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Abstract

Recent usage of Virtual Reality (VR) technology in surgical training has emerged because 

of its cost-effectiveness, time savings, and cognition-based feedback generation. However, the 

quantitative evaluation of its effectiveness in training is still not studied thoroughly. This paper 

demonstrates the effectiveness of a VR-based surgical training simulator in laparoscopic surgery 

and investigates how stochastic modeling represented as Continuous-time Markov-chain (CTMC) 

can be used to explicit the training status of the surgeon. By comparing the training in real 

environments and in VR-based training simulators, the authors also explore the validity of the 

VR simulator in laparoscopic surgery. The study further aids in establishing learning models of 

surgeons, supporting continuous evaluation of training processes for the derivation of real-time 

feedback by CTMC-based modeling.
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I. Introduction

Surgeons require practicing skills ranging from simple wound closure to highly complex 

diagnostic and therapeutic procedures. Thus, surgical training has been on the verge of 

a seismic shift in how one can give the level of surgical training expected of a modern 

surgeon. Surgical training has traditionally been an opportunity-based learning strategy 

centered on an operating room apprenticeship. This “see one, do one, teach one” approach 

to surgical training was commonly typified by this Halstedian method (Higgins et al., 

[31]). As a result of this apprenticeship model, surgical training was extended to gather 

enough surgical experience to reach a subjective degree of operative experience, which is 

time-consuming and costly (Franzese and Stringer [15]).
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Surgical education has changed to overcome these limitations by adopting new technology 

such as virtual reality (VR). The adoption of VR has seen a surge of interest for 

training surgical skills both inside and outside of the operating room (Seymour [68]). 

Incorporating VR with the physics-level of simulations for surgical operations allows the 

transfer of techniques learned in a skills lab to the operating room. Moreover, artificial 

tissue movements and the movements of surgical tools generated in computer simulation 

would be accessible to trainees. In laparoscopic surgery, these technical skills often lead to 

a prolonged learning curve. Thus, one can investigate the advantages of using VR-based 

training models in laparoscopic surgery, which can provide an objective assessment of 

technical ability, while retaining realism, and measuring self-confidence in a controlled 

laboratory setting. The VR-based training system also enables generating a large set of 

training data, stimulating research to apply advanced statistical methods and machine 

learning techniques for learning model investigation as Rogers et al. studied [62].

Although VR-based training has the potential to contribute significant advantages in surgical 

training for new skills and procedures, quantitative evaluation of skills acquired within the 

simulated environment is still limited. Thus, this study aimed to investigate the learning 

curve of training in a real environment versus in a VR environment, identifying any 

competitive advantage of VR-based training. The second goal was to demonstrate the 

use of continuous assessments of surgical skills during training for identifying surgical 

skill deficiencies to provide targeted and individualized feedback. To answer our research 

questions, we have studied four different learning process methods: Hidden-Markov Models 

(HMM), learning curves, Generalized Estimating Equation (GEE), and Cumulative Sum 

(CUSUM). After investigating other modeling methods, the authors found the competitive 

advantage of using the Continuous-Time Markov Chain (CTMC) over others. Therefore, 

the authors proposed a new approach to model the learning process using Continuous 

Time Markov Chains (CTMC) by capturing learning variability, sudden accuracy drops, 

and simultaneous consideration of time and accuracy together. The proposed model was 

validated by training data for a simulated laparoscopic surgery skill.

The remainder of this paper is as follows. Section II shows the literature review results 

of how VR has been used in general surgery and laparoscopic surgery while summarizing 

the learning curve models in surgical training. Section III utilizes the traditional learning 

model via learning curves to compare laparoscopic surgery practices in real versus VR-

based environments. Section IV proposes a new learning modeling approach using CTMC, 

examining its merits compared to the traditional one. Section V concludes with observations 

and findings from the proposed approach.

II. Literature Review

The traditional surgical training methods have supported generations of surgeons, but it is 

not enough due to cost effectiveness, time management, and the procedure’s safety. This 

forced surgeons to examine the possibility of incorporating an advanced technology like 

VR to tackle these challenges [28, 34, 44, 59, 65, 81]. It was also shown that patients 

had excellent outcomes when the surgical procedure was simulated through VR first the 

operation was started [33, 35, 69, 77]. Moreover, VR-based training provided efficient 
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guidance for trainees [21, 31, 47] and revealed the group using VR training showed higher 

accuracy scores [17, 20, 37, 55, 68], less operating time [4, 17, 50, 80, 85], and a better 

understanding of procedural knowledge [22, 40, 48, 78]. Researchers also revealed that 

surgical platforms consisting of interactive user interface and guidance reduce complexity 

in getting used to VR as a training tool [8, 12, 14, 42, 82]. Table I summarizes how those 

benefits of VR-based training are utilized in each type of surgery.

The authors’ literature review is three-fold. Firstly, the authors investigated the advanced 

role of VR in laparoscopic surgery. Secondly, learning curve approaches in a surgery 

application are majorly summarized. Lastly, the advanced statistical modeling, such as 

Hidden Markov Chain (HMM), Generalized Estimating Equation (GEE), and Cumulative 

Sum (CUSUM) approaches, are also summarized.

