
Citation: Ramm, R.; de Dios Cruz, P.;

Heist, S.; Kühmstedt, P.; Notni, G.

Fusion of Multimodal Imaging and 3D

Digitization Using Photogrammetry.

Sensors 2024, 24, 2290. https://

doi.org/10.3390/s24072290

Academic Editors: Kechen Song and

Yunhui Yan

Received: 22 March 2024

Revised: 28 March 2024

Accepted: 1 April 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fusion of Multimodal Imaging and 3D Digitization
Using Photogrammetry
Roland Ramm 1,* , Pedro de Dios Cruz 1, Stefan Heist 1, Peter Kühmstedt 1 and Gunther Notni 1,2

1 Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7,
07745 Jena, Germany

2 Faculty of Mechanical Engineering, Technical University Ilmenau, Ehrenbergstraße 29,
98693 Ilmenau, Germany

* Correspondence: roland.ramm@iof.fraunhofer.de

Abstract: Multimodal sensors capture and integrate diverse characteristics of a scene to maximize
information gain. In optics, this may involve capturing intensity in specific spectra or polarization
states to determine factors such as material properties or an individual’s health conditions. Combining
multimodal camera data with shape data from 3D sensors is a challenging issue. Multimodal cameras,
e.g., hyperspectral cameras, or cameras outside the visible light spectrum, e.g., thermal cameras, lack
strongly in terms of resolution and image quality compared with state-of-the-art photo cameras. In
this article, a new method is demonstrated to superimpose multimodal image data onto a 3D model
created by multi-view photogrammetry. While a high-resolution photo camera captures a set of
images from varying view angles to reconstruct a detailed 3D model of the scene, low-resolution
multimodal camera(s) simultaneously record the scene. All cameras are pre-calibrated and rigidly
mounted on a rig, i.e., their imaging properties and relative positions are known. The method was
realized in a laboratory setup consisting of a professional photo camera, a thermal camera, and a
12-channel multispectral camera. In our experiments, an accuracy better than one pixel was achieved
for the data fusion using multimodal superimposition. Finally, application examples of multimodal
3D digitization are demonstrated, and further steps to system realization are discussed.

Keywords: 3D digitization; multi-sensor systems; multimodal image fusion; photogrammetry;
structure from motion; multimodal; multispectral

1. Introduction
1.1. Motivation

Multimodal imaging has evolved as an essential advancement in computational image
analysis and interpretation [1–4]. Beyond the classical image acquisition by monochrome or
color (RGB) cameras, new and/or more comprehensive information is captured by cameras
in uncommon spectral regions, such as infrared [5–7] and ultraviolet [8–10], cameras
sensitive to a certain polarization state [11–13] or combination of those [14–16]. Camera
sensors with a mosaic filter array capture multiple modalities for each single snapshot,
e.g., multi-/hyperspectral cameras [17–20]. In our work, we name all cameras of that kind
“multimodal camera” for simplicity. In contrast, classical monochrome/color cameras are
referred to as “photo camera”.

The fusion of multimodal 2D image data with 3D surface data allows to spatially
localize multimodal information on an object surface. Furthermore, information about the
object’s shape and pose can improve the outputs of the multimodal data interpretation.
Works on the fusion of multimodal 2D image data and 3D surface are found in the areas of
criminal investigations, cultural heritage, industry, and medicine.

The VirtoScan project [21,22] aims to digitize forensic subjects, such as injuries or
corpses, including 3D surface, 3D volume, and multispectral data. Multimodal data, in
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combination with shape, reveal new information about cultural heritage objects [23–25].
Drones capture multispectral data and topography of the terrain to derive the condition
of field crops [26,27] and forest areas [28,29]. In industrial production, fusions of 3D and
multimodal data have been investigated for the detection of contaminations [30] and
human–robot interaction [31]. Zhang et al. [32] achieved a robust contactless heartbeat
measurement with a multimodal camera through the combination with 3D pose data of
a subject’s head. That approach allowed for contact-free monitoring of newborn infants’
vital signs [33].

Methods that derive 3D shape data out of a given set of 2D images have both data
modalities fused implicitly. Nevertheless, the fusion of 2D photo images and independent
3D shape data is challenging due to the principal differences in their contents [34–36]. For
multimodal 2D images, the challenge is even greater because their resolution and contrast
are typically not equivalent to photo cameras, so prominent features are more difficult to
track. Task-specific methods have been developed for the matching and fusion of different
multimodal 2D images [37–40]. Beyond that, their fusion with 3D shape data further
increases the level of difficulty.

We demonstrate a solution for the fusion of 2D image data from low-resolution
multimodal cameras with dense 3D surface data into multimodal 3D models. Furthermore,
our work aims to advise on the implementation of our solution and to highlight its potential
for enhancing 3D digitization applications using additional multimodal information, and
vice versa, to improve multimodal imaging tasks with 3D shape data.

1.2. State of the Art

First, we give an overview of previous works that considered the fusion of 3D surface
data with multimodal camera image data.

