individuals have reached retirement age (60–62). In ref. [15], the sex and age of
human patients are determined based on image analysis applied to spine images. In this
experiment, CT scans presenting from 4 to 12 vertebrae are employed. Texture-based fea-
tures and convolutional neural networks are utilized to classify sex, and regression analysis
is employed for age estimation ranging from 21 to 84 years. In ref. [16], bone mineral
density (BMD) of the cranium and femur fragments is used to estimate the age-at-death
and sex of unidentified human remains. The BMD is measured using the dual-energy X-ray
absorptiometry technique.

A review of conventional geometric and morphometric approaches utilized on the
thoracic vertebrae’s vertebral body and pedicle is provided in ref. [17]. Nowadays, the
emerging problem of an ageing population with possible low bone quality and high
incidence of pelvic fractures in older women is an essential clinical aspect of study [18,19].
In ref. [20], radiographs of reconstructed cadaver knee joints are utilized to identify the sex
of remains from Anglo and African Americans dating back to the late 19th and early 20th
centuries. The subjects selected for the experiment have an age of death ranging from 64 to
102 without bone-related diseases. Deep learning algorithms are employed for automatic
image analysis.

The aim of our study was to determine the performance of a novel approach to
utilizing textural parameters to analyze X-rays of pelvic bones for the determination of
bone quality and sex. Additionally, bone regions that best reflect sexual dimorphism
were determined. This addresses the need for rapid and effective detection of areas most
vulnerable to potential pathological changes.

2. Materials and Methods

Figure 1 depicts the primary steps of the methodology we present. Our dataset
comprises 343 anonymized images of pelvis digital radiography (DR) scans. Initially, these
data were recorded in 16-bit DICOM (Digital Imaging and Communication in Medicine)
format, necessitating preprocessing to accommodate the 8-bit data supported by image
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analysis tools. Subsequently, we identified fourteen distinct regions of interest (ROIs)
in each pelvis, seven on each side of the body. For each ROI, we calculated a set of
textural features using the pyRadiomics [21] library accessible in Python. Subsequently, we
determined the correlation of these features with patient sex, and because there is no simple
feature that would state the patient sex with a high probability, more complex statistical
models were prepared. Given the larger number of textural features than the number of
samples we could use to train the model, we applied feature selection methods to determine
the most promising features, which were then utilized to train the classification model.
Separate models were prepared for each ROI in the pelvis.
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Figure 1. Methodological workflow of the research.

2.1. Dataset Description

The dataset includes 343 radiographic images of the pelvis selected from a larger
dataset of 684 images. This selection ensures that any severe medical conditions, low-
quality images, or presence of prostheses did not influence the data. The radiographic
images were acquired from Caucasian individuals, including 253 women and 90 men,
routinely examined during hospital admission. The age range of the women was between
34 and 94, while the men’s age range was between 26 and 90, with an average age of
65.4 ± 12.3 and 60 ± 13.7 for women and men, respectively. The images were taken using
the Visaris Avanse DR (Visaris, Serbia), a digital radiography imaging system, and stored
as 12-bit (16-bit allocated) DICOM data with a pixel spacing of 0.13256 mm × 0.13256 mm.
All images were anonymized, and the patient’s sex was saved in the metadata associated
with the dataset. The local Institutional Ethical Board approved this retrospective study, as
patient involvement was omitted; therefore, additional consents or declarations were not
required (A.I.060.3.2024).

2.2. ROI Annotation

By employing the qMaZda 19.02 software [22], twelve rectangular and two circular
regions of interest (ROIs) were meticulously annotated onto X-ray images of the pelvic
bones. These ROIs were designated by experienced radiologists with at least six years of
specialization in musculoskeletal structures. In order to ensure accurate placement of the
ROIs, images without prostheses were prioritized, as these devices can obstruct the site
of interest. The spatial arrangement of the ROIs in relation to the anatomical structures is
illustrated in Figure 2 and described in detail in Table 1. The ROIs are distinguished by
unique colors for easy identification.
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Table 1. Depicted ROIs with corresponding anatomical structure.