2.1 VR-based training in laparoscopic surgery

Reducing operating time and improving the accuracy are two major advantages of using 

VR-based simulators in laparoscopic surgery. For example, Grantcharov et al. [24–25] 

showed that VR-based training stimulated learning faster and improved movement scores 

while reducing errors, while Munz et al. [52] demonstrated that completion time was more 

rapid by reducing the necessary movements. Aggarwal et al. [1] showed VR shortens the 

learning curve as a time- and cost-effective training model. Portelli et al. [60] also concluded 

that VR improves efficiency in the trainee’s surgical practice and improves quality with 

reduced error rates and improved tissue handling. Gurusamy et al. [26–27] revealed that VR 

decreased time, errors, and increased accuracy, whereas Larsen et al. [43] verified that using 

a VR simulator aided trainees’ proficiency as their operation time was halved.

It was also studied that VR-based training could be more accurate than video-based training. 

Alaker et al. [3] exhibited that a VR-based simulator was more effective than video-based 

training, while Yiannakopoulou et al. [86] indicated VR could provide alternative means of 

video-based practicing while improving performance in surgery. Phe et al. [58] and Botden 

et al. [7] illustrated that a VR simulator could offer better realism and haptic feedback based 

on trainees’ skill levels. Hart et al. [30] also showed a VR as an essential part of clinical 

training, supporting trainees to practice surgical tools. Instead, to maximize the efficiency of 

VR-based training, Aggarwal et al. [2] pointed out that junior trainees were recommended to 

acquire pre-requisite skill levels before entering an operating room. Table II summarizes and 

classifies all the work based on the types of design of experiments and methodologies.

2.2 Traditional learning curve modeling in surgical training

Developing learning curves requires a proper selection of independent (predictor) and 

dependent (response) variables to derive general causality. This subsection summarizes 

relevant work for developing the learning curve and its related parameters in surgical 

training. Feldman et al. [13] suggested two parameters called learning plateau (intercept) and 

learning late (slop) while assuming that the improvement of surgical proficiency over time 

follows an S-curve such as y = a – b/x. These smooth improvement in skill acquisition and 

performance over trial was also investigated by Bosse et al. [6], provided with high and low-

frequency intermittent feedback. Khan et al. [39] instead considered procedural variables, 
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including experiences and supervision levels, to develop a learning curve using logistic 

regression. Subramonian and Muir [73] investigated responses by measuring surgeons’ 

skills and techniques whereas Suguita et al. [74] evaluated their average operating time for 

learning curve development.

Time factors have been heavily considered for the learning curve analysis. Brunckhorst et 

al. [9] investigated the effect of the time factors on learning curves in VR-based training, 

whereas Howells et al. [32] examined the time factor affecting the learning curve by 

showing that even with a time delay (e.g., six months later after the trainees were exposed 

to the surgical procedure for the first time) in training, repeating it again can improve their 

proficiency. Uribe et al. [79] also proved that novices initially displayed a steeper learning 

curve, while Leijte et al. [45] observed a performance delay in minimal invasive surgery 

compared to robot-assisted surgery.

The other consideration for developing learning curves is classifying trainees into several 

groups based on their expertise [54]. Papachristofi et al. [53] suggested that learning 

curves were different based on the trainees’ prior knowledge, whereas Hardon et al. [29] 

investigated the expertise based on force and motion factors during surgery. Grantcharov 

et al. [24–25] further investigated that trainers’ proficiency differences could not be 

captured by changing the function parameters but by requiring different learning kernels. 

A comprehensive review of learning curve modeling in surgical training was performed by 

Chan et al. [10]. The challenge of using learning curves is the trainee-specific nature, which 

requires carefully selecting the curve’s kernel structure for generalization. Moreover, if more 

than two response variables (e.g., completion time and accuracy) are of interest, then it 

requires more than two learning curves per trainee. The authors explain the universality of 

the proposed CTMC-based model in Section 3.

2.3 Other Modeling Methods in Surgical Training

Hidden Markov Models (HMM) are widely used to model the training process in surgery 

when high-fidelity data is provided. Especially if surgical instrument trajectory data is given, 

HMM was shown to supports to detect hidden states beyond the movement [46]. The HMM 

approach was widely used to decompose all the surgical tasks by Rosen et al. [63], which 

helps to develop objective performance metrics [49]. From the analysis of high-fidelity data, 

HMM also supports classifying surgeons based on their surgical proficiency [64], and it 

helps to provide a continuous evaluation by temporal and motion-based analysis [23]. As 

HMM requires high-resolution data (motion and tracking data) to recognize hidden learning 

phases, it could be challenging to provide an intuitive and practical learning model to derive 

the best time to support additional feedback.

Generalized Estimating Equation (GEE) modeling is appropriate when one collects repeated 

training data per participant by Aggarwal et al. [2], especially the modeler is interested in 

investigating the covariance structure among predictors. Since GEE identifies the correlation 

structures in repeated trials, it also supports to demonstrate the interaction effects on 

proficiency achievement in laparoscopic-guided surgery [38, 87]. GEE can also be used 

to generate an objective surgical proficiency measure, such as a visual analog scale (VAS), 

as studied by Zhang et al. [87]. The recent advance in using GEE in surgical training has 
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been studied and comprehensively summarized in the review papers by Chang et al. and Jin 

et al. [11, 36].

