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Abstract: Recent advances in Deep Learning and aerial Light Detection And Ranging (LiDAR) have
offered the possibility of refining the classification and segmentation of 3D point clouds to contribute
to the monitoring of complex environments. In this context, the present study focuses on developing
an ordinal classification model in forest areas where LiDAR point clouds can be classified into four
distinct ordinal classes: ground, low vegetation, medium vegetation, and high vegetation. To do so, an
effective soft labeling technique based on a novel proposed generalized exponential function (CE-GE)
is applied to the PointNet network architecture. Statistical analyses based on Kolmogorov–Smirnov
and Student’s t-test reveal that the CE-GE method achieves the best results for all the evaluation
metrics compared to other methodologies. Regarding the confusion matrices of the best alternative
conceived and the standard categorical cross-entropy method, the smoothed ordinal classification
obtains a more consistent classification compared to the nominal approach. Thus, the proposed
methodology significantly improves the point-by-point classification of PointNet, reducing the errors
in distinguishing between the middle classes (low vegetation and medium vegetation).

Keywords: LiDAR point cloud; Deep Learning; ordinal classification; soft labeling

1. Introduction

The importance of aerial Light Detection And Ranging (LiDAR), one of the most
relevant remote-sensing tools for terrestrial data acquisition, has increased thanks to recent
contributions in the field of Artificial Intelligence (AI). Within this area of knowledge, Deep
Learning (DL) has played a key role since it has provided the scientific community with
further tools to classify and segment 3D point clouds, thus benefiting a wide spectrum
of fields, such as Forestry Engineering [1,2], Agricultural Engineering [3,4], and Urban
Planning [5,6]. For example, concerning the former, LiDAR technology makes it possible to
obtain information at a larger scale. This technology provides information about vegetation
structure, density, canopy height model, and canopy percentage cover, which allows a
thorough understanding of the forest. To achieve this, LiDAR data need to be previously
filtered and classified to analyze forest areas [7].

According to the classification system developed by the American Society for Pho-
togrammetry and Remote Sensing (ASPRS), vegetation can be classified into three classes:
low, medium, and high [8]. Low vegetation is that which ranges from ground level up to
0.5 m; medium vegetation is that which ranges from 0.5 m up to 2 m; and high vegetation is
that which is more than 2 m [9,10]. Following this differentiation, LiDAR point clouds are
used to categorize the points corresponding to the ground in order to generate a Digital
Elevation Model (DEM) [11]. Subsequently, thanks to the DEM, the height of the points
is normalized, and classified as low vegetation, medium vegetation, or high vegetation.
In this context, issues arise when normalized heights are close to 0.5 m or 2 m, as they
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could be classified as either medium or high vegetation, respectively [12,13]. Once the
points are classified, forestry metrics can be obtained, namely percentage cover, tree height,
and percentiles [14]. This allows for the calculation of biomass [15], wood estimates [16],
or fuel models, all of which help in designing high-precision forest fire prevention and
firefighting models [17].

During the last few decades, numerous researchers have focused on classifying and
segmenting 3D point clouds using DL approaches. This is because point clouds contain a
larger amount of raw information—regarding space, color, etc.—when compared to images.
In order to properly classify and segment point clouds, labeling techniques have been
considered an essential stage. In the context of labeling point clouds, algorithms can be
broadly divided into two groups: those based on methods that operate directly on the 3D
point clouds without altering their original nature [18,19], and those based on methods that
convert the point clouds to collections of images or voxel grids [20,21]. On the one hand,
the first group employs a point-wise discriminative model to assign semantic labels to each
element in the point cloud. This model operates on point features and is designed to be
simple yet effective. For example, Ref. [22] suggested the use of geometrical and spectral
features from the LiDAR point cloud for the semantic labeling task in urban scenarios.
On the other hand, the second group employs multiview transformation approaches or
volumetric methods to learn local and global features. For instance, Ref. [23] suggested
the conversion of the point cloud into regularly distributed 2D images, which allows the
classification of a point to be approached as a pixel classification problem. In the case of
volumetric methods, Ref. [24] proposed the partition of a given LiDAR point cloud into
regular voxel grids, using 3D Convolutional Neural Networks (3D-CNNs) to label each
voxel according to the information of its centroid. However, the use of these transformations
has been criticized because of the significant computational overhead they introduce, their
tendency to increase model complexity, and the potential loss of valuable information.

In this context, to avoid problems with data conversion, many studies have used
the PointNet neural network [25,26], which is the pioneering architecture proposed for
3D object recognition in indoor scenarios [27]. This network is specifically designed to
process point cloud data, offering a highly adaptable framework with a vast capacity
and minimal overhead, enabling efficient operations. For outdoor scenarios, different DL
models have been reported, all based on PointNet-like architectures: PointNet++ [28],
SE-PointNet++ [29], CropPointNet [30], etc. Meanwhile, other authors have suggested ame-
liorating the performance of PointNet by exploring the local structure of point clouds [31,32]
or incorporating crucial handcrafted features into the deep neural network [33]. Despite
all these improvements, the classification and segmentation of large-scale airborne point
clouds in complex environments are still challenging [34,35]. For example, in Forestry
Engineering, segmenting vegetation represents a challenge due to the intricate interplay
between objects and the background, and the need to set thresholds for height differ-
ences to normalize and filter LiDAR point clouds. Thus, few studies have assessed the
potential of DL-based methods in forest areas, with most of them related to tree species
classification [36,37].