ROI Left ROI Right Anatomical Structure

L01 R01 Wing of ilium
L02 R02 Neck of femur
L03 R03 Greater trochanter
L04 R04 Ischium
L05 R05 Shaft of femur

L06 R06 Hip bone above the
acetabulum

L07 R07 Femur head (center)

2.3. Preprocessing

The research methodology entailed the following procedures aimed at achieving
optimal texture parameters. The images, initially in DICOM 16-bit format, were encoded
with only 12 bits of data (0–4095). To normalize the images, we proportionally scaled
them to 8 bits, using each image’s maximum and minimum pixel brightness to delineate
the valid information range. In this process, we disregarded the side indicator labeled
‘R’ as it includes the full range of values. Figure 3 illustrates this procedure through a
graphical representation of the histogram distribution of pixel brightness values before
and after scaling. Subsequently, the original image was enhanced with additional filters to
emphasize the visual changes in the trabecular structure of the bones. This step involved
applying histogram equalization (HEQ), contrast-limited adaptive histogram equalization
(CLAHE) [23], their combination (CLAHE_HEQ), and the statistical dominance algorithm
(SDA) [24]. For CLAHE, we used the default values in the ImageJ/Fiji package [25],
including a block size of 127 pixels, 256 histogram bins, and a maximum slope of 3.
For SDA, we assumed a radius of 50 pixels. Figure 4 demonstrates the impact of the
preprocessing methods.
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2.4. Textural Features

• After designating all the regions of interest (ROIs), we proceeded with the determina-
tion of textural features based on pyRadiomics [21]. All available textural parameters
were computed. In the following text, we will limit ourselves to a concise list of the
primary methods employed in our research. The set of parameters was derived from
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various statistical image descriptors and comprised the following groups (as described
in refs. [21,26]):

• First-order features (FOFs) are based on simple statistical information that can be
determined from an image histogram. These features include the 10th percentile, 90th
percentile, energy, total energy, entropy, minimum, maximum, mean, median, range,
inter-quartile range, mean absolute deviation, robust mean absolute deviation, root
mean squared, kurtosis, skewness, standard deviation, uniformity, and variance.

• The gray-level co-occurrence matrix (GLCM) derives textural information by con-
sidering the spatial distribution of pixel brightness in the image. It consists of the
following features: autocorrelation, joint average, cluster prominence, cluster shade,
cluster tendance, contrast, correlation, difference average, difference entropy, differ-
ence variance, joint energy, joint entropy, informational measure of correlation (IMC)
1, informational measure of correlation (IMC) 2, inverse difference moment, maximal
correlation coefficient, inverse difference moment normalized, inverse difference, in-
verse difference normalized, inverse variance, maximum probability, sum entropy,
and the sum of squares.

• The grey-level size zone matrix (GLSZM) provides a statistical representation by
estimating a bivariate conditional probability density function of the image distribution
values. This matrix takes into account various aspects such as minor area emphasis,
significant area emphasis, grey-level non-uniformity, size-zone non-uniformity, zone
percentage, grey-level variance, zone variance, zone entropy, low grey-level zone
emphasis, high grey-level zone emphasis, small-area low grey-level emphasis, small-
area high grey-level emphasis, large-area low grey-level emphasis, and large-area high
grey-level emphasis.

• The grey-level run length matrix (GLRLM) considers that images with more frequent
changes in pixel brightness next to each other have better contrast, while those where
one color is kept longer are blurred. Therefore, the length of pixels with the same color
in a linear neighborhood is considered as basic information and used to calculate the
following features: short-run emphasis, long-run emphasis, grey-level non-uniformity,
grey-level non-uniformity normalized, run length non-uniformity, run length non-
uniformity normalized, run percentage, grey-level variance, run variance, run entropy,
low grey-level run emphasis, high grey-level run emphasis, short-run low grey-level
emphasis, short-run high grey-level emphasis, long-run low grey-level emphasis, and
long-run high-grey level emphasis.

• The gray-level dependence matrix (GLDM) evaluates the relationships between the
brightness of neighboring pixels in a rectangular area. The following features are
derived from this analysis: small dependence emphasis, large dependence emphasis,
gray-level non-uniformity, dependence non-uniformity, dependence non-uniformity
normalized, gray-level variance, dependence variance, dependence entropy, low
gray-level emphasis, high gray-level emphasis, small dependence low gray-level
emphasis, small dependence high-gray level emphasis, large dependence low gray-
level emphasis, and large dependence high gray-level emphasis.

• The neighboring grey tone difference matrix (NGTDM) determines image information
by analyzing the rectangular region and comparing its central pixel brightness with the
average one for the whole area. It calculates coarseness, contrast, business, complexity,
and strength.