Cumulative-sum (CUSUM) can also be used to demonstrate learning processes. CUSUM 

was originally designed to detect the small process shift in quality control, but it is also 

used to magnitude the improvement over the trials [19]. The benefit of using CUSUM in 

modeling learning processes is to detect learning improvement when the reading in charts 

exceeds control limits [5, 16]. Sood et al. [72] demonstrated that the learning curve could be 

estimated using a CUSUM chart, aiding in determining the length of training time, whereas 

Smith et al. [70] claimed the CUSUM chart itself could support trainees’ learning processes. 

All the literature review results of different modeling approaches are summarized in Table 

III.

As shown in Fraser et al. [16], it also requires separate CUSUM analyses when looking at 

different criterion levels (e.g., junior, intermediate, and senior in their case). Also, trainees 

can show a “back and forth” pattern in learning when advancing to the next stage because 

the trainee requires time to get familiar with the achievement (Feldman et al. [13]). As our 

learning process is not linear, multiple threshold values are required and it is even possible 

that the threshold value (δ) itself could be a function of time (δ(t)). To address the variability 

shown right after the state transition in the learning process, the authors proposed a new 

approach based on CTMC. Because our proposed CTMC model has two levels (high-level 

states and sub-states), it can help to keep track of the continuous evaluation of learning 

processes. The details of our model are explained in Section 3.

III. Traditional Learning Curve-Based Modeling

3.1 Description of Surgical Process for Training

Table IV explains the experimental configuration. The surgical skills training task performed 

was the intracorporal suturing with knot tying task of the Fundamentals of Laparoscopic 

Surgery (FLS) curriculum. The task was performed either in a standard FLS box trainer or 

using the Virtual Basic Laparoscopic Skill Trainer - Suturing Simulator (VBLaST-SS(c)) 

following the same task procedures [71]. For the task, a Penrose drain is placed on a Velcro 

strip inside the trainer. The subject uses two needle drivers to feed a needle and suture 

through two marked targets on the Penrose drain and complete three knots intracorporeally 

to close a slit in the drain. The task ends after three knots have been completed and the 

suture has been trimmed. Task completion is limited to 10 min (600 sec). The overall 

performance score is based on the completion time, error in needle placement, knot security, 

and slit closure, following the equation published in Korndorffer et al. [41]. The proficiency 

time was set at 112 sec with deviation from the marked targets of less than 1 mm [66, 

71]. Fifteen trainees who were pre-medical or 1st to 3rd year medical students participated 

the training and those participants completed the task for multiple repetitions over 15 

days within a three-week period. The study was approved by the University at Buffalo 

Institutional Review Board under protocols STUDY00000750 and STUDY00004789 and all 

participants provided written informed consent. Two figures in Fig. 1 illustrate the practice 

in physical box (in a real environment) and VR-based training.
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3.2 Learning Process using Learning Curve Fitting

Generally, surgical proficiency is expected to mature as the number of practice trials 

accumulates. Thus, researchers have developed the relationship between practice trials and 

surgical ability to demonstrate surgeons’ learning processes. Once researchers have training 

data with respect to surgical precision and/or time data over the number of trials, one 

can fit the data to a certain function using different kernels such as polynomial, Gaussian, 

and sigmoid functions to oblige in classifying trainees into their proficiency levels. The 

authors have performed polynomial fitting by taking data sets of training accuracy and time 

in two different surgical training settings: training in a real environment versus in a VR 

environment. Fig. 2 illustrates four different trainees’ scores over trials, and the red line 

demonstrates the best-fitted line using the maximum likelihood approach. The degree of 3 

polynomial functions (y = β3x3 + β2x2 + β1x + β0) were used to derive the fitted lines.

Fig. 2 displays that all four trainees’ accuracy scores have grown over the trials, revealing 

their learning processes. Moreover, within the first few trials, the slopes of the learning 

curves are more elevated than in the later trials, demonstrating a steep learning curve 

representing an initial learning barrier at an earlier phase. However, Fig 2 also illustrates 

some limitations of the learning curve approaches in modeling surgical training processes. 

Firstly, the fitted line still carries a considerable variability, weakening the expressiveness of 

the line as a representative of learning processes. For example, the top left figure exhibits an 

evident variability, indicating that most observations are far from the best fitting line. The 

other three figures also depict frequent outliers, conveying a sudden significant performance 

drop even at a later learning phase. Those variabilities, which the fitted line cannot capture, 

require an advanced analysis. Thus, further discussions will be followed at the end of this 

section by investigating R-squared values. Another limitation observed in Fig. 2. is the 

significant differences among the fitted lines of individual results, indicating the possibilities 

of discrepancies in function types. In specific, not just differences in the parameter values of 

the similar kernel (function), each result requires different kernels, preventing generalizing 

the learning processes across individuals. For instance, it is sufficient to use the degree of 

three polynomial function to find the best fit in the bottom left figure; however, a Gaussian 

kernel would work well to describe the learning pattern in the bottom right figure. These 

observations (and limitations) demonstrate the challenges of learning process generalization 

regardless of the trainees, supporting the need for proposing a new approach for mimicking 

learning processes.

