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Abstract: Sodium, although essential for life, is a key factor in changes in vascular function and
cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many
nutritional benefits, presents itself as a promising substitute for the consumption of purified salt.
Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological
processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory
processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis)
powder in healthy young people leads to an improvement in biochemical profiles and the attenuation
of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control
group that consumed salt and an intervention group that replaced salt with powdered S. perennis.
The evaluation of the biochemical parameters was carried out by the spectrophotometry method,
and the evaluation of MMP activity was carried out by zymography. A significant decrease was
observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c),
and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of
triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for
MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05.
The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding
the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation
of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases
in individuals with pathologies.

Keywords: salt-tolerant plants; sodium chloride; matrix metalloproteinase 2; matrix metalloproteinase 9;
cholesterol; Sarcocornia perennis

1. Introduction

Sodium is an extremely abundant nutrient, essential for life and the good functioning
of organisms. It plays a role in diverse physiological processes like body fluid homeostasis,
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blood pressure (BP) regulation, metabolic functions, and kidney function and, at a muscular
and neuronal level, is indispensable for maintaining the balance between the levels of
consumption and excretion [1–4].

The World Health Organization (WHO) affirms that one’s daily consumption of
sodium should not exceed 2 g (5 g of salt) due to the direct relation between the excessive
consumption of sodium and increased BP levels, although an individual’s daily sodium
consumption, as described in several studies, is estimated to be around 9–12 g of salt
worldwide [3–13]. According to Alfheeaid et al. [12], about 99.2% of the adult world
population presents levels of sodium consumption higher than those recommended by the
WHO, with this being related to the poor nutrition in the Western diet [14].

Excess sodium consumption is clearly highlighted in the literature as being responsible
for triggering an increase in water retention, blood flow pressure, inflammatory processes,
progressive arterial stiffness, high BP levels, cardiovascular diseases (CDs), and changes in
the intestinal microbiome, meaning it is a problem worldwide [1–3,5,12,15].

With this in mind, it is necessary to reduce salt intake or replace salt with healthy
alternatives, as increasing studies suggest that this is a promising preventive strategy,
especially in hypertensive patients [3,5,6,16–18].

The opportunity to study halophyte plants emerged; these are among the plants
with the best salt tolerance in the world, presenting several cultivation, economic, and
nutritional advantages [9,19–24]. They own adaptative mechanisms that allow them to
grow worldwide in environments with high salinity, being dispersed in coastal zones;
subtropical, subarctic, and brackish areas; and saline deserts [9,12,14,19–23].

Within halophyte plants, two very important genera are Sarcocornia spp. and Salicor-
nia spp., belonging to the family Amaranthaceae and subfamily Salicornioideae [12,14,25].
According to the literature, both present about 30 species each, and they are very similar
morphologically, ecologically, and taxonomically [9,14].

These plants are also known as glassworts, samphires, pickleweeds, and sea asparagus
and have a salty flavor, crunchy texture, and slight fibrousness [9,14,21,23]. Other common
synonyms of Sarcocornia perennis (S. perennis) are Salicornia perennis Mill., and Arthrocnemum
perenne (Mill.) Fourc. [26,27].

It is possible to find the introduction of some halophytes in the form of gourmet foods
such as garnishes or side dishes. They can be consumed fresh, boiled, powdered, con-
served/preserved, fermented, or dehydrated, and throughout history, halophytes have been
used in traditional medicine to treat gastrointestinal problems, inflammation, diabetes, and
hypertension [3,9,12,20–23]. They present an advantageous nutritional profile and antioxidant,
anti-inflammatory, anticancer, antibacterial, and antihypertensive properties [9,12,14,20–23].
Also, studies show that given their health benefits and salty flavor, halophytes are a promising
option for replacing the consumption of purified salt [3,9,19–22].

Matrix metalloproteinases (MMPs) are proteolytic enzymes that are dependent on
zinc and calcium and synthesized in conjunctive tissues, endothelial cells, vascular smooth
muscle, and pro-inflammatory cells. There are at least 28 types of MMPs in vertebrates, 24
in humans [28–33]. They present structural similarities, but in an inactive form, they are
called zymogens or proMMPs [28,29,31–33]. These enzymes are classified according to the
organization of their structural specificities and their substrates, with an emphasis on the
following types: collagenases, gelatinases, stromelysins, and matrilysins of the membrane
type, among others [28,29,31–33].

