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Abstract 

Most common genetic variants associated with disease are located in non-coding regions of the genome. One mechanism by which they function 
is through altering transcription factor (TF) binding. In this study, we explore how genetic variation is connected to differences in the regulatory 
landscape of livers from C57BL / 6J and 129S1 / SvImJ mice fed either chow or a high-fat diet. To identify sites where regulatory variation affects 
TF binding and nearby gene expression, we employed an integrative analysis of H3K27ac ChIP-seq (active enhancers), A T AC-seq (chromatin 
accessibility) and RNA-seq (gene expression). We show that, across all these assays, the genetically driven (i.e. strain-specific) differences in 
the regulatory landscape are more pronounced than those modified by diet. Most notably, our analy sis re v ealed that differentially accessible 
regions (DARs, N = 29635, FDR < 0.01 and fold change > 50%) are almost alw a y s strain-specific and enriched with genetic v ariation. Moreo v er, 
proximal DARs are highly correlated with differentially expressed genes. We also show that TF binding is affected by genetic variation, which we 
v alidate e xperimentally using ChIP-seq f or TCF7L2 and CTCF. T his study pro vides detailed insights into ho w non-coding genetic v ariation alters 
the gene regulatory landscape, and demonstrates how this can be used to study the regulatory variation influencing TF binding. 
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Introduction 

The large majority of single nucleotide polymorphisms (SNPs)
identified in genome wide association studies (GWAS) are
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on-coding regions of the genome ( 1 ). Understanding the
unctional consequences of disease-associated SNPs, however,
emains incomplete. A primary mechanism through which
on-coding regulatory SNPs (rSNPs) may influence disease is
y modifying transcription factor (TF) binding and target gene
xpression ( 2 ). However, characterizing the TF binding sites
ffected by genetic variation in humans is challenging due to
he scarcity of available datasets, and the complexities associ-
ted with collecting and analysing novel human samples. 

Inbred mouse strains offer an interesting comparative ge-
etics platform to study the effects of genetic variation on
ene regulation, as continued inbreeding has led to a near-
omplete lack of heterozygosity. For example, two commonly
sed strains, C57Bl / 6J (B6) and 129S1 / SvImJ (129), differ ge-
etically by 5.2 million homozygous SNPs. These two strains
lso differ in their predisposition to diet-induced obesity and
nsulin resistance, with B6 mice demonstrating a greater sus-
eptibility to insulin resistance compared to 129 mice ( 3 ,4 ).
espite this, previous studies using inbred mouse strains have

ocused primarily on the diet-induced epigenetic landscape,
requently quantitated by examining chromatin accessibility
nd H3K27 acetylation (H3K27ac), and have not directly
xplored the interplay between gene regulation and genetic
ariation ( 5 ,6 ). Some studies, using 129 and B6 mice and
heir close relatives, have connected genes and obesity-related
TLs in an effort to explain the phenotype under study, but

hese studies similarly did not dissect the mechanisms of how
enetic variation affects transcriptional regulation ( 7 ,8 ). 

Chromatin accessibility and enhancer activity can be used
o identify candidate rSNPs ( 9 ). Advances in the interpretation
f chromatin accessibility data from Assay for Transposase-
ccessible Chromatin sequencing (A T AC-seq) have made this
pproach feasible ( 10–12 ). Another marker for transcrip-
ional activity is the H3K27ac histone modification, which en-
bles the segregation of active, poised and inactive enhancers.
his facilitates the direct detection of TF binding sites ac-

ively regulating gene expression ( 13 ,14 ). Although the com-
lexity of the epigenetic signals that underlies the enhancer
andscape goes beyond chromatin accessibility and H3K27ac,
ecent approaches utilizing integrative analysis of these epige-
etic markers have nonetheless been successful in identifying
SNPs ( 9 ,15 ). However, these studies have not explored how
erturbation, including diet, modulate genetically determined
nhancer function and TF binding. 

Even though sequence conservation per se can be consid-
red poor between mice and human, recent studies in liver
nd pancreatic islets have shown that conserved regulatory
egions are enriched for metabolic GWAS SNPs ( 2 ,16 ). More-
ver, TFs and their target genes have conserved functions be-
ween mice and humans, which enables the detection of func-
ionally related rSNPs, even in the absence of direct sequence
omologs ( 17 ,18 ). A recent study by Soccio et al . explored the
enetic determinants of PPAR γ binding in the white adipose
issue of 129 and B6 mice ( 19 ). Using an approach based on
hromatin immunoprecipitation sequencing (ChIP-seq), they
iscovered several strain-selective motif-altering rSNPs that
ffect PPAR γ-mediated gene regulation. However, they did
ot explore how chromatin modifications were affected at the
train-specific regulatory sites. 

Studies on the relationship of TF binding, epigenetic land-
cape, and gene regulation for well characterized liver TFs
ave recently been performed ( 20 ). However, many other

Fs connected to metabolic diseases have not been stud- 

 

ied in this regard. For example, transcription factor-7-like 2
(TCF7L2), a known metabolic regulator in liver that is part
of the WNT signalling cascade offers an interesting target for
studying metabolism-related diseases. Impaired TCF7L2 func-
tion has been connected to dysregulation of glucose and lipid
metabolism, and type 2 diabetes, in both mice and human
( 21–23 ). In addition, several studies on the metabolic role of
TCF7L2 in the liver have been performed and its relationship
with other liver-enriched TFs has been explored, making it an
interesting TF to study further ( 23–26 ). However, studies on
the genetic determinants of TCF7L2 binding in this context
are lacking. In addition, since TCF7L2 co-factors in liver have
been previously identified, it provides an interesting platform
to study how genetic variation can effect TF binding through
altered co-factor binding ( 27 ). 