• The gradient map features derive information from the changing magnitude within
an ROI. This method calculates five parameters: mean, variance, skewness, kurtosis,
and nonzeros.

• The first-order autoregressive model assumes the dependence of pixel intensities of
adjacent pixels and aims to find weights of gradient directions that best correlate to
the region’s pixel distributions. In consequence, four parameters are calculated.

• The Haar wavelet transform decomposes the image into several sub bands of ener-
gies and calculates their frequency characteristics. There are four scale transforma-
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tions, and the features describe spatial combinations of the resulting low-pass and
high-pass values.

• The Gabor transform decomposes the image into frequency components. The valid
frequencies are found by convolving the image with proper complex number kernels,
while stored parameters describe the Gaussian envelope’s frequency, orientation, and
standard deviation.

• The histogram of oriented gradients determines the features from histograms repre-
senting the frequency of orientations found in the image. The feature vector constitutes
a normalized histogram.

Based on our previous research, we understand that data normalization is essential for
determining accurate textural features. Therefore, we utilized the original pixel brightness
distribution for textural feature calculation (D) and employed additional normalization
techniques already present in the qMaZda software. Specifically, we implemented mean
value and standard deviation normalization (S), min–max image normalization (M), and
the removal of the first and last percentiles of the region histogram (N). Given that the ROIs
are relatively small, using the full range of possible pixel brightness values (0–255) can lead
to statistically unstable structures in feature calculations. To address this issue, we enabled
the calculation of features for images with quantized pixel values, following the qMaZda
approach. It is proved that a reduction in image depth increases the texture utility [27–29].

The number of features calculated for each ROI is significantly larger than the number
of samples. This excess of data makes training a classification model difficult due to data
redundancy and override of the significant structures with less critical but numerous
information. Therefore, we decided to apply feature selection methods in order to diminish
the number of features used to train the model and choose the most characteristic ones.
In the experiments, several methods for feature vector reduction were evaluated: four
correlations (Fisher, Spearman, Pearson, Kendall), mutual information maximization (MIM),
max-relevance and min-redundancy (MRMR), mutual joint information (JMI), conditional
information feature extraction (CIFE), and principal component analysis (PCA). We also
compared several classifiers: random forest (RF), logistic regression (LR), and support
vector machines (SVM) with linear and radial basis functions (RBFs) for the kernel.

3. Results

We conducted numerous independent experiments using different input data normal-
ization techniques to determine which method better visualizes the trabecular structure:
HEQ, CLAHE, CLAHE + HEQ, SDA, or the original data. Normalization improves data
quality and reduces noise, which could increase the variation in texture feature values.
This is particularly relevant for methods that enhance local contrast (CLAHE) or normalize
the local context (SDA). Following this, each ROI was normalized using the D, N, or S
approaches, and the number of bits for image quantization was chosen (5–8). A separate
model was trained for each potential combination of these approaches. Additionally, we
evaluated all possible combinations of feature selection methods and classification ap-
proaches mentioned earlier. This resulted in thousands of outcomes, providing valuable
insight into the complexity of sex classification based on the texture feature extraction of
the source DICOM file.

To ensure the stability of the results and prevent dependence on sample splitting
between training and validation, we applied the five-fold cross-validation method in each
experiment. The results reported in this study are the average of the five runs. Next, to
address the issue of unbalanced data, we selected the balanced accuracy (BACC) metric
to compare outcomes. BACC is directly proportional to sensitivity and specificity (1), the
two most important factors defining a good classifier. Table 2 gathers the highest BACC
scores recorded for each ROI, considering several bits used for feature calculation. This
table presents the maximum and average BACC achieved for one region.

BACC =
Sensitivity + Specificity

2
, (1)
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Table 2. Results of BACC (in [%]).