MMPs are found in all layers of the vascular walls, and their functions go through
several physiological processes, like tissue remodeling, vascular remodeling through the
degradation of collagen and elastin, embryogenesis, morphogenesis, healing, bone remod-
eling, the activation of immune cells, cell migration, and proliferation [28–34].

The regulation of MMPs is carried out through several steps and by the action of tissue
inhibitors of metalloproteins that reversibly block the action of MMPs [31,32,34].

Due to an imbalance between the expression of MMPs and their inhibitors, there is
an overexpression of MMPs in various tissues, which leads to the development of inflam-
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matory conditions, cell proliferation, the excessive degradation of matrix components,
autoimmune diseases, carcinogenesis, fibrosis, arterial stiffness, CD, and lung and neuro-
logical diseases [29–34]. Studies affirm that determining the activity of theses enzymes is
indeed a promising key factor given the possibilities of better diagnosis, prognosis, and the
monitoring of various diseases [31–33].

Gelatinase-type MMPs like MMP-2 and MMP-9 display physiological functions such
as remodeling the extracellular matrix (ECM), but in pathological situations, they end
up degrading gelatin, elastin, and type IV collagen in excess, as referenced in several
studies [3,27–29,31,33].

The present study aimed to evaluate the impact of replacing salt consumption with
the use of dried powder (S. perennis) for 30 days through a randomized clinical trial. The
intervention was evaluated by determining the participants’ biochemical profiles and the
activity of MMP-2 and MMP-9.

2. Materials and Methods
2.1. Halophyte Plant

S. perennis was provided by the Salina Greens company (Alcochete, Setúbal, Portu-
gal). The nutritional and mineral composition of dried S. perennis (powder) can be found
elsewhere in [24]. This powder boasts significant levels of proteins (16.7 g/100 g) and
carbohydrates (39.5 g/100 g), alongside a total ash content of 33.9 g/100 g, indicative of its
rich mineral profile.

Among the prominent minerals present in S. perennis powder are sodium
(7119.35 mg/100 g), potassium (1830.54 mg/100 g), magnesium (786.39 mg/100 g), calcium
(490.87 mg/100 g), and traces of phosphorus, iron, zinc, and manganese. Furthermore,
S. perennis extract has a high content of phenolic compounds (15.79 mg GAE/g) and
antioxidant capacity (58.49 mg Trolox/g), as measured by the DPPH method [24].

2.2. Study Sample

The study sample included 30 participants, all young people aged over 18 years
old (medium de 20.4 ± 1.2), with 23.3% being male and 76.7% female (Table 1) [3]. This
research project was approved by the Ethics Committee of the Polytechnic Institute of
Coimbra (7/2019, approved on 18 September 2019) and conducted in accordance with all
the principles of the Declaration of Helsinki [3].

Table 1. Characterization of the population in relation to qualitative variables.

CG (n = 15) IG (n = 15) Total (n = 30) P

Age 20.6 ± 1.5 20.2 ± 0.9 20.4 ± 1.2 0.379
BMI 22.8 ± 1.9 21.3 ± 2.7 22.1 ± 2.4 0.085

Waist 74.6 ± 8.0 77.8 ± 8.4 76.2 ± 8.1 0.296
Hip 94.4 ± 8.4 94.8 ± 7.9 94.6 ± 7.9 0.894

Ad. MD 7.3 ± 1.4 6.6 ± 1.7 7.0 ± 1.5 0.205
Legend: CG—control group; IG—intervention group; BMI: body mass index; Ad. MD: adherence to the Mediter-
ranean diet; P: p-value.

The participants were randomly divided into two groups equally. The control group (CG),
with 15 participants (n = 15), maintained the consumption of added salt in their diet, and those
in the intervention group (IG), also with 15 participants (n = 15), were instructed to replace their
salt intake with S. perennis powder, previously studied, and use it for 30 days in the desired
amount in order to obtain a salty flavor, as mentioned by Pereira et al. [3]. The inclusion
criteria encompassed individuals aged over 18 years without a diagnosis of hypertension or
associated comorbidities. The exclusion criteria applied were allergic processes, diagnosis of
secondary hypertension, and hypertensive patients undergoing medication.