One popular 3D measurement technique is multi-view photogrammetry (MVP), also
named Structure from Motion, abbreviated as SfM [41–43]. MVP requires only one single
photo camera to obtain 3D models. A scene is photographed from several freely selected
viewpoints. The set of photos, together with sophisticated software tools, allows to de-
termine the alignment of the viewpoints, i.e., their 3D poses and the calibration of the
camera lens. With this knowledge, a dense 3D point cloud or mesh is reconstructed using
the triangulation principle [42]. Finally, the 2D images captured with the photo camera
can be fused with the 3D data by using the camera calibration and the poses to project all
images as a texture layer onto the surface. If professional digital cameras (DSLRs) are used,
high-resolution 3D meshes with photorealistic textures can be achieved [44].

In MVP, the fusion of 3D data with 2D images is implicitly realized using the recon-
struction principle. Applying MVP with a multimodal camera is one approach to obtain
multimodal 3D models [45,46]. However, MVP relies on a large number of image features
in the scene, ideally captured in high resolution and with high contrast, which typical
multimodal cameras cannot provide, as they have low spatial resolution (<1 megapixel)
and limited contrast for physical reasons. MVP with a single multimodal camera leads
to less robustness and quality. The work from Edelman et al. [45] shows that many input
photographs are required and that the resolution and quality of the 3D model are, neverthe-
less, quite low. Our own experiments showed that this method often fails to determine the
poses of the viewpoints, achieving no 3D reconstruction at all. Chane et al. [25] created a
complex setup with photogrammetric markers and an external tracking camera to measure
the viewpoints of the multimodal camera.

A known approach to improve MVP with multimodal images is the combination
of photo images of the same scene. The MVP workflow is started based on the photo
camera images. With the photo camera poses known, the poses of the multimodal images
need to be derived to incorporate them into the MVP workflow. Two kinds of methods
are found in the literature: (1) linkage between photo and multimodal images by feature
matching and (2) using the same physical camera unit during image acquisition for photo
and multimodal images.
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Customized feature descriptors were developed for the matching between multimodal
and photo images [37–40,47,48]. This matching is hard to automate for many applications
so that semi-manual procedures are common [49,50]. Found features are used to reproject
the multimodal images onto the photo images so that they can be set onto the same
viewpoints [47–50].

When multimodal and photo images are recorded from the same physical camera unit,
they are captured sequentially by switching spectral filters in front of the camera [23,24,51,52]
and/or changing the illumination source [53]. By using high-resolution monochrome camera
sensors, the resolution of the multimodal images itself is increased, leading to better feature
detection in general. Nevertheless, feature matching between multimodal images can be
omitted because the viewpoints are identical. The camera and illumination setup from Stech
et al. [53] is fixed, and the object is moved by a turntable to realize different viewpoints. The
main drawbacks of that method are the time-consuming data acquisition and the necessity
of a controlled environment. We were looking for an approach using snapshot multimodal
cameras that would allow for a quick application with a mobile setup in uncontrolled
environments.

Professional multispectral camera units are available for drones [54–56]: RedEdge
and Altum-PT (AgEagle Aerial Systems Inc., Wichita, KS, USA), Sequoia (Parrot Drone
SAS), or P4 Multispectral (DJI). These units contain a set of separate cameras with different
spectral sensitivities. Through the separate sensors and their focus on the visible and
near-infrared spectrum, the resolution and quality of the images are good compared with
mosaic multispectral cameras. Furthermore, the large imaging distance leads to similar
fields of vision and, thus, closely matched images. The results of such drone cameras in
close-range situations are unknown. We aim for close-range scenarios, i.e., some meters
or nearer.

Besides MVP, snapshot 3D sensors exist, such as stereo vision or time-of-flight cameras,
which capture a depth map of a scene from a single viewpoint. Heist et al. [57] used
multimodal stereo cameras in their setup, which resembles Edelman’s and Aalders’ MVP
system [45]. Chen et al. [58] were similar but used filter-wheel cameras. The drawbacks
of filter-wheel cameras are analogous to those in the work of Stech et al. [53] in MVP.
Nevertheless, for snapshot 3D sensors, an alternative method to fuse 3D shapes with
multimodal data has been found. Multiple works [30–33,59–61] have demonstrated setups
where a multimodal camera was added to the snapshot 3D sensor. The fusion of the
multimodal images with the 3D point cloud was realized by known geometric relations
between the 3D sensor and the multimodal camera. Those were determined in a pre-
calibration, including intrinsic parameters of the cameras (e.g., distortion) and their relative
poses. The main advantage is the omission of any feature matching between the multimodal
images and the 3D data. The multimodal images can be projected onto the 3D point cloud
using only the known geometric relations.

To conclude our overview of the state of the art, we want to mention that there are
special 3D sensors that use multimodal cameras to obtain 3D shape data in the first place
where established techniques fail, e.g., for very shiny [62–64] or transparent [65] objects or
for single-shot scenes [66].

We aimed for a method to fuse 3D and multimodal data dedicated to MVP and not
to snapshot 3D sensors. Our novel idea transfers the approach of adding an external
multimodal camera from snapshot 3D sensors to MVP-based 3D acquisition systems. A
high-resolution photo camera is used as “MVP 3D sensor” and combined with a multimodal
camera in a fixed arrangement. The fusion of both data modalities is based solely on pre-
calibrated geometric relations between the cameras and no feature matching.

In Section 2, we present our workflow for multimodal MVP and we describe the
experimental setup we used to test the workflow. The procedure and results of the pre-
calibration are addressed in Section 2.3. Section 3 follows with results of multimodal MVP.
We show some exemplary multimodal 3D reconstructions and an evaluation of the accuracy
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of our data fusion method. Finally, we discuss our results in Section 4, accompanied by a
conclusion and an outlook for our method and system setup.