In any case, these point cloud labeling algorithms have primarily addressed the resolu-
tion of problems where the ordering of the labels has been ignored (nominal classification).
Despite the success of the application of DL-based methods in nominal classification tasks
in recent years [38,39], ordinal classification has been the focus of researchers in the recog-
nition community. The aim of using ordinal classification is to predict the label of a given
pattern, where a natural order among the different possible categories can be assumed.
For instance, Ref. [40] aims to predict the human head pose angle (pitch, roll, and yaw)
based on ordinal regression techniques with soft labels, operating on 3D point clouds
derived from a depth image. In the field of Forestry Engineering, Ref. [41] predicts the
number of strata in three datasets based on ordinal regression techniques to support for-
est management. This task is different from the classification of points as ground, low
vegetation, medium vegetation, and high vegetation, which has not yet been explored.
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The interest and novelty of the present study lie in developing ordinal classification
models for forest areas and integrating them into aerial LiDAR point clouds to refine the
per-point classification. The study uses an effective soft labeling technique applied to
the PointNet deep network. The main interest of the proposed methodology, compared
to the state of the art, is the use of a generalized exponential distribution, where two
hyperparameters are introduced (p and α) for improving the flexibility of the distribution.
By adjusting the value of these parameters, better results can be achieved for the real
problem addressed.

The core concept is to enhance the quality of airborne point cloud segmentation by
reducing errors in the labeling procedure, such as human operator variability and post-
processing steps. The reason for using DL approaches in this research is to explore the
potential of this advanced technique to ameliorate the classification of LiDAR data in
complex forest environments. The use of DL algorithms can help extract more complex
features and patterns from the data, leading to better classification results.

To summarize, this research has focused on the following contributions:

1. The development of an ordinal classification model that utilizes an effective soft label-
ing technique applied to the loss function using unimodal distributions to ameliorate
the classification of LiDAR data.

2. The application of the proposed methodology in forest areas where LiDAR point
clouds can be classified into four distinct ordinal labels: ground, low vegetation,
medium vegetation, and high vegetation. In the field of Forestry Engineering, it is
the first time that this kind of problem is treated as an ordinal regression problem.
This contribution is particularly relevant for the forestry industry as it enables more
accurate estimation of important forest metrics such as biomass and wood estimates.

This manuscript is organized as follows: the LiDAR point cloud dataset employed,
the core concepts such as “ordinal classification” and “soft labeling”, the proposed reg-
ularized loss function used for soft labeling (generalized exponential function), and the
PointNet network architecture are described in Section 2; the experimental results are
shown in Section 3 and discussed in Section 4; and, finally, the conclusions are drawn in
Section 5.

2. Materials and Methods
2.1. LiDAR Data

The LiDAR point cloud generated covered a forest area of 1 km2, located in the
province of Lugo, Spain (43◦13′50′′ N, 7◦55′25′′ W, WGS-84) (Figure 1). The aerial LiDAR
point cloud, which comprises around 46 million points, had a point density of 49 points/m2

and a point spacing of 0.143 m with six returns. Moreover, the LASer (LAS) format file
of the point cloud contains several point attributes, from which the coordinates (x, y, z),
the red, green, and blue color values (RGB), the intensity (I), and the return number (Rn)
were utilized in this work.

The LiDAR flight was performed on 18 February 2018 using an AS-350 B2 Eurocopter
manned helicopter. This platform was equipped with a RIEGL laser scanner, model VQ-
480i (Figure 2), which offers an 80 mm footprint. The Inertial Measurement Unit used was
iMar Navigation, model iIMU-FSAS-HP-SI-SME1-SP, with an angular measurement range
of ±500◦/s, a drift lower than 0.1◦× hour−1, and a resolution of 0.1 arcsec × LSB−1 (Least
Significant Bit), providing data at a rate of up to 500 Hz. The RGB camera was a Phase
One, model IXU-RS 1000, with a resolution of 11, 608 × 8708 pixels and a focal length equal
to 50 mm. The GNSS modem utilized was a Javad TR-G3T, incorporating GPS, Galileo,
GLONASS, and SBAS frequencies, connecting to up to 32 satellites with an Antcom antenna.
The flight altitude of the mission was 300 m above ground level at a speed of 20 m × s−1.
The system operated at a pulse repetition of 400 kHz and with a scan angle (FOV) of 60◦,
an altitude above ground level equal to 300 m with a reflectivity higher than 20% for a 30%
side-lap overlap.
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Figure 1. Location of the LiDAR data. The coordinates are georeferenced in the ETRS89/UTM Zone
29N coordinate system.

Figure 2. On the left, the laser scanner, two Phase One cameras (zenith and oblique), and the IMU.
On the right, the system installed before the flight.

After acquiring the LiDAR data from the experimental site, Python’s pptk package [42]
was used to analyze, visualize, and extract features from the 3D point clouds. To ensure
the reliability of the labels, conventional and well-established labeling methods were used.
In this sense, two filtering methods were applied to label the point clouds as ground truth,
using a semi-automatic labeling procedure to evaluate the classification results.