Vascular physiology of the population was characterized before and after the inter-
vention via assessments of blood pressure and pulse wave velocity (PWV) [3]. Sodium
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excretion was quantified using spot urine samples stored at −70 ◦C. The Tanaka method
was performed as described by Iida et al. [35], which, through the quantification of sodium
and creatinine levels, allowed us to estimate saline excretion in 24 h [3].

After carrying out the characterization of vascular physiology according to Pereira
et al. [3], we confirmed a significant decrease in BP values and improvement in PWV
in the IG. Concerning the amount of sodium excreted in 24 h, as described by Pereira
et al. [3], the CG presented an average value of 8.4 ± 1.8 g/day before the intervention
and 8.5 ± 2.4 g/day after the intervention, while the IG presented an average value of
sodium excretion of 8.9 ± 2.1 g/day before the intervention, and after the consumption
of S. perennis, the medium value became 7.2 ± 1.2 g/day, denoting a reduction in sodium
excretion within the IG.

2.3. Instruments and Data Collection

The collection of data and biological samples were carried out at two different moments
of the study: at the time of the first contact with the participants and collection of clinical
data (T0) and 30 days after the intervention (T1).

All data obtained were recorded, organized, and subsequently subjected to statistical
analysis using the IBM SPSS Statistics 28® program (Armonk, NY, USA). At the same time,
blood samples were taken [3]. For the biochemical profiles, blood samples were taken
at moments T0 and T1 to compare between the two collection moments. Venous blood
samples were collected into 10 mL dry gel tubes to obtain the participants’ serum. These
tubes were posteriorly centrifuged at 3500× g for 10 min, and the serum samples were
conditioned and stored at a temperature of −70 ◦C until further analysis [36,37].

2.3.1. Characterization of the Biochemical Profiles

To evaluate the biochemical profiles, we used Prestige 24i equipment (Tokyo Boeki,
Tokyo, Japan) based on the spectrophotometry method and using Cormay Prestige 24i kits
(PZ Cormay S.A., Warsaw, Poland). The following parameters were evaluated: glucose,
total cholesterol, high-density lipoprotein cholesterol (HDL-c), triglycerides, creatinine,
aspartate aminotransferase (ASAT), and alanine aminotransferase (ALAT) [36–38].

2.3.2. Evaluation of the Activity of Matrix Metalloproteinases 2 and 9

The determination of MMP-2 and MMP-9 activity in serum was carried out using the
zymography technique as described by Vitorino et al. [39–41]. This technique is based on
protein separation using the SDS-PAGE method (sodium dodecyl–sulfate polyacrylamide
gel electrophoresis) and is a useful tool for determining MMP activity in several biological
samples, such as serum, urine, or saliva [36,39,40,42].

After protein quantitation, 10 µg of each serum sample was loaded into the stacking
gel [36,41,43]. Two molecular weight standards were used, a commercial one (Precision
Plus Protein Kaleidoscope Standards, BIO-RAD, California, EUA) and a capillary blood
standard. The gels were previously prepared, with the running gel having a concentration
of 10% and 0.1% of gelatin, while the stacking gel had a concentration of 4% [36,39,41,44,45].

The proteins were separated by using the SDS-PAGE technique for 1 h at 180 volts [36,39,40,42].
After electrophoresis, the gels were incubated twice in the renaturation solution, 2.5% Triton X-100,
for 30 min at room temperature and under agitation [36,39,40,42].

Then, the gels were placed in development buffer, pH 7.4, and after initial incubation
at room temperature and under agitation, the gels were incubated overnight (16 h) at
around 37 ◦C in new development buffer [36,39,40,42].