2. Materials and Methods
2.1. Multimodal Multi-View Photogrammetry

Our main goal was the reconstruction of a high-resolution 3D model by MVP and
its fusion with multimodal image data in the form of a texture layer. MVP needs high-
resolution photo images from a photo camera to obtain a dense and accurate 3D mesh.
Therefore, we propose to combine one or more multimodal cameras, which usually have
a low resolution, with a high-resolution photo camera. In our proposed method, all
cameras were used in a fixed arrangement, which had been previously calibrated with
respect to the camera’s relative external orientations. Our approach of multimodal MVP
is shown schematically in Figure 1. The acquisition setup consists of one high-resolution
photo camera (1) and one multimodal camera (2) in a fixed arrangement (3). The relative
pose between the cameras is known from a pre-calibration procedure. The setup is used
to capture a series of images of the scene from different viewpoints. The poses of the
viewpoints of the photo camera images (1) are determined in the MVP process and allow to
reconstruct a dense 3D mesh of the scene (4). The poses of the viewpoints of the multimodal
images are derived from the pre-calibrated relationship to the photo camera so that its
image data can be projected onto the 3D mesh as a multimodal texture layer (5). No feature
matching between photo and multimodal images is required. Finally, a 3D coordinate
(X|Y|Z) and a multimodal value (MOD) can be assigned to each surface point. Our
approach for multimodal MVP can generally be extended to multiple multimodal cameras
so that each surface point can have multiple multimodal values.
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Figure 1. Scheme of our approach for multimodal MVP using one high-resolution photo camera
(1) and one multimodal camera (2) in a fixed pre-calibrated arrangement (3). It allows to reconstruct
a dense 3D mesh of the scene (4) and fuse it with the multimodal images in form a texture layer (5).

The pre-calibrated camera setup allows for the reconstruction of high-resolution
3D models through MVP on the basis of the photo camera images. The multimodal camera
images are projected onto the model in a processing step called “texturing” as a texture layer.
Figure 2 shows the workflow of our multimodal MVP and how it extends the standard
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MVP workflow. The approach can be extended for multiple multimodal cameras as long as
at least one high-resolution photo camera is included.
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Figure 2. Workflow of multimodal MVP as extension of the standard MVP workflow. The green
boxes indicate input data as well as intermediate and final result data. Orange boxes and arrows
are the main processing steps of standard MVP, while blue boxes and arrows are extensions by
multimodal MVP.

We started with two sets of images: (1) from the photo camera (“high-res photo
images” in Figure 2) and (2) multimodal camera (“low-res multimodal images” in Figure 2).
It is expected that the sets are built using image pairs captured subsequently from a fixed
arrangement, as illustrated in Figure 1. Like with standard MVP, the object of interest was
captured from various viewpoints i. The reconstruction of the dense 3D mesh followed
the workflow of standard MVP only using the high-res photo images (top row in Figure 2).
This consisted of an alignment step to obtain the poses of the photo images and, afterward,
the building of the point cloud and mesh.

New processing steps for multimodal MVP are shown as blue boxes and arrows in
Figure 2. First, we needed to determine the poses of the low-res multimodal images in
relation to the 3D mesh. This was performed by using the poses of the high-res photo
images Ti,high-res given from the standard MVP workflow and the pre-calibration Tprecalib
of the camera arrangement. T is a common representation of a pose in 3D space by a
4 × 4 transform matrix, including a 3 × 3 rotation matrix R and a 3 × 1 column vector t
for translation:

T =

[
R t
0 1

]
. (1)

Tprecalib contains the multimodal camera’s pose relative to the photo camera without
connection to any exterior object coordinate system. It was determined in a pre-calibration
procedure, which we describe closer in Section 2.3, for our experimental setup. Tprecalib is
constant over the complete image acquisition of a scene.

The alignment step with the photo images in the standard MVP workflow did not
produce, indeed, the requested poses Ti,high-res. Without prior information, the raw poses
Ti,high-res raw are free of scale. Their adjustment to metric scale is a necessary intermediate
step before connecting them with Tprecalib. A specimen with known size or a scale bar in
the scene are common methods to define the scale [41–43]. Hereby, a scale factor s was
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determined, which could be applied to the translational vector of Ti,high-res raw to obtain
scaled high-res poses Ti,high-res:

Ti,high-res =

[
Ri,high-res raw s·ti,high-res raw

0 1

]
. (2)

After that intermediate scaling, the low-res multimodal images poses Ti,low-res could
be calculated using the following:

Ti,low-res = Ti,high-res·Tprecalib. (3)

It is emphasized that, hereby, the poses of the multimodal images were determined
without any feature matching to the high-res photo images. Our multimodal MVP method is,
therefore, not dependent on the characteristics of the scene itself and can even be applied in
cases with strongly divergent scene representations between photo and multimodal images.

After the low-res multimodal poses were determined, their image contents can be
projected onto the 3D mesh which is taken from standard MVP workflow. In case of
multiple multimodal cameras, also multiple texture layers or combination of those could
be reconstructed. Of course, the high-res photos could be projected onto the 3D mesh as
well to obtain a photo texture layer.