The first one referred to normalized heights of vegetation. Thanks to the Python’s
laserchicken package [43], a Digital Elevation Model (DEM) of the study area was gen-
erated. In the DEM, each point was assigned a normalized height (H) value based on the
height of the lowest point in a 1 × 1 m neighborhood to distinguish vegetation classes.
The elevation threshold was established as follows: point clouds from 0 to 0.5 m, from 0.5
to 2 m, and above 2 m were classified as low vegetation, medium vegetation, and high
vegetation, respectively.

The second referred to return numbers in order to discriminate ground points from
low vegetation points. This filtering was specifically used in areas where only two classes
coexist: ground and low vegetation. In these areas, the emitted laser pulse of LiDAR
technology first encounters the low vegetation and then the ground class. For this reason,
this approach assumes that the first return belongs to the low vegetation class and the
other returns belong to the ground class. As previously discussed, the LiDAR point cloud
contained six returns. If the return value of a point was higher than or equal to 2, it would
mean that the said point could be classified as ground. However, those points with Rn
equal to 1 were classified as low vegetation.



Sensors 2024, 24, 2168 5 of 18

All the selected LiDAR point clouds were refined by manually editing them using the
interactive segmentation tool of CloudCompare [44]. After that, the LiDAR point clouds
were unified and converted into an HDF5 file format [45]. The dataset contained two parts:
data and labels. Concerning the former, the attributes of several points from four different
categories were recorded. These attributes include x, y, z, RGB values, I, R, and H. In the
label section, the labels were categorized into four semantic classes: ground, low vegetation,
medium vegetation, and high vegetation (Figure 3).

Figure 3. Labels of the LiDAR point cloud. The legend represents the color corresponding to
each category.

An amount of 2048 points was randomly sampled from 5738 blocks of size 9 × 9 m
without replacement. After that, the dataset was split into a 60/20/20 percent ratio as
training, validation, and test sets, respectively (Table 1). Moreover, all the features were
normalized—xn, yn, zn, Rn, Gn, Bn, In and Hn—except the Rn attribute, which was
encoded as a one-hot numeric array—Rn1, Rn2, Rn3, Rn4, Rn5, Rn6. Lastly, the point
clouds in each block constituting the training, validation, and testing sets were converted
into an HDF5 file. Each set includes the following: (1) an array of N × 2048× 14, where N is
the total number of segmented input blocks, 2048 is the number of points that are randomly
sampled per block, and 14 corresponds to the 14-dimensional feature vector (Equation (1));
and (2) a categorical label encoded as a one-hot numeric array (Equation (2)).

pi = (xn, yn, zn, Rn, Gn, Bn, In, Hn, Rn1, Rn2, Rn3, Rn4, Rn5, Rn6). (1)

Cq =


[1, 0, 0, 0] ground category,
[0, 1, 0, 0] low vegetation category,
[0, 0, 1, 0] medium vegetation category,
[0, 0, 0, 1] high vegetation category,

(2)

Table 1. The number of points in each category.

Category Training Validation Test

Ground 2,578,600 863,096 835,056
Low vegetation 1,000,907 324,547 354,049
Medium vegetation 1,204,729 412,513 400,521
High vegetation 2,264,980 750,948 761,478

7,049,216 2,351,104 2,351,104
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2.2. Ordinal Classification

The purpose of ordinal classification problems is to predict the real class y based on
an input K-dimensional vector x(x ∈ X ⊆ RK). For this sort of problem, the dependent
variable of the classification models is an ordinal scale variable chosen from a set of different
categories (y ∈ Y = {C1, C2, . . . , CQ}) which have a natural ordering (C1 ≺ C2 ≺ . . . ≺ CQ)
associated with the real problem [46]. The precedence operator (Ci ≺ Cj) designates that
the category Ci is prior to the class Cj in the ordinal scale and Q is the number of classes
defined in the real problem.

Ordinal classification models, which exploit the ordering information in ordinal class
attributes, can lead to better segmentation results by reducing misclassification errors in
extreme classes, limiting errors to adjacent categories, and maximizing the number of
properly classified patterns.

2.3. Soft Labeling

Soft labeling is an effective regularization technique that operates on the labels, en-
hancing the model’s robustness during training. Instead of utilizing hard labels (1 for the
target class and 0 for the others), soft labeling assigns some probability to each class [47].
When the labels are encoded as one-hot, the probability distribution of each class is defined
as q(i) = δi,c, i being the predicted class with ranges from 1 to Q, c the ground truth class,
and δi,c the Dirac delta, which equals 1 when i = c and 0 otherwise [48].

Based on the above, label smoothing can be incorporated into the standard cross-
entropy loss function (Equation (3)). The cross-entropy loss function is considered one of
the most popular methods for training deep neural networks, as it aims to maximize the
likelihood of the correct prediction given the ground truth in the training set [49].

L =
Q

∑
i=1

q(i)[− log p(y = Ci|x)], (3)

where p(y = Ci|x) is the probability predicted by the model of x belonging to the class y
for each of the Q categories. By applying label smoothing, the q(i) in Equation (3) can be
replaced with a soft version q′(i):

q′(i) = (1 − η)δi,c + η(
1
Q
). (4)

A discrete uniform distribution is established associated with the number of classes Q,
where η is a smoothing parameter defined in the range [0, 1] that controls the linear combi-
nation.