Finally, the gels were stained with Coomassie Brilliant Blue G250 0.5% w/v and
destained with 40% methanol/10% acetic acid. We obtained bright bands against a dark
blue background representing the undegraded substrate [39,41,42]. Images of the gels
were taken using the GelDoc XR system (Bio-Rad, Hercules, CA, USA) and analyzed with
ImageLabR version 3.0 software (Bio-Rad Hercules, USA) [36,37,39,41].
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2.4. Statistical Analysis

To collect data and interpret the results, the Microsoft Excel program was used, and
the results were subsequently transferred to the IBM SPSS Statistics 28® software (Armonk,
NY, USA), which was used to carry out statistical analysis. The normality of the data and
the assumption of asymmetry and flattening were assessed using the Shapiro–Wilk test
(n ≤ 50), Skewness Coefficient, and Kurtosis Coefficient. Student’s parametric t-test for
paired samples was also used with the aim of observing the changes in each group (inter-
vention and control groups). The difference between the groups under study were assessed
as statistically significant when the random error p-value ≤ 0.05 with a confidence level of
95% or higher. The determination of MMP activity was expressed in arbitrary units (AU).

3. Results
3.1. Biochemical Evaluation

As previously described, the biochemical evaluation of our participants was carried
out at T0 and T1 in order to guarantee comparable conditions at both time points/moments
using Student’s parametric t-test.

In this way, it was possible to interpret the results and compare the CG and IG, and
after interpreting the biochemical parameters results, it was observed that there were no
statistically significant differences between the groups in T0 (p-value ≥ 0.05) (Table 2).

Table 2. Characterization of the population based on biochemical parameters.

CG (n = 15) IG (n = 15) P

Total Cholesterol * 183.5 ± 32.6 176.9 ± 35.8 0.372
HDL-c * 59.8 ± 13.8 56.1 ± 12.5 0.206

Glucose * 84.0 ± 9.2 82.5 ± 5.2 0.419
Creatinine * 0.8 ± 0.1 0.8 ± 0.1 0.372

ALAT 17.2 ± 10.0 18.3 ± 8.7 0.372
ASAT 21.7 ± 4.7 20.6 ± 5.4 0.218

Triglycerides * 74.3 ± 31.1 100.7 ± 42.4 0.368
Legend: CG–control group; IG–intervention group; HDL-c: cholesterol associated with high-density lipoproteins;
ALAT: alanine aminotransferase; ASAT: aspartate aminotransferase; P: p-value. * units of measurement—mg/dL;
ALAT and ASAT—units of measurement U/L.

The interpretation of the biochemical parameters results in the CG only showed lower
mean values at T1 in total cholesterol (p-value ≤ 0.05) (Figure 1). With regard to the
evaluation of the biochemical parameters in the IG, a statistically significant decrease was
observed between moments T0 and T1 in total cholesterol, HDL-c, and creatinine (Figure 2).
Regarding glucose, ALAT, ASAT, and triglycerides, we found a tendency for the mean
values to decrease after the experimental period, although this trend was not statistically
significant (Table 3 and Figure 2).

Table 3. Evaluation of biochemical parameters in the control group (CG) and intervention group (IG).

CG (n = 15) IG (n = 15)
T0 T1 P T0 T1 P

Total Cholesterol * 183.5 ± 32.6 173.0 ± 29.4 0.008 176.9 ± 35.8 149.7 ± 43.8 0.031
Glucose * 84.0 ± 9.2 83.7 ± 7.3 0.314 82.5 ± 5.2 80.1 ± 14.8 0.128

Creatinine * 0.8 ± 0.1 0.8 ± 0.1 0.275 0.8 ± 0.1 0.7 ± 0.1 0.014
ALAT 17.2 ± 10.0 15.3 ± 4.5 0.324 18.3 ± 8.7 16.2 ± 8.4 0.426
ASAT 21.7 ± 4.7 20.7 ± 2.8 0.239 20.6 ± 5.4 18.6 ± 5.8 0.091

Legend: CG—control group; IG—intervention group T0—first contact with the participants; T1—moment one
month after the intervention; ALAT: alanine aminotransferase; ASAT: aspartate aminotransferase; P: p-value;
* units of measurement—mg/dL; ALAT and ASAT—units of measurement U/L.
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—Student’s t-test was performed, which was statistically significant; p-value ≤ 0.05.

3.2. Evaluation of the MMPs’ Activity

When carrying out the zymography technique to determine the MMP-9 and MMP-2
activity, two dropouts occurred because insufficient samples, meaning our final sample
consisted of 28 participants.