Fig. 3 exhibits the completion time of one training procedure over trials. As shown in the 

four different figures in Fig. 3, the results by the four trainees describe that the completion 

time has reduced as they practiced more, which is consistent with the expectation. However, 

the learning curve approach has not clearly demonstrated the variability problems of training 

time either. Even between a few successive trials, their completion times are wildly distinct, 

indicating a limitation of the expressive power of the single fitted line. Compared to the 

performance score graph (Fig. 2), all four figures in Fig. 3 suggest that those functions 

are based on the same kernels; however, another limitation is observed - saturation. For 

example, when comparing the top-right and bottom-right figures, it is evident that the 

bottom figure shows a trainee’s maturity in terms of time, while the other trainee from the 
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top figure may still need extra training due to his/her time variability. However, the fitted 

line cannot convey such information, leaving the time variability unconsidered.

As investigated in Fig. 2 and 3, two proficiency measures, including accuracy and time, 

were considered separately in the learning curve approaches. Thus, it is required to capture 

both overall performance score and time together to represent the learning processes, leading 

the authors to propose a new modeling approach using the CTMC. Another advantage 

of using CTMC is its capability for generalization. As in Fig. 2, it is possible that each 

trainee requires different learning kernels for modeling his/her learning process, prohibiting 

the generalized guidelines for trainees. However, the CTMC modeling approach allows 

generalizing all the trainees’ learning processes, which will be investigated at the end of this 

section. Finally, the learning curve approach makes it unattainable to compare two different 

training processes in real versus VR environments. The following Fig. 4 shows the learning 

curve derived in a VR-training environment to investigate the limitation of using a learning 

curve in comparison between real and VR-based training.

Fig. 4 illustrates four selected trainees’ accuracy scores over practice trials in a VR 

environment. Trainees’ learning processes within VR show similar patterns as in a real 

environment, as studied in Fig. 2, presenting that trainees’ performance scores have 

enhanced as the number of trials accumulates. The steeper slope in an earlier learning 

phase also denotes an initial learning barrier in the processes. However, the figures also 

demonstrate the difficulty of modeling the learning process in a VR environment using a 

fitted line. Firstly, more observations do not lie the fitted line close enough, indicating a 

higher variability than a real-environment practice. Secondly, as shown in the top-left and 

bottom-left figures, sudden accuracy drops are marked even after numerous practice trials, 

weakening the fitted line’s expressiveness in the learning process in a VR environment. 

Finally, all the fitted lines may require different kernels as described in a real environment 

configuration. Fig. 4, similar to Fig. 2, suggests that the modeling of learning processes 

should tackle the sudden accuracy drops, which the fitted line couldn’t capture enough. 

The authors will demonstrate the capability of CTMC-based modeling in explaining those 

variabilities.

Fig. 5 shows the trainee’s completion time of one training procedure over the number of 

trials. As investigated in Fig. 3, one can claim that the completion time drops with practice, 

indicating the similarity of learning processes in real and VR training environments. 

However, the variability at a later training phase also diminishes faster compared to the 

real environment, implying that a VR-based practice can support the trainees to become 

familiar with the surgical procedure in a shorter amount of time. Therefore, Fig. 5 suggests 

the potential advantage of VR-based surgical training as a complementary learning system, 

supporting lower initial learning barriers as well as improving trainees’ confidence before 

they perform surgery in a real environment.

To conclude the discussions of learning curve modeling approaches, the authors studied two 

representative statistics of the R-square values of the fitted results. Table V summarizes 

the average and the standard deviation of the R-square values of all the trainee’s fitted 

results in a real and a VR practice environment. As shown in the table, it is evident that 
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the R-square values of the fitted lines are higher in a real practice environment than in a 

VR environment in terms of both accuracy and time. The result indicates that advanced 

approaches are required to incorporate the variability, which the best-fitted line cannot 

capture. Secondly, since R-squared values are lower in training in a VR experiment, one 

should consider a different approach when especially analyzing the learning processes using 

a VR setting. Finally, a smaller standard deviation of R-square values in VR training 

represents that it could be easier to generalize the learning processes in a VR, requiring 

a new modeling technique to demonstrate all phases over trials. Therefore, the authors 

introduce a new modeling approach to the learning processes using the Continuous-time 

Markov chain (CTMC) to enrich the model’s expressiveness, capturing more variability, 

especially in VR-based training.

IV. CTMC-Based Learning Process Modeling

This section introduces the CTMC-based modeling of learning processes in surgical training 

by addressing the following four limitations of learning curve approaches: demonstrating 

learning variability, incorporating a sudden performance drop, revealing differences between 

learning in a real and VR environment, and considering both accuracy and time together. 

Within the CTMC modeling, it is required to define state sets (S), transition probabilities 

(T), and rates (average time staying at each state). Firstly, the authors identified four 

different high-level learning states based on trainees’ performance scores, named Stages 

1, 2, 3, and 4. Stage 1 corresponds to the performance score range between 0 and 199, Stage 

2 between 200 and 369, Stage 3 between 370 and 477, and Stage 4 over 477 [16, 41]. The 

Stage 4 threshold is based on the target proficiency score described above [17]. The cutoff 

for the top-level score 477 in CTMC was based on the proficiency requirement described in 

the FLS training instructions [16, 66]. According to the instructions, the ultimate proficiency 

is achieved with a completion time less than 112 seconds, and an accuracy within 1 mm 

deviation (error score of 10), for a total score of 478 [66].