Our method allows for the multimodal 3D digitization of objects using MVP indepen-
dent to the resolution or image quality of the multimodal camera. The 3D reconstruction
itself was realized solely from the high-res images of the photo camera, for which MVP soft-
ware tools were optimized. The low-res multimodal images had no influence on the quality
of the 3D mesh. Their data were projected afterward as texture layer onto the surface.

Furthermore, our method allows for the fusion of multimodal image data taken by
distinct cameras. By projecting their image contents onto the object surface, we obtain the
full multimodal information for each object point. Existing research work shows [37–40]
that this task is challenging based on the multimodal 2D images itself. Deep learning
applications with multimodal data require such methods for early sensor fusion [67].

Our method always requires one high-resolution photo camera, in addition to the
multimodal camera(s). Based on our experience, modern photo cameras—even board-level
sized RGB cameras—have sufficient quality to apply our method. Their size and price are
negligible compared with multimodal cameras.

The major challenge of our method is the pre-calibration between the photo and
multimodal camera. It must be realized with a specimen that is rich of contrast in both
cameras. Common chessboard or circle targets printed on paper are still applicable at
wavelength close to the visible spectrum. In more exotic multimodal channels, special
specimen must be created. We show the usage of a board with heatable metal circles.
In the ultraviolet spectrum, targets of non-fluorescent paper could be applied [68]. The
chessboard corners/circles must be large enough so that they are resolved in the low-res
multimodal camera image. The intrinsic calibration (camera constant, principal point,
distortion) of the high-res photo camera can be improved making a separate calibration
with an adequate specimen.

For the fusion of the multimodal image data and the 3D model, all cameras should
be placed as close together as possible to have optimal overlap of their fields of view. Our
method requires a rigid alignment of all cameras throughout the data acquisition process,
so that Tprecalib remains constant. The targeted stability for the camera’s relative position
and orientation depends on the concrete application. As a general goal, the resulting
deviation of the texture layer should be kept below the size of one multimodal camera pixel
to avoid visual impairment (cf. Section 3.3).

2.2. Laboratory Setup

We tested multimodal MVP, as described in Section 2.1, with a laboratory setup
consisting of three cameras. The camera arrangement is shown in Figure 3. The photo
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camera in the center was a DSLR camera, Canon EOS 5D Mark IV. The first multimodal
camera was a thermal camera from Optris with a working range between 0 and 100 ◦C and a
specified accuracy of ±2 ◦C. The second multimodal camera had a customized multispectral
sensor. Here, a monochrome camera from Baumer was equipped with a customized filter
and multi-lens array [69], resulting in a multispectral camera with 12 channels of 50 nm
bandwidth in steps between 400 and 1000 nm. In our experiments, each channel was treated
as a separate multimodal camera. The parameters of the three cameras are summarized
in Table 1.
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Table 1. Parameters of the three cameras in our laboratory setup.

Photo Camera Multispectral Camera Thermal Camera

camera type Canon EOS 5D Mark IV Baumer LXG-40MS Optris PI640
resolution 6720 × 4480 pixel 612 × 582 pixel per channel 640 × 480 pixel
pixel size 4.3 µm 5.5 µm 17 µm

range 16-bit RGB 8-bit 0 ◦C–100 ◦C
lens type Canon EF 50 mm F/1.2 L USM micro-lens array IR lens

focal length 50 mm 5 mm 18.4 mm
exposure time 20–200 ms 40–120 ms ~30 ms

distance to photo camera – ~90 mm ~135 mm
angle to photo camera – ~2.3◦ ~2.1◦

The cameras were mounted on an aluminum beam, which was adaptable to a tripod.
The rigidity of the aluminum beam and the camera mounts were sufficient for our purpose,
which we checked through the deviation of the multimodal texture layers (cf. Section 3.3).
Outside a laboratory environment, the mounting can be realized with stiffer and more
temperature-stable materials, such as carbon profiles, to improve the rigidity.

It is useful to keep the distances and angles between the camera small for optimal
overlap of photo and multimodal camera images. The objective lenses were selected to
have a similar field of view. At a working distance of 0.5 m, an area of approximately
0.5 × 0.35 m2 was captured.

In our experiments, we used ceiling fluorescent lights and a desk infrared light bulb
with 100 W (IR808 from Efbe-Schott) to obtain reasonable data for all multimodal channels.
A Spectralon reflectance standard with >95% diffuse reflectance from 300 to 2000 nm
(Zenith Lite from SphereOptics) was used as gray card for white balancing the multispectral
camera images.
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Our laboratory setup illustrates the large discrepancy between photo and multimodal
cameras in terms of pixel resolution. The 30 Mpx of our photo camera was nearly factor 100
higher than the multimodal channels with 0.35 Mpx. Even modern board-level cameras,
such as built-in mobile phones, are significantly higher resolved.

2.3. Pre-Calibration

The setup of photo and multimodal cameras must be pre-calibrated before applying
our multimodal MVP workflow. In particular, the relative external orientation between
both cameras Tprecalib was of major interest. Besides the external orientations, intrinsic
parameters, according to the pin-hole camera model and distortion, are an outcome of the
pre-calibration. Methods for camera pre-calibration are not limited to a single stereo pair
but can be extended to multi-camera systems. All geometrical and optical properties can
be derived from a set of images of a specimen with prominent unique features. Common
methods use planar chessboard, ArUco, or circle patterns [42].