ROI 5 Bit 6 Bit 7 Bit 8 Bit Max Avg

L01 66.23 68.86 69.19 70.02 70.02 68.58
L02 71.29 70.46 70.03 70.26 71.29 70.51
L03 68.10 68.41 67.41 68.01 68.41 67.98
L04 71.87 71.46 71.21 71.37 71.87 71.48
L05 64.99 66.77 63.63 63.63 66.77 64.76
L06 70.76 68.31 68.72 69.11 70.76 69.23
L07 69.65 69.59 69.73 69.16 69.73 69.53

R01 67.04 68.85 67.34 66.81 68.85 67.51
R02 71.78 71.59 72.51 71.30 72.51 71.80
R03 68.56 66.46 67.47 68.38 68.56 67.72
R04 73.32 70.48 72.64 71.30 73.32 71.94
R05 69.17 67.42 67.57 68.98 69.17 68.29
R06 67.92 68.78 70.60 69.11 70.60 69.10
R07 66.70 67.40 68.98 67.27 68.98 67.59

The best outcomes, with over 70% balanced accuracy (BACC) of sex distinction, were
achieved for four regions: L02, R02, L04, and R04, regardless of the number of bits used for
feature calculation. Figure 5 visually presents the highest BACC score recorded for each
region of interest (ROI) from all evaluated experiments. The research demonstrates that sex
can be determined with 73.32% balanced accuracy obtained for the ischium on the right
side (R04).
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R05 69.17 67.42 67.57 68.98 69.17 68.29 
R06 67.92 68.78 70.60 69.11 70.60 69.10 
R07 66.70 67.40 68.98 67.27 68.98 67.59 

The best outcomes, with over 70% balanced accuracy (BACC) of sex distinction, 
were achieved for four regions: L02, R02, L04, and R04, regardless of the number of bits 
used for feature calculation. Figure 5 visually presents the highest BACC score recorded 
for each region of interest (ROI) from all evaluated experiments. The research demon-
strates that sex can be determined with 73.32% balanced accuracy obtained for the is-
chium on the right side (R04). 

 

Figure 5. Marked regions of interest with the best BACC.

Moreover, we examined whether providing the classifier with information from vari-
ous preprocessing and feature extraction methods influenced the classifier’s quality. Table 3
compiles the top 10 BACC results for the L02, R02, L04, and R04 regions, along with the
number of bits used for feature calculation. The table details the methods of normalization
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(column “Preproc”), feature selection (column “Filter”), and classification (column “Clas-
sifier”) used to build the model. This table provides comprehensive information on the
statistical results of our experiments, including other metrics such as accuracy, sensitivity
(recall), specificity, and F1-score. However, due to the high dataset imbalance, balanced
accuracy is the most optimal metric for comparison. From the results inspection, it is
difficult to pinpoint the best set of methods for sex classification and clearly state which
classifier or feature selection method is the best. Nonetheless, the similarity in values and
repeatability confirms the reliability of the obtained results. We also conducted another
study where a smaller number of features were selected for the feature vector, and we
found that using only six features selected by one of the following methods: multi-CIFE,
multi-JMI, multi-MIM, PCA, uni-Kendall, and uni-Pearson did not result in a significant
loss in the quality of the results.

Table 3. Results obtained for most important ROIs (in [%]).

ROI Bit Preproc Filter Classifier Accuracy BACC Sensitivity Specificity F1-Score

L02 5 CLAHE multi-MIM SVM_linear 68.83 71.29 75.11 67.47 56.63
6 CLAHE multi-MIM SVM_rbf 66.23 70.46 77.63 63.28 54.71
6 CLAHE multi-MIM SVM_rbf_p 66.23 70.46 77.63 63.28 54.71
5 SDAr50 multi-CIFE RF_d4_l5 72.05 70.36 64.87 75.85 54.62
8 CLAHE multi-JMI SVM_rbf 67.70 70.26 74.50 66.02 54.96
8 CLAHE multi-JMI SVM_rbf_p 67.70 70.26 74.50 66.02 54.96
5 CLAHE+HEQ uni-Kendall LR_d 68.85 70.13 70.52 69.74 54.53
6 SDAr50 multi-CIFE SVM_rbf 68.24 70.06 72.89 67.23 54.19
6 SDAr50 multi-CIFE SVM_rbf_p 68.24 70.06 72.89 67.23 54.19
7 CLAHE multi-JMI SVM_rbf 66.81 70.03 75.67 64.40 54.68

L04 5 none uni-Pearson RF_d4_l5 72.04 71.87 68.96 74.79 56.61
5 none uni-Pearson SVM_rbf 71.75 71.74 69.06 74.43 56.28
5 none uni-Pearson SVM_rbf_p 71.75 71.74 69.06 74.43 56.28
6 HEQ multi-MIM SVM_linear 68.53 71.46 75.33 67.59 55.76
6 HEQ uni-Fisher LR_d 70.29 71.45 71.32 71.58 55.07
5 HEQ PCA SVM_linear 69.99 71.37 72.07 70.67 55.84
8 CLAHE+HEQ PCA LR_d 70.55 71.37 71.10 71.64 54.79
8 CLAHE+HEQ PCA SVM_linear 70.55 71.37 71.10 71.64 54.79
5 HEQ PCA LR_d 69.40 71.30 73.12 69.47 55.71
6 HEQ uni-Fisher SVM_linear 70.00 71.26 71.32 71.19 54.77