In the CG, the average value of MMP-9 activity at T1 was 156,075 ± 109,537 compared
to 141,254 ± 81,765 at T0, with no statistically significant differences being observed
(Figure 3). Regarding MMP-2 in the CG, the mean activity value at T1 was 129,250 ± 124,465
compared to 119,576 ± 120,439 at T0, also without statistically significant differences being
observed (Figure 4).
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Concerning MMP-9 in IG, the mean value of MMP-9 activity observed at T1 was
107,734 ± 43,859 compared to 111,282 ± 42,120 at T0, presenting a slight decrease in the
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activity at T1 compared to T0, although not statistically significant (Figure 3). Regarding
MMP-2, the average activity value observed at T1 was 153,692 ± 213,080 compared to
112,801 ± 133,463 at T0. A trend involving an increase in the activity at T1 was observed,
with no statistical significance (Figure 4).

4. Discussion

This randomized study aimed to characterize a population of clinically healthy young
people through an analysis of their biochemical profiles, as well MMP-2 and MMP-9 activity,
to demonstrate the possible benefits of replacing salt with dried powder of S. perennis.

The intake of high amounts of salt and its relationship with the development of various
pathologies has been widely studied in humans and animals [15,19,46].

Halophyte plants present themselves as excellent sources of bioactive compounds
such as flavonoids, phenolic compounds, carotenoids, saponins, tannins, and minerals.
Flavonoids are a diverse group of phytonutrients known for their antioxidant properties.
Flavonoids found in Sarcocornia plants may contribute to their ability to scavenge free
radicals and protect against oxidative stress. Phenolic compounds are another group of
antioxidants present in many plant species, including Sarcocornia. These compounds have
been associated with various health benefits, including anti-inflammatory and cardioprotec-
tive effects. Carotenoids are pigments responsible for the vibrant colors of many fruits and
vegetables. They also act as antioxidants and may have protective effects against certain
chronic diseases, such as cardiovascular disease and age-related macular degeneration.
Saponins are naturally occurring compounds with diverse biological activities, including
antimicrobial, anti-inflammatory, and immunomodulatory properties. They are often found
in plants and may contribute to the medicinal properties of Sarcocornia species. Tannins are
polyphenolic compounds that can bind to and precipitate proteins. They have been studied
for their antioxidant and anti-inflammatory effects and may contribute to the medicinal
properties of Sarcocornia plants. Sarcocornia plants, being halophytes, have adapted to
grow in saline environments and can accumulate high levels of minerals such as sodium,
potassium, magnesium, and calcium. These minerals are essential for various physiological
functions in the human body [47]. Bioactive compounds act in a preventive and mitigating
manner in various pathologies thanks to their antioxidant, anti-inflammatory, anti-diabetic,
anticancer, antibacterial, antihypertensive, neuro-protective, and anti-dyslipidemic proper-
ties, but they can also act as promising salt substitutes, thus enabling their use in the food
and pharmaceutical industries [9,12,14,15,19–23,47–53].

Previous studies have shown that Salicornia provides a protective effect at the vascular
level, preventing endothelial dysfunction, hypertension, and CD, with its action being
referenced in several studies, such as that by Lopes et al. [11], which revealed improvements
in the vascular system following the administration of comparable amounts of salt and
Salicornia in rats [12,19,22,53,54]. In the present study, it was also possible to highlight an
improvement in vascular physiology in the IG compared to the CG, which was confirmed
by Pereira et al. (2023) [3]. Also, D’Elia et al. states that a diet with reduced salt intake
results in an improvement in PWV [15,55].

Several studies highlight the nutritional value of the genus Salicornia spp. due to the
presence of phenolic acids such as caffeic acid, ferulic acid, and p-coumaric acid; flavonoids
such as isoquercitrin, quercetin, luteolin, and kaempferil; high-quality fatty acids such
as oleic acid, linoleic acid, and palmitic acid; amino acids such as arginine, aspartic acid,
leucine, glutamic acid, and isoleucine; vitamins A, B, C, and D; β-carotenes; proteins;
carbohydrates; and numerous mineral salts, such as Na, Mg, K, Ca, and Fe [9,12,14,19–23].

Concerning the evaluation of biochemical parameters, significant results were only
observed in the CG regarding total cholesterol, with a slight decrease in mean values at T1
(Figure 1). Significant differences were also observed in the IG group at T1 compared to
at T0 in the parameters of total cholesterol, HDL-c, and creatinine (Table 3 and Figure 2).
There was also a tendency towards a decrease in triglycerides values, which did not
show significant differences (Figure 2). Despite our sample comprising clinically healthy
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young individuals, extant research indicates a favorable association between halophyte
consumption and enhancements in lipid profiles.