It must be guaranteed that the features are rich in contrast in all cameras. Because
we did not achieve this for all our multimodal cameras at once, we used two different
specimens to pre-calibrate our laboratory setup. The customized circuit board in Figure 4
was taken for pre-calibration between the photo and thermal camera. The metallic parts
are warmed up to create a thermal contrast. Between the photo and multispectral cameras,
the paper printout in Figure 5 was glued on a stiff board. Both specimens contained similar
patterns: a grid of circles that are uniquely identifiable by ArUco markers. The size and
distance of the features was dictated from the low-resolution multimodal cameras. The
heatable pattern consisted of circles with a diameter of 5 mm and pitch distance of 12 mm.
In the printout pattern, a diameter of 8 mm and a distance of 20 mm was used due to the
larger noise in the images.
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in distance.

In general, our pre-calibration follows state of the art procedures [70,71]:

1. Capture a set of (stereo) images of the specimen in varying orientations;
2. Extract the pixel coordinates of each visible unique feature in each image;
3. Optimize the extrinsic and intrinsic camera parameters by bundle block adjustment;
4. Perform metric scaling of the external orientations using the known pitch distance of

the circles.
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Figure 5. Circle specimen printed on paper for pre-calibration between photo and multispectral
camera. Photo image (top), full multispectral camera image before splitting the 12 channels (bottom
left), and split single image of 550 nm channel (bottom right) are shown. The circles were 8 mm in
diameter and 20 mm in distance.

Multimodal MVP does not require to pre-calibrate all cameras together in case of multi-
ple multimodal cameras. Our method allows for the distinct pre-calibration of each possible
stereo pair of photo and multimodal camera in a separate procedure. Pre-calibration 1 cov-
ered the photo and thermal camera. Pre-calibration 2 covered the photo camera and the
12 channels of the multispectral camera as separate camera units.

We captured 13 stereo image pairs of the calibration board in Figure 4 for pre-
calibration 1. The calibration board in Figure 5 was captured in 16 stereo image pairs
for pre-calibration 2. In both cases, the calibration board was placed in various distances
between 500 to 800 mm in front of the cameras and tilted in various angles between −25◦

to +25◦ relative to the normal of the calibration board.
After stereo image capture, the pixel coordinates of the circle centers were determined

in the images by fitting ellipses to their boundaries that consider a perspective distortion of
their circular shape. Each circle center was uniquely identifiable between the stereo images
through its position to the next neighbored ArUco marker so that image correspondences
could be specified. The pixel coordinates of those image correspondences were introduced
separately to the bundle block adjustment for pre-calibrations 1 and 2.
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The bundle block adjustment was carried out with the software Bingo ATM [72]. The
known pitch distances between the circles were thereby introduced to obtain the results in
metric scale. Bingo ATM assessed its bundle block optimization with a reprojection error in
photo space. We achieved 4.7 µm root mean square (RMS) error in pre-calibration 1 and
2.4 µm in pre-calibration 2.

The outputs of Bingo ATM are the intrinsic and extrinsic parameters of the cameras.
The intrinsic parameters could likewise be used in the upcoming multimodal MVP pro-
cedure as input value (cf. Section 2.4). The extrinsic parameters were given by Bingo
ATM as a 6D vector consisting of three translation values, tx, ty, and tz, and three rotation
angles, φ, ω, and κ. For both pre-calibrations 1 and 2, we set the photo camera to the
origin so that the 6D vectors of the multimodal cameras equaled their relative orientation.
An average 6D vector was then determined across all captured stereo image pairs, i.e.,
13 from pre-calibration 1 and 16 from pre-calibration 2. Now, the average 6D vector of
each multimodal camera could be reshaped into the 4 × 4 transform matrix Tprecalib (cf.
Equations (2) and (3)) by:

Tprecalib =

Rφ·Rω ·Rκ

tx
ty
tz

0 1

. (4)

Here, tx, ty, and tz built the 3 × 1 vector for translation t. The rotation matrix R was built
by multiplying Rφ, Rω, and Rκ with the following:

Rφ =

 cos (φ) 0 sin (φ)
0 1 0

−sin (φ) 0 cos (φ)

, (5a)

Rω =

1 0 0
0 cos (ω) −sin (ω)
0 sin (ω) cos (ω)

, (5b)

Rκ =

cos (κ) −sin (κ) 0
sin (κ) cos (κ) 0

0 0 1

. (5c)

We obtained for the stereo camera setup consisting of photo and thermal cameras (pre-
calibration 1) the following 6D vector: tx = 114.72 mm, ty = 14.06 mm, tz = −6.86 mm,
φ = −8.01◦, ω = 0.56◦, and κ = 0.45◦, resulting in the following:

Tprecalib,thermal =


0.9902 −0.0091 −0.1393 114.72
0.0078 0.9999 −0.0098 14.06
0.1394 0.0086 0.9902 −6.86

0 0 0 1

.