Within the context of ordinal classification, the misclassification of patterns is a com-
mon issue that occurs in adjacent classes in relation to the ground truth on the ordinal scale.
To address this challenge and improve the accuracy of loss computation, it is recommended
to substitute the use of a uniform distribution with unimodal distributions. The mode of
the unimodal distributions should be positioned in the center of the interval for middle
classes or at the upper or lower bounds for extreme classes [48]. Additionally, to favor
more confident decisions, it is crucial for the probability distribution to exhibit a small
variance and for the majority of its probability mass to be concentrated within the interval
corresponding to the ground truth class [48].

Various low-variance distribution functions considered in previous studies [48,50–52]
have ameliorated the performance of ordinal classifiers by applying a soft labeling tech-
nique regarding the standard one-hot encoding. Some of the proposed methods require
experimental adjustment of different parameters. Ref. [50] proposed using a binomial
distribution, which takes into account the number of classes and the probability. The mean
and variance of the binomial distribution are given by different expressions, allowing for
enhanced flexibility to place the mean in the center of the class interval while keeping
the variance small. According to [51], the Poisson distribution represents an alternative
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for modeling the probabilities. However, since the mean and variance of the Poisson
distribution are both determined by the parameter λ, it is not possible to center the mean
of the distribution in the class interval while achieving a small variance, leading to poor
performance. In the work of [52], an exponential function followed by a Softmax normal-
ization is explained. Besides its simplicity, this distribution flexibly adjusts the shape of the
target label distribution in order to smooth the label with the unimodal distribution. Hence,
it is feasible to manipulate the mean and variance of the exponential distribution to foster
label predictions that are closely distributed to the ground truth class. Lastly, Ref. [48] pro-
posed sampling from a beta distribution that is defined within the range of 0 to 1; thus, no
normalization is mandatory and no high variance is achieved. However, an improvement
of this distribution could be considered when the number of classes is low.

2.4. Generalized Exponential Function

All the abovementioned distributions, especially when the number of classes is low, are
characterized by high variance or lack the necessary flexibility to center the mode of each
distribution within the interval corresponding to its class. For this reason, a generalized
exponential function based on [52] is proposed:

f (q, p, α) = e−α|q−y|p , (5)

where q and y designate the predicted and real classes, respectively, and 1 ≤ p ≤ 2 and
0 < α ≤ 2 are two hyperparameters that need to be adjusted experimentally. After that,
a Softmax normalization procedure is employed to calculate the corresponding probabilities.
Figure 4 presents the class distributions for the proposed generalized exponential function,
where the color indicates the ground truth class of a given pattern, the x-axis specifies the
class under examination, and the y-axis indicates the applied soft label. For each class,
the distributions for p ∈ {1.0, 1.5, 2.0} and α ∈ {0.5, 1.0, 1.5, 2.0} are represented.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
q

0.0

0.1

0.2

0.3

0.4

0.5

0.6
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q)

p=1.0 p=1.5 p=2.0
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0.6

0.8

p(
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= 0.5 = 1.0 = 1.5 = 2.0

Figure 4. The generalized exponential distribution was used to address a classification problem with
five distinct classes. In the resulting visualization, the x-axis designates the evaluated class, while the
y-axis displays the corresponding smoothed label value. The color coding corresponds to the ground
truth class, with red representing class 0, blue representing class 1, green representing class 2, purple
representing class 3, and orange representing class 4. Each line in the visualization represents the
probability distribution for a specific true label. The line type indicates the different values that the
hyperparameter p and the hyperparameter α can take.

These probabilities replace the uniform distribution and are subsequently used to
generate the corresponding q′(i) (Equation (4)). In this way, the standard definition of the
loss function is formulated as:

L =
Q

∑
i=1

q′(i)[− log p(y = Ci|x)]. (6)
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Given that q′(i) presents a continuous decrease with respect to the farther distance
from the ground truth class, it is considered as a weight of − log p(y = Ci|x).

In the present study, the uniform distribution is replaced with other low-variance
distributions that provide more flexibility when centering each of the four categories in the
problem. In these low-variance distributions, f (x, θ) is the probability value sampled from
a binomial, Poisson, beta, and generalized exponential plus a Softmax function:

q′(i) = (1 − η)δi,c + η f (x, θ). (7)

To analyze the behavior of the proposed distribution, an ordinal classification model
with four classes (Q = 4) is considered. To find the hyperparameters (p, α) from the gener-
alized exponential function, one value is decided while fixing the other one, reducing the
computational cost of simultaneously finding both values. The value for the hyperparame-
ter p is obtained by fixing the hyperparameter α (Equation (8)). After that, to obtain the
value of the hyperparameter α, the hyperparameter p is fixed (Equation (9)).

f (q, p, α = 1) = e−|q−y|p , q = 1, . . . , Q. (8)

f (q, p = 1, α) = e−α|q−y|, q = 1, . . . , Q. (9)

2.5. PointNet Network Architecture

A Convolutional Neural Network (CNN), namely PointNet [27], is used for the classi-
fication of LiDAR point clouds, as the main interest of this study is to offer a point-by-point
classification. Nevertheless, some modifications in the inputs and outputs are included for
the proper implementation of the original network [27,31].

Firstly, all the point features employed in the present study—the coordinates x, y,
and z; the spectral values red, green, and blue (RGB); the intensities (I); and the height of
each point within the 1 × 1 m block (H)—are normalized—xn, yn, zn, Rn, Gn, Bn, In and
Hn—instead of only adding only the normalized coordinates of the point [31].