As the training trial repeats, it is expected that the trainee’s stage will advance, assuming that 

there is no backward movement such as moving down from Stages 4 to 3, 3 to 2, or 2 to 

1. Instead, the authors included low-level learning states (named “sub-states” in each stage) 

to represent the learning variability and a sudden accuracy drop. The following tables show 

both high- and low-level states within the proposed CTMC-based learning model.

As discussed, one can admit that the trainees’ skills (in terms of accuracy and time) 

will enhance as they practice repeatedly. Thus, the authors introduced the low-level state 

“Mature” in Stages 1, 2, and 3, representing the situation where the trainee hit the next 

level’s score for the first time, which works as an absorbing state. Since it is an absorbing 

state, the chain always advances to a higher stage. Once one’s learning process reaches 

the “Mature” state in Stages 1, 2, and 3, the chain moves to the next stage and never 

returns to the previous stage. At the same time, “Immature” and “In-Progress” sub-states 

in each stage illustrate that trainees require enough trials to progress to the next stage 

while demonstrating accuracy drops and fluctuation of the surgical proficiency in learning 

processes. For example, if one’s progress stays in an “Immature” sub-state in Stage 2, a 

trainee has advanced to Stage 2 by scoring the accuracy value between 200 and 369 once, 

Lee et al. Page 8

IEEE Trans Learn Technol. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but he/she scored below 200 in his latest training trial. The second column in Table VI 

shows all the accuracy score ranges of higher-level states (Stages), and the last column 

describes the corresponding accuracy score in each lower-level state.

Fig. 6 shows a proposed CTMC describing training processes in a real environment by 

incorporating all seven participants’ practice results. Four high-level states along with nine 

sub-states are determined, as shown below. The transition matrix (T) demonstrating the 

transition probability from one state to the other is also developed by considering the 

likelihood of accuracy changes in two subsequent trials. Thus, the matrix dimension is nine 

by nine, considering the number of sub-states. Since all the “Mature” states in Stages 1, 2, 

and 3 are absorbing states, the transition probabilities from S1
M to S2

I, from S2
M to S3

I and from 

S3
M to S4

I are all 1, meaning the trainee advanced to the next stage. Notations in Equation (1) 

represent both high- and low-level states.

S = S1, S2, S3, S4
S1 = S1

I, S1
M , S2 = S2

I, S2
IP, S2

M

S3 = S3
I, S3

IP, S3
M , S4 = S4

I, S4
IP, S4

M

(1)

The corresponding transition matrix (T) is as derived below. The authors observed trainees’ 

subsequent attempts and calculated the occurrence of the next trials’ accuracy score to derive 

the transition probability.

T =

0.73 0.23 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0.36 0.64 0 0 0 0 0 0
0 0 0.31 0.53 0.16 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.25 0.75 0 0 0
0 0 0 0 0 0.26 0.67 0.07 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0.39 0.61 0
0 0 0 0 0 0 0 0.23 0.43 0.34
0 0 0 0 0 0 0 0 0.39 0.61

Once the learning process was modeled with the CTMC, the general Markov Chain analytics 

were applied to characterize the learning process. For example, it can be analytically derived 

based on the average number of trials to advance to the next stage (Stages 1 to 2, 2 to 3, 

and 3 to 4), as all the mature states are absorbing states. The transit matrices (Q) in each 

stage (named Q1, Q2, and Q3, respectively) were also developed under the consideration of 

transition probabilities only between transient states, as in Equation (2).

Q1 = [0.77], Q2 = 0.36 0.64
0.31 0.53 , Q3 = 0.25 0.75

0.26 0.67

(2)
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Then, the average number of trials (N) required to advance to the next stage can be 

obtained by reading the first element of the vector derived by the following formula: 

E[N] = (I − Q)−11, where I, Q, and 1 represent an identity matrix, a transient matrix, and 

vector of 1, respectively. On average, 4.35, 11.09, and 20.57 trials were required to advance 

to the next stage from 1 to 2, from 2 to 3, and from 3 to 4, respectively. This observation 

is consistent with the traditional learning theory that more additional efforts are required 

to advance to the next stage after the trainee passes the earlier learning phase (i.e., it is 

more challenging to become an expert). Moreover, one can estimate each state’s rate values 

by considering the completion time in each trial, as shown in Table VII. The authors have 

empirically proved that the rate values follow an exponential distribution, satisfying the 

assumption of the Markov Chain model. This will be investigated at the end of this section.

The trainee took in each training state. Rate values were estimated by taking the reciprocal 

values of the average practice time, implying how fast a trainee completes a trial in each 

learning state. As shown in the table, it is evident that a trainee spends less time as she 

advances to a higher level, indicating her progress in learning. Moreover, even if she is at a 

higher level, it is also possible that she could produce a sudden proficiency drop, resulting 

in an increased completion time in the same stage. The table also shows that regardless of 

Stages where the trainee is in, the completion time drops (the rate values increase) as she 

moves from “Immature” to “In-Progress” and from “In-Progress” to “Mature, demonstrating 

the trainee’s performance improves in each Stage.