R02 7 SDAr50 multi-JMI SVM_rbf 67.43 72.51 80.41 64.60 58.26
7 SDAr50 multi-JMI SVM_rbf_p 67.43 72.51 80.41 64.60 58.26
7 SDAr50 multi-JMI LR_d 69.16 72.42 76.92 67.93 57.46
5 SDAr50 multi-CIFE LR_d 70.00 71.78 73.59 69.97 56.40
5 SDAr50 PCA SVM_rbf 71.75 71.67 68.96 74.38 56.16
5 SDAr50 PCA SVM_rbf_p 71.75 71.67 68.96 74.38 56.16
7 SDAr50 PCA LR_d 67.95 71.62 77.23 66.01 55.71
6 CLAHE+HEQ PCA LR_d 70.02 71.59 72.16 71.02 55.85
7 SDAr50 PCA SVM_linear 67.66 71.45 77.23 65.66 55.57
6 CLAHE+HEQ PCA SVM_rbf 70.89 71.44 69.95 72.93 55.95

R04 5 CLAHE+HEQ multi-CIFE SVM_rbf 70.58 73.32 77.31 69.33 57.94
5 CLAHE+HEQ multi-CIFE SVM_rbf_p 70.58 73.32 77.31 69.33 57.94
7 CLAHE+HEQ multi-CIFE SVM_rbf 69.12 72.64 78.25 67.03 57.03
7 CLAHE+HEQ multi-CIFE SVM_rbf_p 69.12 72.64 78.25 67.03 57.03
5 CLAHE+HEQ multi-CIFE RF_d4_l5 72.33 71.41 67.48 75.33 56.30
8 CLAHE+HEQ multi-CIFE SVM_rbf 67.38 71.30 77.29 65.31 55.93
8 CLAHE+HEQ multi-CIFE SVM_rbf_p 67.38 71.30 77.29 65.31 55.93
5 none uni-Pearson SVM_rbf 68.88 70.66 72.22 69.11 56.22
5 none uni-Pearson SVM_rbf_p 68.88 70.66 72.22 69.11 56.22
6 CLAHE+HEQ multi-CIFE SVM_rbf 66.81 70.48 76.08 64.88 54.85
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4. Discussion

The process of bone analysis has a range of applications in legal contexts, where it
is used to determine human origin or personal data in fields like forensic medicine and
physical anthropology. In this procedure, the pelvis is considered the best bone for sex
determination, with metric and morphological methods achieving reported accuracies of
92% and 91%, respectively. In fact, the pelvis outperforms other bones in this regard [30].
Morphometric methods that involve the use of coordinates have been shown to achieve
up to 100% accuracy in sex prediction, but these techniques can be challenging when the
coordinates are not always identifiable [31]. As Fukuta suggests [32], new approaches
to bone analysis have achieved up to 90% accuracy in sex estimation. In recent studies,
convolutional neural networks have been used to evaluate three-dimensional reconstructed
tomography images of pelvic bones, with transfer learning applied to achieve these goals.
The final result of a correct assignment rate higher than 90% was obtained. Additionally, the
reconstruction and analysis of the cortex has been proposed as a method for determining
cancellous bone quality [33].

Our research has shown that the methods we discussed above yield results that are
comparable to our own findings in context of sex determination from bone structures.
An additional benefit of our work is that we identified 14 regions of interest (ROIs) that
accurately discriminate between the sexes. Out of these fourteen ROIs, four were found to
be particularly effective. These ROIs were selected experimentally based on their ability
to reflect bone morphology-driven dimorphism, and they were located in various parts
of the pelvic bones and hips. Our approach, as well as the other solutions mentioned in
this paper, relies on selected regions of interest to determine sex based on textural features.
The best distinction between sex was noticed in the regions of femoral neck and ischium.
By identifying these regions, we can ensure that we are analyzing the parts of the pelvic
bones that provide the most accurate results. Our research suggests that the central part of
the femoral head, where the principal tensile trabeculae arc is located, is one of the most
effective areas for determining sex [34]. Additionally, we found that the load-bearing area
of the hip acetabulum was also a suitable location for analyzing sex differences. These
findings are consistent with previous studies that determined sex primarily from the most
loaded parts of the skeletal structures in the hip [35]. The importance of these ROIs is at
least partially related to hormonal influences on compact bone and the increased thickness
of trabeculae in men [5,36]. The observations made in this work are also applicable in
forensic medicine to determine the sex of bone remnants. Our research has implications
for medical applications, as the proposed methods for determining trabecular structure
and bone quality markers can also be used to identify the parts of the pelvis where surgical
fixation after complex injuries can be securely implemented. Determining the sites with the
highest possible bone strength and capacity to absorb screws is crucial for the postsurgical
period [37].