Secondly, considering that the return number attribute (Rn) is a discrete variable
defined in the range [1, 6] (the LiDAR system provides six returns), it is encoded as a
one-hot integer array—Rn1, Rn2, Rn3, Rn4, Rn5, Rn6. Thus, this encoding allows for
evaluating the impact of Rn in the model, as the other parameters are measured on a
continuous scale.

Thirdly, prior to data training and following the design of the PointNet model,
the point cloud is partitioned into non-overlapping blocks of size 9 × 9 m. The num-
ber of points to be randomly sample per block is set to 2048 in order to define consistent
data batches. According to [31], if the number of points within the block exceeds the
maximum allowed, a random selection process is employed to determine which points to
include. Hence, the network is fed by a B × N × 2048 × 14 array, where B denotes the batch
size, N denotes the total number of segmented input blocks, 2048 denotes the number of
points randomly sampled per block, and 14 represents the 14-dimensional feature vector
(xn, yn, zn, Rn, Gn, Bn, In, Hn, Rn1, Rn2, Rn3, Rn4, Rn5, Rn6).

Fourthly, as the described model is intended to segment 3D point clouds, a vector
output is obtained for each point that contains the probabilities of each class for the
given point.

Lastly, a Softmax function is used in the output layer to attain the probability of point
cloud prediction in each class within the range [0, 1]: ground, low vegetation, medium
vegetation, and high vegetation (Figure 5). In addition, a dropout rate of 0.3 is applied for
the last two dense layers with ReLU activation [27].
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Figure 5. The architecture of the refined DL network PointNet. In the resulting visualization, there are
four boxes in the upper part displaying the MLP layers and two boxes in the lower part displaying the
T-Net layers. The CNN processes the 14-dimensional features that contain N grids and 2048 points
within the block. The T-net layers are responsible for transforming the input and point features,
while the MLPs and the max-pooling layers are responsible for aggregating and extracting the point
features. The individual point-level and global features are concatenated to acquire the point features.
The output includes the predicted probabilities of belonging to each of the four classes.

2.6. Experiment Settings

The loss function was weighted following the methodology described in [48] to allevi-
ate the imbalance of different categories: the minority classes had a higher weight than the
main classes.

Five different loss functions used for the optimization algorithm and derived from
the standard cross-entropy loss were established: categorical cross-entropy (CCE), cross-
entropy loss with binomial regularization (CE-B) [52], cross-entropy loss with Poisson
regularization (CE-P) [52], cross-entropy loss with β regularization (CE-β) [48], and the
proposed cross-entropy loss with generalized exponential regularization (CE-GE).

A confusion matrix Q × Q was used to analyze the potential of the classifiers (Table 2).
In the context of an ordinal classification problem involving Q categories and n patterns,
nqk denotes the frequency with which a classifier assigns patterns belonging to class q to
class k, nq• denotes the total number of patterns in class q, and n•k denotes the total number
of patterns predicted to be in class k [46].

Different metrics chosen for evaluation were applied to quantitatively compare and
analyze the classification performance. These metrics included the Quadratic Weighted
Kappa (QWK), the Minimum Sensitivity (MS), the Mean Absolute Error (MAE), the Correct
Classification Rate (CCR), the 1-off accuracy (1-off) and the Mean Intersection-Over-Union
(mIoU) [46,48]. Thanks to Python’s dlordinal package [53], the ordinal metrics MS and
1-off were computed.



Sensors 2024, 24, 2168 10 of 18

Table 2. Confusion matrix.

Predicted Class

1 · · · k · · · Q

True class

1 n11 · · · n1k · · · n1Q n1•

··
·

··
·

··
·

··
·

q nq1 · · · nqk · · · nqQ nq•

··
·

··
·

··
·

··
·

Q nQ1 · · · nQk · · · nQQ nQ•
n•1 · · · n•k · · · n•Q n

Note. Table adapted from [46].

QWK =
ρo(w) − ρe(w)

1 − ρe(w)
, (10)

ρo(w) =
1
n

Q

∑
q=1

Q

∑
k=1

wqknqk, (11)

ρe(w) =
1
n2

Q

∑
q=1

Q

∑
k=1

wqknq•n•k, (12)

MS = min
{

Sq =
nqq

nq•
; q = 1, · · · , Q

}
, (13)

MAE =
1
n

Q

∑
q,k=1

|q − k|nqk =
1
n

n

∑
i=1

e(xi), (14)

CCR =
1
n

Q

∑
q=1

nqq, (15)

1-off =
1
n

Q

∑
q=1

min(Q,q+1)

∑
k=max(0,q−1)

nqk, (16)

mIoU =
1
n

Q

∑
q=1

Sqq

∑Q
k=1 Sqk + ∑Q

k=1 Skq − Sqq
, (17)

where wqk = |q − k|, q and k being the true and the predicted category, respectively; Sq
denotes the sensitivity of the q-th class; e(xi) = |O(yi) − O(y∗i )| denotes the distance
between the true (yi) and the predicted (y∗i ) ranks; O(Cq) = q denotes the position of each
category in the ordinal scale; Sqq, Sqk, and Skq denote the number of true positives, false
positives, and false negatives, respectively.