Now, the same analogy can be applied to the VR-based training data. The authors have 

developed the CTMC model along with a transition matrix to mimic the learning process in 

a VR training environment. The transition matrix (T) was also derived in the same way as 

before.

T =

0.68 0.32 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0.33 0.67 0 0 0 0 0 0
0 0 0.31 0.46 0.23 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.68 0.32 0 0 0
0 0 0 0 0 0.36 0.56 0.08 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0.24 0.76 0
0 0 0 0 0 0 0 0.21 0.48 0.31
0 0 0 0 0 0 0 0 0.5 0.5

Fig. 7 shows CTMC modeling results in a VR training environment by incorporating 

all eight participants’ practice results. Corresponding transient matrices are as 

follows: Q1 = [0.68], Q2 = 0.33 0.67
0.46 0.31 , Q3 = 0.68 0.32

0.56 0.36  One can use the same formula, 

E[N] = (I − Q)−11 to find the expected number of trials to advance the next stages by 

checking its first element, as discussed before. On average, 3.1, 8.83, and 29.68 trials are 

required to advance to Stages 2, 3, and 4, respectively.
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Table VIII summarizes the average number of trials to advance to the next stage in real- and 

VR-based training environments. Compared to the learning process in a real environment, 

it requires fewer trials to reach Stages 2 and 3, as shown in Table VIII, representing that 

the VR-based training aided in bending the initial learning barriers. However, after the 

practitioners reach Stage 3, it requires more trials of experiments to reach Stage 4, meaning 

that a trainee has to practice more in a VR environment to score more than 477. This result 

indicates that even though the VR-based training model helps you reduce the initial barrier 

in surgical training, it becomes less effective for trainees at a later learning phase (who have 

already overcome the initial learning barrier) to become fully trained. It also implies that a 

higher level of resolution and complexity of the training model is required to support the 

trainees with advanced skills.

Table IX shows the average completion time and the rate values at each state in VR-based 

training. Compared to training in a real environment, the “Immature” state in Stage 1 is 

more prolonged, indicating that trainees take more time to become familiar with the VR 

setting. After the trainee advances to Stage 2, the rate value increases as the sub-state moves 

forward, indicating sequential improvement in learning in each stage. Overall, compared 

to Table VIII, one can observe that VR experiments result in less completion per trial, 

indicating that VR could assist better for trainees to mature faster compared to training in a 

real environment.

The authors checked whether the proposed model satisfies the major assumption of CTMC 

that all the rate values in the proposed CTMC model should follow Exponential distribution. 

The distribution fitting was carried out using rate values in all states through the goodness-

of-fit (GOF). The authors selected six representative continuous distributions, including 

Normal, Lognormal, Exponential, Weibull, Gamma, and Exponential distributions, and fitted 

the completion time data into each distribution. Then, both Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) values were derived to find the best 

distribution representing the rate values. Tables IX and X present both AIC and BIC values 

of each distribution’s fitting results in real and VR environments, respectively.

Both Tables X and XI are displayed in decreasing order of AIC & BIC values from left 

to right. Table X observes that the highest AIC & BIC values are produced when fitting 

to Exponential distribution in most of the cases. Only two states show that the Uniform 

distribution fits better; however, uniform distribution works far worse in all the other states, 

indicating that exponential would be the best distribution to represent the randomness of rate 

values in each state. On the other hand, in a VR environment, the exponential distribution 

beats all the other distributions, as shown in Table XI. Both AIC and BIC values are highest 

in the case of exponential distributions in all the states. Therefore, one can conclude that the 

exponential distribution is the best distribution to represent the variability of the rate values 

(average completion time) in states within the proposed CTMC model. It is confirmed that 

the proposed model satisfies the basic assumption of CTMC.
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V. Conclusion

This work proposes a new modeling framework to depict the learning procedures in surgical 

training. The proposed CTMC-based model of the learning processes captures learning 

variability induced by trainees and a sudden performance drop at the later learning phase, 

which supports to find the best time to provide additional feedback in the learning process. 

Secondly, our proposed model helps to identify a “stagnation” phase by relying on the 

advanced analytics of CTMC. One can compare the expected number of trials for a trainee 

to advance to the next stage analytically. Thus, if a trainee performs more than the average 

number of trials and remains in the same stage, we can provide any additional feedback 

to facilitate their training process. Thirdly, through CTMC, we can identify differences in 

the surgical learning processes in a real versus VR environment, which could be used to 

identify additional aids to support trainees at a later learning phase by investigating the rate 

and transition probabilities. Finally, CTMC can represent three different measures, including 

accuracy scores, trials, and completion time, together in one graph, which is simple and 

intuitive compared to the other learning methods we described. The competitive advantages 

of the proposed CTMC-model demonstrate the validity of the VR-based training model.
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Fig. 1. 
Practice in physical box trainer (top) versus VR-based training (bottom)
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Fig. 2. 
Four learning curve fitting results of accuracy scores vs training trials in real surgery 

practicing.
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Fig. 3. 
Completion time changes over practice trials in real surgical training.
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Fig. 4. 
Four Learning Curve Fitting results of scores vs trials in VR-based surgery practicing.
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Fig. 5. 
Four Learning Curve Fitting results of times vs trials in VR-based surgery practicing.
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Fig. 6. 
CTMC modeling results of practicing using real environment
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Fig. 7. 
CTMC modeling results of practicing in a VR environment
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TABLE I