In this context, Lee Ji Hwan et al. highlighted that the administration of Salicornia
extract in db/db rats allows for an improvement in obesity by inhibiting adipocyte differen-
tiation. Additionally, a concomitant decrease in LDL-c and triglyceride levels was observed,
supporting the idea that there is an improvement in metabolism and dyslipidemia [56].

Another study, specifically that carried out by Rahman et al. [57], presented a con-
sensus with previous studies, as the anti-obesity effect of Salicornia supplementation in
Sprague Dawley (SD) rats resulted in a reduction in body mass and abdominal measure-
ments and improvements in lipid profiles. According to Zhang et al. [54], a tendency
towards a decrease in serum creatinine values was observed in SD rats following Salicornia
consumption, as well as protective effects on the liver, kidney, and a decrease in BP level. In
line with these findings, a statistically significant decrease in creatinine levels was observed
within the IG at T1 compared to T0 (Table 3) [12].

To reinforce, DaeKeun et al. found that the use of Salicornia as a dietary supplement
in SD rats resulted in a tendency towards a decrease in triglycerides, although body mass
remained the same [58]. Chrigui et al. [25], through a study carried out on dyslipidemic
and obese Psammomys obesus, highlighted that after the administration of Salicornia extract,
there was a decrease in BMI, a decrease in the accumulation of adipocytes in the liver, and
a decrease in weight, thus confirming anti-dyslipidemia effects.

In the present study, lower mean values of ASAT and ALAT were also observed in
the IG at T1 compared to T0 (Table 3), without statistically significant differences, which
is in line with what was reported by Chrigui et al. [25], leading us to believe there was a
possible preventive effect on liver tissue damage after the consumption of Salicornia.

Of the minerals present in S. perennis, it is worth highlighting potassium and magne-
sium, which favor saline excretion, allowing for the harmful effects of salt in the body to be
reduced, as described by Pereira et al. [3].

Vitamins (A, C, D, β-carotenes) act as a source of natural antioxidants, improving endothe-
lial dysfunction, preventing CD and degenerative diseases, reducing inflammatory processes,
and eradicating free radicals in order to attenuate oxidative stress [3,14,15,19,59–68]. In this
context, Ulker et al. reported a positive relationship with vascular function in hypertensive rats
after the administration of vitamin C [67,68].

Given the components present in Salicornia and other similar halophytes, Kong et al.
highlights the flavonoid 3-O-β-D-glucopyranoside as a promising anti-obesity treatment,
and other studies report that flavonoids also have antioxidant and anti-inflammatory
properties [15,19,59,69,70]. The consumption of unsaturated fatty acids such as oleic acid
and linoleic acid, present in Salicornia, reduces the risk of developing CD and leads to
benefits in terms of the lipid profile [12,15,19,71–75].

Given the nutritional profile of S. perennis, a tendency towards a decrease in the
biochemical parameters of the IG was observed, which agrees with the studies referenced
previously. On the other hand, studies have reported improvements in animals and humans
at the metabolic level after consuming halophytes based on pathological samples. Therefore,
we can assume that, given our results present significant differences after the intervention
in a healthy population, the same should be observed in a sick population, possibly even
with a greater magnitude.

As mentioned in the literature, MMPs are expressed in different tissues and participate
in different physiological processes [28,30,31]. Any deregulation in their activity promotes
the excessive degradation of the ECM, chronic inflammation, and oxidative stress, promoting
various diseases [30,31]. However, MMPs can be activated in different ways, with oxidative
stress leading to a high production of reactive oxygen species and, consequently, the activation
of MMPs, causing a progressive increase in vasoconstriction [30,31]. It has also been described
that antioxidants can inhibit the activation of MMPs, leading to improvements in vascular
function [30]. Therefore, given the antioxidant and anti-inflammatory benefits of S. perennis, it
may have scientific relevance in terms of MMP activation.
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The activity of MMP-2 and MMP-9 has been widely studied in animals and humans,
presenting itself as a promising diagnostic biomarker and therapeutic target in various
pathologies, such as changes in the vascular system, ischemic lesions, neurodegenerative
diseases, lung diseases, and cancer [28,39,76]. MMP-2 is constitutively present in the vessel
wall, and MMP-9 is widely associated with inflammatory processes [28].