The proposed methodology was implemented based on the TensorFlow Keras frame-
works using the novel ordinal dataset. The experiments followed a hold-out scheme which
was executed 20 times with 20 distinct seeds to ensure a comprehensive evaluation. This rig-
orous approach enabled the attainment of 20 independent executions. The training process
was run for 150 epochs with a batch size of 64 and a momentum of 0.9 [54]. The number of
training epochs and the batch size were increased with respect to the previous study [54],
from 30 to 150 and from 32 to 64, respectively, due to the amount of points per-block
sampled. The model was optimized using the Adam method [55], with an initial learning
rate of 0.001. In addition, decay on the learning rate was also employed when the validation
loss had not decreased for 10 epochs, multiplying it by a factor of 0.85 until it reached 10−7.
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3. Results
3.1. Calculating p and α from Generalized Exponential Function

A preliminary experiment was conducted to obtain the hyperparameters p and α from
the generalized exponential function (Appendix A). In Table A1, the results obtained by
defining p as p ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0} showed that the optimum
value of p was 1, based on the six metrics previously described. After that, the value of
the hyperparameter α was also selected by fixing p = 1. Likewise, as shown in Table A2,
the results obtained by defining α as α ∈ {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00}
showed that the optimum value was 1.

Considering these results, the performance of each method is evaluated in Table 3.
All the values introduced include the average and standard deviation of the 20 executions.
The best result for each metric is highlighted in bold font, while the second best is in
italics. Hence, the CE-GE method exhibited the best mean results compared to other
methodologies.

Table 3. Comparison of methodologies for each metric.

Method 1 QWK MS MAE CCR 1-off mIoU

CCE 0.95350.0258 0.80770.1281 0.09200.0495 0.93780.0310 0.97030.0187 0.87570.0393
CE-B 0.94600.0277 0.76870.1301 0.10950.0585 0.92440.0402 0.96650.0189 0.84190.0800
CE-P 0.93950.0485 0.74510.2223 0.11980.0951 0.92090.0562 0.96090.0361 0.83810.1054
CE-β 0.95040.0335 0.77460.1702 0.09990.0674 0.93200.0422 0.96820.0253 0.85830.0817
CE-GE 0.96670.0119 0.85150.0600 0.06670.0225 0.95390.0147 0.97940.0084 0.88850.0303

1 CCE: categorical cross-entropy; CE-B: cross-entropy loss with binomial regularization; CE-P: cross-entropy loss
with Poisson regularization; CE-β: cross-entropy loss with β regularization; and CE-GE: cross-entropy loss with
generalized exponential regularization.

3.2. Statistical Analysis

To ensure the reliability of these results, statistical analyses were conducted, in which
each of the metrics presented in Section 2.6 was studied independently. The Kolmogorov–
Smirnov test [56] for the QWK, MS, MAE, CCR, 1-off, and mIoU was performed using
the results obtained from the 20 executions. The p-values achieved were higher than
0.050, indicating that the null hypothesis of normality for the distribution of the values of
these metrics was accepted. Consequently, each pair of algorithms, CE-GE with the other
methods, was compared for each metric by employing Student’s t-test for paired data [56].
A significance level of α = 0.100 was established and its corresponding adjustment based on
the number of comparisons was added. Since four algorithms were compared, the corrected
significance level was calculated (α = 0.100

4 = 0.025).
Table 4 shows the mean and the standard deviation (SD) of each method’s executions

on the test set, together with the p-values of the test. In general terms, statistically significant
differences were observed in the results of the paired t-test. For all of the metrics, the CE-GE
method exhibited the best mean results. Taking into account the QWK and 1-off accuracy
metrics, the CE-GE achieved better mean results than CCE, CE-B, and CE-P for α = 0.050
and CE-β for α = 0.100. On the other hand, for the MS and mIoU metrics, the CE-GE
reached better mean results than CE-B and CE-P for α = 0.050 and CE-β for α = 0.100.
Finally, based on the MAE and CCR metrics, the CE-GE got better mean results than the
other methods for α = 0.050.

Table 4. Paired sample t-test results for the QWK, MS, MAE, CCR, 1-off, and mIoU metrics.

Metric Paired Sample 1 Mean SD p-Value

QWK

CE-GE vs CCE 0.014 0.026 0.024
CE-GE vs. CE-β 0.017 0.041 0.081
CE-GE vs. CE-B 0.021 0.027 0.003
CE-GE vs. CE-P 0.028 0.052 0.023
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Table 4. Cont.

Metric Paired Sample 1 Mean SD p-Value

MS

CE-GE vs CCE 0.044 0.142 0.182
CE-GE vs. CE-β 0.077 0.172 0.061
CE-GE vs. CE-B 0.083 0.130 0.010
CE-GE vs. CE-P 0.106 0.216 0.040

MAE

CE-GE vs CCE −0.025 0.050 0.034
CE-GE vs. CE-β −0.033 0.071 0.050
CE-GE vs. CE-B −0.043 0.055 0.002
CE-GE vs. CE-P −0.053 0.094 0.021

CCR

CE-GE vs CCE 0.016 0.030 0.024
CE-GE vs. CE-β 0.022 0.046 0.044
CE-GE vs. CE-B 0.030 0.039 0.003
CE-GE vs. CE-P 0.033 0.056 0.017

1-off

CE-GE vs CCE 0.010 0.019 0.033
CE-GE vs. CE-β 0.012 0.030 0.089
CE-GE vs. CE-B 0.014 0.018 0.003
CE-GE vs. CE-P 0.019 0.038 0.035

mIoU

CE-GE vs CCE 0.013 0.049 0.174
CE-GE vs. CE-β 0.030 0.083 0.082
CE-GE vs. CE-B 0.047 0.082 0.012
CE-GE vs. CE-P 0.050 0.111 0.022

1 CCE: categorical cross-entropy; CE-B: cross-entropy loss with binomial regularization; CE-P: cross-entropy loss
with Poisson regularization; CE-β: cross-entropy loss with β regularization; and CE-GE: cross-entropy loss with
generalized exponential regularization.