Recent Development of VR in Surgical Training

Type of Surgery Methodology References

General Surgery

Comparison: Experimental vs Control groups Aggarwal et al. (2006)
Gurusamy et al. (2008)

Theoretical studies Haluck et al. (2000)

Machine Learning Kim et al. (2017)

Osteotomy

Comparison: Experimental vs Control groups Pulijala et al. (2017)

Theoretical studies Hsieh et al. (2002), Sayadi et al. (2019)

Descriptive Statistics Wilson et al. (2020)

Heart
Theoretical studies Wang and Wu (2021), Friedl et al. (2002), Falah et al. (2002)

Comparison: Augmented vs Virtual Reality Silva et al. (2018)

Brain
Descriptive Statistics Bracq et al. (2017)

Comparison: Experimental vs Control groups Phaneuf et al. (2014), Fried et al. (2010)

Cataract
Comparison: Experimental vs Control groups Beauchamp et al. (2020), Thomsen et al. (2017), Thomsen et al. (2017)

Theoretical studies Lama et al. (2013)

Tendon repair Comparison: Experimental vs Control groups Mok et al. (2021)

Neuro
Machine Learning Schwartz et al. (2019)

Theoretical studies Fiani et al. (2020), Alaraj et al. (2011)

Spine
Comparison: Experimental vs Control groups Luca et al. (2020), Xin et al. (2019)

Theoretical studies Pfandler et al. (2017)

Arthroscopy
Theoretical studies Muller et al. (1995)

Descriptive Statistics Gomoll et al. (2007), Gomoll et al. (2008), Jacobsen et al. (2015)
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TABLE II

VR-based Surgical Training in Laparoscopic Surgery

Design of Experiments Methodology References

VR vs Physical simulator
Descriptive Statistics Taba et al. (2021)

Comparison: Experimental vs Control groups Gurusamy et al. (2009), Papanikolaou et al. (2019)

VR vs real

Descriptive Statistics Larsen et al. (2009), Munz et al. (2007)

Machine Learning Comparison: Experimental vs 
Control groups

Alaker et al. (2016)
Grantcharov et al. (2004)

VR vs trad mentoring

Meta-analysis Gurusamy et al. (2008)

Meta-analysis & Descriptive Statistics Portelli et al. (2020)

Theoretical Studies Yiannakopoulou et al. (2015), Harta and Karthigasua (2007)

Descriptive Statistics Aggarwal et al. (2007)

VR

Descriptive Statistics
Aggarwal et al. (2006)

Jain et al. (2020)

Experimental vs Control groups Phé et al. (2017)

Machine Learning Botden et al. (2007)
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TABLE III

Learning Models for Surgical Training

Methodology References

Generalized Estimating Equation (GEE)

Aggarwal et al. (2007)

Chang et al., (2020)

Jin et al. (2021)

Kauffman (2020)

Portelli et al. (2020)

Zhang et al. (2022)

Learning Curves

Chan et al. (2021)

Feldman et al. (2009)

Hardon et al. (2021)

Leijte et al. (2020)

Wong et al. (2022)

Hidden Markov Models (HMM)

Megali et al. (2006)

Leong et al. (2006), Gorantla and Esfahani (2019), Rosen et al. (2002), Saravanan and Menold 
(2022).

Cumulative-Sum (CUSUM)

Fraser et al. (2005)

Fu et al. (2020)

Perivoliotis et al (2022)

Sultana et al. (2019)
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TABLE IV

Experimental Configuration

Configuration Experimental Settings

Number of Trainees
In a Real Environment: 7

In a VR Environment: 8

Training Environments Real vs Virtual-Reality (VR)

Measurements Accuracy vs Completion Time

Analysis Learning Curve Fitting vs CTMC
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TABLE V

Mean and Standard Deviation of R2 Values

Measures Mean Standard Deviation

Accuracy Scores in Real 0.5514 0.2323

Accuracy Scores in VR 0.4847 0.1611

Completion Time in Real 0.6789 0.2956

Completion Time in VR 0.5215 0.1033
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TABLE VI

States in Two-Stage Markov Chain Model

High-level States Accuracy Score Range Sub-States Accuracy Score Range

Stage 1 [0, 199]
Immature [0, 199]

Mature over 199

Stage 2 [200, 369]

Immature [0, 199]

In-Progress [200, 369]

Mature over 369

Stage 3 [370, 477]

Immature [0, 369]

In-Progress [370, 476]

Mature over 477

Stage 4 over 477

Immature [0, 369]

In-Progress [370, 476]

Mature over 477
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TABLE VII

Rate Values in a Real Environment

High-level States Sub-States Rate (× 10−2) Average Completion Time (sec)

Stage 1
Immature 0.221 451.74

Mature 0.379 263.80

Stage 2

Immature 0.239 418.41

In-Progress 0.384 260.42

Mature 0.554 180.51

Stage 3

Immature 0.456 219.30

In-Progress 0.614 162.87

Mature 0.643 155.52

Stage 4

Immature 0.626 159.74

In-Progress 0.807 123.92

Mature 1.1 90.91
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TABLE VIII

Average Number of Trials for Advancing

From To Average # of Trials in Real Env. Average # of Trials in VR Env.