While evaluating various methodologies, it was intriguing to observe that limiting
the number of textural features to ten elements (reduced from hundreds) was sufficient
to describe the characteristic differences between the sexes. Apart from the reported
feature vector with a length of ten, we also experimented with a shorter description of the
imagery data, which yielded slightly inferior results. However, the lack of repetitiveness
between the results mostly concerned us as it suggested overtrained models. In the case of
models prepared with ten features, this issue did not arise. We also investigated whether
different approaches to feature selection influenced the outcomes, but no such correlation
was noticed. Another aspect of this research involved selecting the optimal classification
methodology for the sex determination task from the region of interest marked in the
pelvis. This aspect of the experiments showed that all classification models have similar
discriminative capabilities. Thus, it is challenging to determine the best one. Next, the
research addressed the problem of bit reduction in the image, which might be necessary to
quantize the data, as the textural features should create more stable statistical structures.
However, a strong correlation was not observed here. Nonetheless, we confirmed that
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applying a smaller number of bits is sufficient for bone texture description, as evident in
Table 3, where many of the best scores are achieved for fewer bits. Finally, we evaluated
the influence of data preprocessing with filters on the final textural feature calculation.
However, as shown in Table 3, the normalization approach should be applied, as most
outcomes for normalized data exist. However, again, it is not possible to determine which
approach is the best in this case.

Textural assessment of bone structural characteristics is a straightforward, efficient,
and noninvasive method for estimating bone structure. This X-ray-based technique’s
effectiveness can be compared to mechanical testing, X-ray analyses, CT, DeXa, and MR.
Willet [38] proposed bone collagen structure estimation using thermomechanical methods
to test bones associated with the final decomposition of the specimen. Another analytical
approach was proposed by Saito [39], where bone mineralization was enzymatically tested,
and final bone derangement was also performed. Mechanical testing was proposed by
Ebraheim [40], who effectively assessed the sites of the most vital parts of the sacrum.
The techniques mentioned above are precise, with high specificity reaching over 90% in
chosen methods; however, they are linked to complete derangement of bone. The magnetic
resonance technique relates to estimating water content in the tissue; however, it is costly
and requires sophisticated equipment. The method proposed by Nyman [41] presented
that the ratio of water-bound molecules to free water in cancellous bone can be correlated
with the sex and age of the specimen. High-resolution peripheral quantitative computed
tomography (HR-pQCT) as a modality implemented for mineral density assessment was
used in the femur by Kirhoff [42]. The technique was influential in estimating the specimen’s
sex and bone quality at the expense of a higher radiation dose than an X-ray. Micro CT
was utilized by Greenwood [43] to effectively correlate parameters related to sex and bone
quality with microarchitecture evaluated with low-dose computed tomography. The X-ray-
based techniques proposed in our paper offer a low radiation dose compared to CT, low
cost compared to MR, and simplicity compared to mechanical testing, making them user
and patient-friendly.

A limitation of our study is the unified cohort of Caucasian (European) origin patients
from one geographical region and the limited number of participants. There needs to be
further comparison of different methods.

5. Conclusions

Our team conducted a comprehensive analysis of various preprocessing techniques
and developed a novel method for bone assessment that extracts biological information.
This innovative approach integrates non-parametric methods and textural analyses, allow-
ing for precise determination of patient sex. Our technique’s effectiveness in recognizing
and quantifying hormonal status, influenced by subtle changes in bone trabecular structure,
was evident. The high sensitivity of our approach makes it applicable in both clinical and
forensic studies. In future investigations, we plan to compare our current results with
densitometry methods and expand our study to include a larger patient population.
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