3.3. LiDAR Classification

The performance of PointNet for each category of points is evaluated by analyzing the
confusion matrices of two methods: the proposed best alternative (CE-GE + Softmax) and
the standard method (CCE + Softmax). Normalized confusion matrices from the smoothed
ordinal classification and the nominal classification are shown in Figure 6. Additionally,
Tables 5 and 6 present an in-depth analysis of the confusion matrices.

(a) (b)

Figure 6. Normalized confusion matrices from (a) the nominal classification and (b) the smoothed
ordinal classification. Each number represents the ratio of patterns to the total number of patterns in
the class. G: ground; LV: low vegetation; MV: medium vegetation; and HV: high vegetation.
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Table 5. Confusion matrix from the nominal classification results.

Ground Low
Vegetation

Medium
Vegetation

High
Vegetation

Ground 827,294 7667 95 0
Low vegetation 12,368 341,629 52 0
Medium vegetation 23,385 4259 372,858 19
High vegetation 0 0 8083 753,395

Table 6. Confusion matrix from the smoothed ordinal classification results.

Ground Low
Vegetation

Medium
Vegetation

High
Vegetation

Ground 815,576 17,125 2355 0
Low vegetation 3973 350,035 41 0
Medium vegetation 12,363 7723 378,657 1778
High vegetation 0 0 1258 760,220

Using nominal classification (Figure 6b and Table 5), the ground class was the only
one correctly labeled when compared to the confusion matrix from the smoothed ordinal
classification. In this sense, in nominal classification, distinguishing between ground and
vegetation classes is easier than in ordinal classification because the former is treated as a
binary classification problem (e.g., ground vs. vegetation). On the other hand, smoothed
ordinal classification uses the ordering information between the four classes, reinforcing
the decision boundaries among low, medium, and high vegetation classes. Therefore, in the
case of the smoothed ordinal classification (Figure 6a and Table 6), points classified as low
vegetation, medium vegetation, and high vegetation were correctly labeled for the majority
of the test set.

As an example, Figure 7 shows a partial view of the segmentation results of the
PointNet model in the study area. As can be observed, the best alternative proposed,
CE-GE + Softmax, which incorporates an ordinal structure and effective soft labeling si-
multaneously, performed better than the standard method CCE + Softmax. As previously
mentioned, most of the differences obtained by the nominal and the smoothed classification
results are related to the misclassification of the middle classes. In Figure 7, the main differ-
ences between the ground truth, the nominal method (CCE), and the ordinal methodologies
(CE-β and CE-GE) were depicted. The proposed method CE-GE + Softmax was closer to
the ground truth than both the nominal point cloud-based method and the beta ordinal
method as it generated the correct label predictions for most point clouds.
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Ground truth CE-β CE-GECCE

Ground Low vegetation Medium vegetation High vegetation
a. b. c. d.

Figure 7. Segmentation result: (a) ground truth, (b) nominal methodology (CCE), (c) ordinal method-
ology based on beta distribution (CE-β), and (d) proposed ordinal methodology based on generalized
exponential distribution (CE-GE).

4. Discussion

The classification of LiDAR point clouds has gained popularity due to the high demand
for accurate classifications. To contribute to this field, previous research has increasingly
utilized DL methods, training models with different point attributes to simulate operator
labeling [57]. Nevertheless, most studies have focused on point attributes rather than the
nature of the labels themselves [38,39]. This could be because most studies have focused on
urban scenarios where large-scale point clouds often contain distinct classes such as ground,
vegetation, building, or water, which can easily be distinguished based on LiDAR point
characteristics [58]. In these scenarios, previous studies have achieved an overall accuracy
of 87% in classifying the following classes: ground, vegetation, and building [31,32].

In this study, the classification of LiDAR point clouds in forest areas was addressed.
In these areas where vegetation is the dominant class, it becomes crucial to accurately
distinguish between different vegetation strata [6]. Points belonging to the middle classes
are difficult to classify because their normalized height presents similar geographical dis-
tribution and topological features compared to other categories [6]. In this sense, the low
vegetation class can easily be confused with ground or medium vegetation, and the medium
vegetation category can be difficult to differentiate from low vegetation or high vegeta-
tion. In our proposal, to determine the most suitable approach for accurately classifying
these categories, five different methodologies (CCE, CE-B, CE-P, CE-β, and CE-GE) were
compared [48,50–52].
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Based on the results obtained, the CE-GE methodology was found to be the most
effective approach for tackling this classification problem. By assigning a probability to
the classes (soft labeling) and considering the order between the categories, the issue of
misclassification regarding the middle classes (low vegetation and medium vegetation)
was mitigated. Utilizing the CE-GE methodology, the study achieved an overall accuracy
of 95% in classifying the following classes: ground, low vegetation, medium vegetation,
and high vegetation. Nevertheless, it is important that the data must have a clear ordering
between the different classes, which is the main challenge that may arise when applying
the ordinal model.