Stage 1 Stage 2 4.35 3.1

Stage 2 Stage 3 8.83 11.09

Stage 3 Stage 4 20.57 29.68
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TABLE IX

Rate Values in a VR Environment

High-level States Sub-States Rate (× 10−2) Average Completion Time (sec)

Stage 1
Immature 0.213 469.48

Mature 0.524 190.84

Stage 2

Immature 0.268 373.13

In-Progress 0.509 196.46

Mature 0.78 128.21

Stage 3

Immature 0.45 222.22

In-Progress 0.843 118.62

Mature 1.476 67.75

Stage 4

Immature 0.923 108.34

In-Progress 1.54 64.94

Mature 1.93 51.81
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TABLE X

AIC and BIC Values in a Real Environment

S1
I Exp Uniform Normal Gamma Weibull Log. N.

AIC 388.20 367.41 362.70 362.70 361.46 360.7

BIC 389.50 370.00 365.29 365.29 364.05 363.3

S2
I Exp Normal Uniform Gamma Weibull Log. N.

AIC 154.27 151.30 150.28 149.75 149.53 149.53

BIC 154.67 152.10 151.07 150.54 150.32 150.32

S2
IP Exp Gamma Log. N. Normal Weibull Uniform

AIC 290.92 257.91 256.12 254.30 253.55 250.62

BIC 292.05 260.18 258.39 256.57 255.82 252.89

S3
I Uniform Exp Normal Gamma Log.N. Weibull

AIC 1052.63 1026.57 1010.59 995.5 988.15 991.58

BIC 1057.39 1028.95 1015.35 1000.26 992.91 996.34

S3
IP Uniform Exp Normal Weibull Log.N. Gamma

AIC 707.3 637.35 639.42 607.84 576.9 553.22

BIC 711.31 639.36 643.43 611.85 580.92 557.24

S3
M Exp Gamma Log.N. Normal Weibull Uniform

AIC 85.45 64.92 64.26 63.09 61.15 60.89

BIC 85.53 65.08 64.42 63.25 61.31 61.04

S4
I Exp Normal Uniform Weibull Log.N. Gamma

AIC 1790.99 1645.08 1605.23 1564.87 1541.3 1513.78

BIC 1796.88 1650.98 1608.18 1570.77 1547.19 1519.68

S4
IP Exp Uniform Normal Weibull Log.N. Gamma

AIC 5382.53 5295.1 4879.54 4843.24 4771.06 4753.92

BIC 5386.79 5303.61 4888.05 4851.75 4779.57 4762.43

S4
M Exp Uniform Weibull Normal Gamma Log.N.

AIC 3127.56 2689.05 2583.29 2576.16 2566.32 2562.29

BIC 3131.32 2696.56 2590.81 2583.67 2573.83 2569.8
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TABLE XI

AIC and BIC Values in a VR Environment

S1
I Exp Gamma Log.N. Normal Weibull Uniform

AIC 329.2 297.22 295.47 293.26 291.81 273.86

BIC 330.34 299.49 297.74 295.53 294.08 276.13

S2
I Exp Weibull Gamma Normal Log.N. Uniform

AIC 157.27 130.72 130.47 130.42 130.37 126.17

BIC 157.67 131.52 131.26 131.22 131.16 126.96

S2
IP Exp Uniform Gamma Weibull Log.N. Normal

AIC 500.81 430.32 418.46 416.96 416.7 415.52

BIC 502.45 433.6 421.73 420.23 419.97 418.8

S3
I Exp Gamma Log.N. Normal Weibull Uniform

AIC 138.28 104.6 104.4 104.11 103.42 97.15

BIC 138.68 105.39 105.2 104.90 104.21 97.95

S3
IP Exp Gamma Log.N. Normal Weibull Uniform

AIC 295.99 266.65 264.98 263.58 262.83 256.68

BIC 297.12 268.92 267.25 265.85 265.1 258.95

S3
M Exp Weibull Normal Log.N. Gamma Uniform

AIC 586.87 476.28 473.72 471.58 471.13 463.6

BIC 588.74 480.02 477.47 475.32 474.87 467.34

S4
I Exp Uniform Normal Weibull Log.N. Gamma

AIC 500.08 452.38 450.97 450.11 444.87 444.15

BIC 501.79 455.81 454.4 453.54 448.3 447.58

S4
IP Exp Uniform Weibull Gamma Normal Log.N.

AIC 1154.23 986.64 954.24 952.55 950.86 950.16

BIC 1156.83 991.83 959.43 957.74 956.05 955.35

S4
M Exp Log.N. Gamma Normal Wi. Uniform

AIC 1257.02 990.35 995.23 984.02 978.11 969.38

BIC 1259.76 995.83 1000.70 989.49 983.58 974.85
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