It is pointed out that the translation is related to the distance of the camera centers
of the modeled pin-hole cameras and not the physical distance (cf. Table 1). In the
camera setup consisting of photo and multispectral camera, one Tprecalib for each of the
12 spectral channels was determined. Notably, we obtained for the 550 nm channel the
following: tx = −81.62 mm, ty = 6.69 mm, tz = 19.19 mm, φ = 4.83◦, ω = −1.25◦, and
κ = −0.10◦, resulting in the following:

Tprecalib,550nm =


0.9964 −0.0000 0.0842 −81.62

−0.0018 0.9998 0.0218 6.69
−0.0842 −0.0219 0.9962 19.19

0 0 0 1

.
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In our bundle block adjustment, we also determined intrinsic parameters, together
with the extrinsic ones for our camera setups. Nevertheless, it is possible to enter intrinsic
parameters as prior to the processing and optimize only the extrinsic parameters. The
high-resolution photo camera could be calibrated intrinsically more accurately with a
denser feature pattern prior to our pre-calibration. Furthermore, the angle coverage of
±25◦ in the acquisition of the calibration board could be increased to improve the accuracy
of the bundle block adjustment. However, our experiments did not give us reason to use
an extended pre-calibration procedure.

2.4. Implementation of the Multimodal MVP Workflow

After the pre-calibration of our laboratory setup (cf. Figure 3), we were able to apply
multimodal MVP following the workflow in Figure 2. We created an automated script for
quick, synchronous image acquisition from all three cameras in our setup. Especially for
scenes with thermal content, a quick acquisition procedure was important to keep interim
temperature changes small. We also conducted experiments using only one of the two
multimodal cameras, depending on the content of the scene.

Images from the photo camera were saved in JPG format. The images from the thermal
camera were saved as float arrays, including the raw temperature values in degrees Celsius.
For further processing, we selected an appropriate temperature range and converted the
data into 8-bit image files in TIFF format. The raw images from the multispectral camera
were split with respect to the sensor grid into 12 distinct channels. Each channel was
treated as an independent camera. White balancing was applied to the multispectral
images. This was derived from a reference acquisition of the Spectralon standard under the
same environmental illumination.

All captured images were saved in one directory with an appropriate naming con-
vention. Together with the pre-calibrations Tprecalib for each multimodal camera, our
multimodal MVP processing could be applied. Moreover, the intrinsic camera parameters
(camera constant, principal point, distortion) determined in the pre-calibration were intro-
duced prior to multimodal MVP. We used the photogrammetry software Agisoft Metashape
(version 2.0.2) and its Python programming interface (API) to implement the process steps
in Figure 2. In one intermediate step, the raw poses of the photo images Ti,high-res raw were
scaled after the alignment step from Metashape. In our implementation, we used a scale bar
next to the measurement object within the scene. The scale bar consisted of two circles with
a center distance of 30.982 mm, which was measured using the 3D scanner HandySCAN
BLACK Elite from Creaform with a certainty of ±0.012 mm. The 3D positions of the two
circle centers were determined using the intersection from their subpixel coordinates in the
photo images. The relation between the reference and the measured distance gives the scale
factor s, which was applied to Ti,high-res raw, according to Equation (2). The final results of
the whole multimodal MVP workflow were a dense 3D mesh and the poses of all captured
viewpoints, including the multimodal cameras Ti,low-res. With Metashape, we were able
to select images belonging to a certain multimodal channel and project texture layers of
interest onto the 3D mesh.

Metashape includes its own tool for handling rigid multi-camera systems called
“Camera-Rig”, which can help to realize some of the process steps of multimodal MVP. In
our context, the photo camera was set as master, while the multimodal cameras were slaves.
Pre-calibrated external orientations were entered as prior in the form of the 6D vectors (three
translations and three rotations) obtained using Bingo ATM (cf. Section 2.3). However,
we observed some artifacts and mismatches in the created multimodal texture layers.
We concluded that the “Camera-Rig” tool expects to find some feature matches between
the different cameras and misfunctions otherwise. Therefore, we used our own Python
implementation for the multimodal MVP workflow, which does not require any feature
matching between the images of photo and multimodal cameras.
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3. Results
3.1. Experiments Applying Multimodal MVP

In order to evaluate our multimodal MVP method, we used the setup described in
Section 2 and assembled a set of scenes. In the first example, we captured an arrangement of
three cups with water at different temperatures. We recorded the scene from 18 viewpoints
in one hemisphere with the photo and the thermal camera. The 3D reconstruction is shown
in Figure 6 as raw 3D mesh (a), mesh with RGB color layer (b), and mesh with temperature
as false color layer (c). The cups contained one fridge-cold fluid (left cup), one room-warm
fluid (background cup), and a boiling-hot fluid (right cup). The scale bar was placed in the
front of the scene (dotted ellipse in Figure 6b). We determined a scale factor of s = 210.998
and applied it to the raw poses Ti,high-res raw of the photo images, according to Equation (2).

The complete acquisition procedure took about 10 min, with minor temperature
changes in between. The complete acquisition time was mainly determined using the
manual repositioning of the camera setup. The hot cup cooled down by ~17 ◦C, and the
cold cup warmed up by ~1 ◦C between the start and end of the acquisition procedure.
Temperature changes during image acquisition would not disturb the reconstruction of the
3D mesh, as this is performed solely on the basis of the photo images (cf. Figure 2). In the
multimodal texture layer, an approximate average temperature is usually determined from
all multimodal images. However, there are also texturing methods that use the maximum
(or minimum) value. The 3D reconstruction took about 3 min on a laptop with Intel Core
i9-9980HK CPU and Nvidia GeForce GTX 1650 GPU.
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Figure 6. Results of multimodal MVP from the arrangement of three cups with contents at dif-
ferent temperatures. The raw 3D mesh (a) is shown with the RGB texture (b) and the thermal
characteristic (c).