The MMP activity results in this study were interpreted based on the observation
of clear bands (degraded substrate) in contrast to the blue-colored gel. The commercial
and capillary standards allowed us to identify the respective bands corresponding to the
molecular weights of the MMPs under study [39,40,42]. MMP-2 has a molecular weight
of around 72 kDa in the zymogen form and 64 kDa in the active form, while MMP-9 has
a molecular weight of around 92 kDa for the zymogen from and 86 kDa for the active
form [39,40,42].

In the present study, no significant differences were observed in the assessment of
MMP-2 and MMP-9 activity in the CG or IG. Slightly lower mean values of MMP-9 activity
were observed in the IG at T1 compared to T0, with no significant differences (Figure 3).
We verified slightly higher mean values of MMP-2 and MMP-9 activity from T0 to T1
in the CG (Figures 3 and 4), as well as a slight increase in the mean values of MMP-2
activity at T1 in the IG (Figure 4). Contrary to the results obtained, although the sample in
the present study is clinically healthy, Valente et al. evaluated the expression of MMP-9
in groups with hypertensive crises, controlled hypertension, and normotensives, and
statistically significant results were obtained that proved that the group in with emerging
hypertensive crises presented higher levels of MMP-9 compared to the normotensive group,
supporting that MMP-9 levels are related to inflammatory processes and an increased
risk of CD [77]. However, no differences in MMP-9 levels were identified between the
normotensive group and the controlled hypertensive group, possibly due to the use of
antihypertensive medication [77,78]. Furthermore, it was mentioned that the identification
of high levels of MMP-9 in healthy people may prove to be a predictive marker for the risk
of developing CD [77,79].

In another study, evaluating MMP levels in obesity revealed that in obese individu-
als, the level of MMP-2 is higher compared to overweight or non-obese individuals [80].
However, MMP-9 levels were not concrete, with reduced levels of MMP-9 being detected
in obese individuals, as well as several discrepancies in results compared to those of other
studies, leading to the belief that they are dependent on several factors, such as gender, age,
and technique(s) used [80].

On the other hand, Campino et al. evaluated the expression of MMP-2 and MMP-9
in two groups in order to understand whether salt consumption was associated with
endothelial damage and metabolic dysregulation. Finally, no significant differences were
observed in the expression of MMP-2 and MMP-9, although it was possible to verify a
tendency towards a decrease in both MMPs in the group that consumed adequate salt
compared to the group that consumed salt in high quantities [81]. MMP-2 is presented
as a ubiquitous protease, being associated with pro-inflammatory and anti-inflammatory
situations [82,83]. D‘Avila-Mesquita et al. reported that in COVID-19 patients with a severe
inflammatory state, MMP-2 activity was reduced, in agreement with previous studies which
report reduced levels of MMP-2 in patients with clinical signs of sepsis [84,85]. Cancemi
et al. also revealed that high levels of MMP-2 activity may suggest greater longevity [82].

This study has limitations such as its sample size (n = 30) and the difficulty in control-
ling the amounts of salt and S. perennis ingested by our participants, although consumption
instructions were given [3].

According to what has previously been mentioned, even though our study was based
on a clinically healthy sample, we were able to verify improvements in lipid profiles;
possibly, a larger sample could confirm more confidently the trends observed regarding
both biochemical profiles and MMP activity.

For future studies, it will be important to continue research into the use of S. perennis, as
this is necessary to ensure that its benefits for human health are well reported, allowing for it
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to be used on a regular and expanded basis in diverse applications, such as supplementation,
salt replacement, or in the pharmaceutical industry.

5. Conclusions

The consumption of S. perennis by healthy young people results in an improvement in
lipid profiles, as well as a tendency towards a decrease in MMP-9 activity.

It will be pertinent to evaluate MMP-2 activity in relation to the consumption of S.
perennis in more detail and encourage research with a greater number of participants or
even unhealthy participants so that the numerous advantages that this halophyte plant
provides to human health as a salt substitute can be confirmed with greater confidence.
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