For those cases where an ordinal structure is not found in the labels, future projects
could incorporate this methodology as a pre-classification technique for the following four
classes: ground, low vegetation, medium vegetation, and high vegetation. For upcoming
projects, the proposed methodology could explore agricultural areas and urban green
spaces, in addition to forest scenarios.

5. Conclusions

The present study focused on optimizing the existing DL network PointNet for classi-
fication in complex environments. It analyzed the effects of adding an ordinal classification
and an effective soft labeling technique to point-by-point classification. Specifically, for four
categorical classes, the study proposed the application of a CE-GE function, which helps
achieve more accurate labels. In addition, a comparison was performed with different loss
functions (CCE, CE-B, CE-P, and CE-β) to demonstrate the benefits of the smoothed ordinal
classification for the PointNet model.

Given the results obtained, the following conclusions should be highlighted:

• Significant differences in the paired t-test were observed, in which the CE-GE method
reached the best mean results for all the metrics (QWK, MS, MAE, CCR, and 1-off)
when compared to the other methods.

• Regarding the confusion matrices of the best alternative conceived (CE-GE + Soft-
max) and the standard method (CCE + Softmax), the smoothed ordinal classification
achieved notably better results than the nominal one. Consequently, our methodology
reduce the errors in distinguishing between the middle classes (low vegetation and
medium vegetation).

Overall, the proposed methodology has significantly improved the point-by-point
classification of PointNet. The application of the suggested methodology in forest areas
was possible, contributing to obtaining forestry metrics up ahead, which allows thorough
understanding of the forest, as it permits the calculation of biomass, wood estimates,
and fuel models for high-precision forest fire prevention and firefighting. Therefore, as long
as LiDAR point clouds have an underlying ordinal structure, they could be used in a
diverse range of forest ecology and management applications, from monitoring land-cover
changes in complex environments to identifying tree species in future scenarios.
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Appendix A. Hyperparameter from the Generalized Exponential Function

Table A1. Results comparing different values of the hyperparameter p from the generalized exponen-
tial function.

p QWK 1 MS 1 MAE 1 CCR 1 1-off 1 mIoU 1

1.0 0.96670.0119 0.85150.0600 0.06670.0225 0.95390.0147 0.97940.0084 0.88850.0311
1.1 0.95180.0358 0.79420.1782 0.09630.0727 0.93410.0505 0.96980.0225 0.86150.0899
1.2 0.94640.0324 0.79100.1122 0.10550.0607 0.92890.0382 0.96580.0230 0.85050.0708
1.3 0.95170.0265 0.79110.1293 0.09610.0489 0.93430.0298 0.96980.0196 0.85930.0586
1.4 0.94820.0417 0.80160.1312 0.10100.0699 0.93170.0407 0.96730.0300 0.85810.0706
1.5 0.96200.0187 0.83970.0705 0.07880.0359 0.94330.0241 0.97800.0121 0.87750.0471
1.6 0.96220.0203 0.84640.0711 0.07800.0366 0.94380.0232 0.97820.0144 0.87900.0453
1.7 0.95250.0379 0.81970.1140 0.09390.0688 0.93620.0431 0.97010.0262 0.86620.0761
1.8 0.96350.0169 0.84460.0943 0.07430.0310 0.94790.0196 0.97790.0125 0.88620.0405
1.9 0.94730.0630 0.80560.1244 0.10070.1052 0.93200.0654 0.96800.0378 0.86370.0986
2.0 0.95370.0377 0.80390.1553 0.09340.0722 0.93540.0453 0.97120.0272 0.86440.0817

1 The best performance of each metric is highlighted in bold face font, while the second one is in italics.

Table A2. Results comparing different values of the hyperparameter α from the generalized exponen-
tial function.

α QWK 1 MS 1 MAE 1 CCR 1 1-off 1 mIoU 1

0.25 0.93600.0440 0.75780.1665 0.12370.0861 0.91800.0585 0.95870.0285 0.83430.0994
0.50 0.94770.0353 0.77750.1754 0.10400.0709 0.92950.0453 0.96730.0260 0.85160.0856
0.75 0.94590.0332 0.75850.1676 0.11030.0692 0.92410.0471 0.96570.0228 0.84000.0925
1.00 0.96670.0119 0.85150.0600 0.06670.0225 0.95390.0147 0.97940.0084 0.88850.0311
1.25 0.95850.0158 0.81670.0824 0.08420.0284 0.94090.0175 0.97490.0122 0.87210.0353
1.50 0.95480.0297 0.80460.1298 0.09030.0558 0.93820.0348 0.97150.0217 0.86820.0682
1.75 0.95820.0158 0.81690.0769 0.08270.0277 0.94360.0173 0.97380.0118 0.87760.0355
2.00 0.96160.0183 0.83450.0966 0.07780.0360 0.94590.0236 0.97640.0132 0.88210.0483

1 The best performance of each metric is highlighted in bold face font, while the second one is in italics.
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