In the next example, we applied multimodal MVP to a recreated scrap pile. It consists
of multiple things varying in size, material, and color in a chaotic compilation. We captured
images from 17 viewpoints in one hemisphere with the photo and multispectral camera.
We determined a scale factor of s = 238.736 on that scene. Finally, we calculated color
layers for each of the 12 spectral channels or combinations of those. Exemplary layers are
shown in Figure 7.
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In the next experiment, we used the multispectral as well as the thermal camera to
capture multimodal characteristics of a human head. We captured seven viewpoints in
about 2 min. The scale bar was placed on the shoulder of the proband. We determined a
scale factor of s = 286.074 on that scene. Due to slight motions of the proband, fast data
acquisition was essential. Still, the mesh is noisier than the static examples above. The
3D mesh and exemplary multimodal texture layers are shown in Figure 8.
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Figure 8. Result of multimodal MVP of a human head. The raw 3D model (a) is shown with the
spectral characteristic at 450 nm (b), 700 nm (c), 950 nm (d), and the temperature characteristic (e).

The results on the human head demonstrate how multimodal MVP allow the overlay
of multimodal data arising from different camera units. For each 3D point on the surface,
we obtain the spectral and temperature characteristics, which enable new properties of the
object to be explored.

3.2. Comparison of Multimodal MVP against Standard MVP

We verified the advantages of our multimodal MVP workflow by comparing it against
the standard MVP workflow with a single camera, e.g., used by [45,46]. Figure 9 compares
the results of multimodal MVP against standard MVP using only the images of one of the
multimodal cameras in the example of the human head.
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Figure 9. Results of multimodal MVP (left), MVP based on the multispectral channel 700 nm (center),
and thermal images (right) for a human head.

Left is the 3D mesh achieved by our multimodal MVP workflow. In the center, the
images of the 700 nm channel from the multispectral camera were used. These showed
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the highest contrast among all channels of the multispectral camera. The reconstructed
3D mesh shows no familiarity with a human face. Right is the 3D mesh reconstructed only
from the thermal camera images. Here, the quality allows for the recognition of a human
face, but the detail level is still smaller than our multimodal MVP approach and includes
severe artifacts on the backside of the head. A quantitative comparison of the meshes
is, therefore, not reasonable. We also tested standard MVP to the remaining examples in
Section 3.1. However, none of these instances allowed for the reconstruction of a 3D mesh,
as the multimodal images lacked prominent image features.

3.3. Accuracy of Multimodal MVP

Our experiments in Section 3.1 demonstrated the capability of our multimodal MVP
method to reconstruct different multispectral texture layers on a dense 3D mesh. However,
it was not possible to evaluate quantitively the error of the texture projection based on the
shown examples apart from the fact that no mismatch was observed visually. For a more
sophisticated statement about the projection accuracy of multimodal MVP, we used the
specimen used at the pre-calibration of our camera setup (cf. Figures 4 and 5).

We captured new sets of images from both specimens. Then, the multimodal MVP
workflow was applied to the image sets according to the experiments in Section 3.1 without
any circle or ArUco marker detection. The scale bar was placed in each case beside the
specimen. We determined scale factors of s = 259.628 for the circuit board specimen (cf.
Figure 4) and s = 369.426 for the specimen printed on paper (cf. Figure 5). Only after
the reconstruction of the 3D mesh and multimodal texture layer was finished, the circle
positions were used to evaluate the error of the texture projection. The position of each
circle center in 3D space was calculated from its pixel coordinates in the camera images
using forward intersection in space based on the viewpoints of those images. References
of those positions were determined through forward intersection from only the photo
camera images. The same was repeated from only the multimodal camera images. The
error of multimodal texture projection was determined as average spatial deviation from
the reference positions.

Figure 10 shows the results for the photo and thermal cameras. Left is a small section
of the 3D mesh with RGB texture layer. The determined positions of the reference circles
from the photo camera images are depicted in red, whereas those from the thermal camera
images are represented in yellow. The right histogram shows the distribution of deviations
for all visible circles. We obtained an average deviation of 0.4 mm from the reference
positions. This equals about 0.5 pixels of the thermal camera.
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(Left): A small section of the specimen showing the reference 3D positions of the circle centers in red
and the positions in the multimodal texture layer in yellow. (Right): Histogram distribution of the
circle deviations.



Sensors 2024, 24, 2290 15 of 20

Figure 11 shows the same evaluation for the setup of photo and multispectral cameras.
In principle, all 12 channels could have different errors because they were treated as separate
camera units. The circles deviated in average between 0.38 mm for the 750 nm channel,
0.57 mm for the 950 nm channel, and 0.68 mm for the 450 nm channel, corresponding to
~0.5–0.8 pixels in the multispectral camera.
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Figure 11. Accuracy of the multimodal texture projection for the setup of photo and exemplary
channels of the multispectral camera. Left (a): A small section of the specimen shows the reference
3D positions of the circle centers in red and the positions in the multimodal texture layer for channel
950 nm in yellow. Right (b–d): Histogram distributions of the circle deviations for channels 450
(b), 750 (c), and 950 nm (d).

A closer look at the deviations showed that there is a systematic error in the form of
a preferential direction. This error pattern indicates a residual error in the scaling during
multimodal MVP or small changes in the camera setup after pre-calibration due to limited
mechanical robustness. A larger scale bar may improve the accuracy as well. Further
measurements of the deviations at different distances or on a non-planar target could
make it possible to identify systematic distance-dependent errors, e.g., due to biases in the
pre-calibrated focal lengths. However, the residual mismatch of below 1 px was sufficient
to avoid any visual artifacts in the multimodal texture layers.

4. Discussion and Conclusions

We demonstrated a workflow enabling the fusion of multimodal 2D images with
3D surface data. The main idea of our workflow is the combination of the multimodal
camera(s) with a high-resolution photo camera in a fixed setup (cf. Figure 1). The MVP
principle allows to obtain high-quality 3D meshes from the photo images. Through the pre-
calibrated geometric relation between the cameras, we could obtain the viewpoints of the
multimodal images in relation to the photos and the 3D mesh. No image feature matching
was required for that connection of the sensors. The fusion of the multimodal 2D image
data with the 3D surface data was finally realized by projecting them as a texture layer onto
the mesh. We achieved an accuracy of 0.4 to 0.68 mm for the projection of the multimodal
images to the mesh in our experiments, which equaled less than a 0.8-pixel mismatch. We
traced a major part of this residual error back to limitations in the mechanical robustness of
our setup or to the scaling procedure within the workflow because a systematic offset can
be observed. However, that error was small enough not to disrupt the visual quality of the
fused data.

A major benefit of our multimodal MVP method is the combination of multimodal
images with a high-resolution 3D mesh. The low resolution and low image quality of
typical multimodal snapshot cameras do not allow to reconstruct any recognizable 3D
mesh at all or in low quality and resolution (cf. Figure 9). Our method also obtains the
viewpoints of the multimodal images. Through the possibility of expanding our workflow
to multiple multimodal cameras, the diverse information they provide can be fused at each
surface point. We demonstrated this in Figure 8 by fusing the thermal and spectral data for
the 3D mesh of a human head. This aspect of our method could be applied to early sensor
fusion in deep learning applications [67].
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An advantage of MVP, in general, is its scalability in terms of field of vision. There
are system realizations for digitizing small objects, such as insects [73], up to large ones,
such as buildings and landscapes [28]. This advantage holds true for our multimodal MVP
method as well, making it suitable for many applications.

The experimental scenarios shown in Section 3 address some potential practical appli-
cations for multimodal MVP on a small scale. The detection and recognition of the material
of an object, together with its shape and position, is useful for automation in the recycling
industry. Scrap piles could be digitized using autonomous vehicles, which could directly
collect objects of a certain material sort detected through their spectral fingerprint [74].
The examination of our method for the field of crime scene investigations holds promise.
The estimation of time since death [75] or age of blood stains [76] is based on thermal
and multispectral data that could benefit from the combination with 3D shape data, as
demonstrated in Figure 8. Our method has the potential to bring the ideas of the VirtoScan
project [21,22] from the lab environment to crime scenes. Another interesting connection
can be made with physically based rendering techniques [77], which add material and
surface characteristics to 3D models for their realistic presentation. For example, this is
a desired feature in upcoming E-commerce environments where retail websites provide
interactive 3D models. Methods for classifying materials or estimating surface rough-
ness based on multimodal data, such as polarization and spectral reflection, are found
in the literature [78–80]. Multimodal MVP could allow an automatic evaluation of those
characteristics in 3D models captured using photogrammetry in order to obtain a realistic
3D rendering. More potential applications of the multimodal MVP method can be identified
in the literature (cf. Section 1).

Our experiments showed the performance of the presented multimodal MVP method
for a multispectral and a thermal camera. Nevertheless, the principle is applicable to
other kinds of multimodal cameras, such as ultraviolet or polarization-sensitive cameras as
well. The application to more exotic cameras like photon-counting (SPAD) [81] or acoustic
cameras [82,83] would need further experimental research.

Advancing our multimodal MVP method regarding its usability in real-world scenar-
ios is the crucial next step. A drawback of our method is the necessity of an additional
high-resolution photo camera beside the multimodal camera. In our experiments, we used
a professional DSLR camera, which led to drawbacks in terms of overall sensor size, weight,
and price. Nevertheless, MVP is widely applied to small industrial [84] and board-level
cameras (e.g., smartphones, drones). Those miniaturized photo cameras already clearly
outperform typical multimodal cameras in terms of resolution, which is of major relevance
to the application of our method. Small-sized and lightweight sensor setups, which could
be used handheld or attached to autonomous robot vehicles, are feasible. The cost factor
of the additional photo camera would be negligible compared with a multimodal cam-
era. Another point regarding usability is the pre-calibration procedure, which needs to
be simplified to allow flexible configuration for different multimodal cameras and quick
performance at the operation size. Calibration methods that require only a single shot of a
specimen exist and must be tested in terms of robustness and accuracy for our multimodal
MVP method (e.g., [85] or [86]).

In conclusion, multimodal MVP has great potential to enhance existing 3D digitization
results by adding multimodal information. Conversely, recent multimodal imaging tasks
could gain from adding 3D shape data as a further modality.

5. Patents

The work reported in this manuscript is registered for a patent under the num-
ber DE102021203812B4.
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