In this study, we sought to identify and mechanistically de-
tail mouse candidate rSNPs in liver using an integrative ap-
proach using (i) A T AC-seq for assessing chromatin accessibil-
ity, (ii) H3K27ac ChIP-seq for detecting active enhancers, (iii)
RNA-sequencing (RNA-seq) for measuring gene expression,
(iv) CCCTC-binding factor (CTCF) ChIP-seq to validate the
(in)active enhancer detection and, as an example case study,
(v) TCF7L2 ChIP-seq for identifying regulatory sites for a
metabolically relevant TF. To enhance the significance of our
findings to common metabolic diseases beyond genetics, we
used inbred B6 and 129 mice that were fed with either chow
or high-fat diet (HFD). Finally, we mapped our mouse can-
didate rSNPs to the human genome using available GWAS
and eQTL databases. The results of these experiments reveal
that the most widespread differences across all assays were
observed between the mouse strains. This was especially clear
for both chromatin accessibility and TCF7L2 and CTCF bind-
ing, where we observed a near total absence of diet-induced
changes. The strong enrichment of genetic variation to the
sites of chromatin-level differences highlights the importance
of a comprehensive genomics view into the gene regulatory
landscape when seeking for the functional explanation to ge-
netic findings like those of GWAS. 

Materials and methods 

Mouse experiments 

Mice were acquired from Jackson Laboratories (Boston,
USA), housed at the Lab Animal Centre of the University of
Eastern Finland, and experimented on under a permit from the
local Animal Experiment Board (ESAVI-2015-002081). Male
C57BL / 6J and 129S1 / SvImJ mice were fed either a chow
(Teklad 2016, Envigo) or HFD (TD.88137, Harlan) from 9
weeks of age for 8 weeks. At 17 weeks of age, mice were
euthanized by CO 2 for harvesting tissues. The livers were
weighted, the outer edge of the left lateral (the biggest) lobe
cut to smaller pieces, snap-frozen in liquid N 2 and stored in
−80 

◦C. Liver samples of chow-fed first filial generation (F1)
hybrid mice that were a cross between C57BL / 6J females
and 129S1 / SvImJ males (B6129SF1 / J, cat. 101043) were pur-
chased from The Jackson Laboratory, Boston, USA. 

RNA extraction 

Total RNA from mouse liver tissue was extracted using the
miRNeasy Mini Kit (QIAGEN) and QIAzol Lysis Reagent
(QIAGEN) according to the manufacturer’s protocol. Ex-
tracted RNA was treated with DNase using RNase-Free
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DNase (QIAGEN). RNA quality was assessed using an Ag-
ilent Bioanalyzer with RNA 6000 Nano kit. All samples had
RIN score ≥7. 

Library preparation and RNA-sequencing 

RNA-seq libraries were prepared using 800 ng of total RNA.
First, ribosomal RNA was depleted using the NEBNext rRNA
Depletion Kit (New England BioLabs). Libraries were pre-
pared using a NEBNext Ultra II Directional RNA Library Prep
Kit for Illumina (New England BioLabs) following the man-
ufacturer’s instructions. The library yield was quantified with
Qubit DNA High Sensitivity assay (Invitrogen) and quality
control was performed on the Agilent Bioanalyzer with DNA
1000 kit (Agilent). The indexed libraries were pooled, and
single-end sequenced on the NextSeq 500 (Illumina) platform
with 75 bp-reads. 

Nuclei extraction, library preparation and 

sequencing for A T AC-seq 

Libraries were generated using ∼20 mg of liver tissue follow-
ing Omni-A T AC protocol ( 28 ) with minor adjustments. Nu-
clei were isolated using a Dounce homogenizer and 1 × ho-
mogenization buffer (320 mM sucrose, 0.1 mM EDTA, 0.1%
NP40, 5 mM CaCl 2 , 3 mM Mg(Ac) 2 , 10 mM Tris pH 7.8,
1 × protease inhibitors (Roche, cOmplete), and 1 mM β-
mercaptoethanol). After tissue homogenization, nuclei were
recovered by OptiPrep / iodixanol (Sigma-Aldrich) density gra-
dient centrifugation. For transposition reaction 50 000 nu-
clei were resuspended in transposition mix (25 μl 2 × TD
buffer, 2.5 μl transposase, 16.5 μl PBS, 0.5 μl 1% digitonin,
0.5 μl 10% Tween-20, 5 μl H 2 O). After the transposition reac-
tion, DNA was purified with DNA Clean & Concentrator-5
Kit (Zymo Research). Ten microliters of purified transposed
DNA were amplified for 9–11 cycles (predetermined) using
25 μl of 2 × Ultra II Q5 Master Mix (New England BioLabs)
and 1 μl of both amplification primers (1.25 μM final con-
centration) ( 29 ). For clean-up and to remove primer dimers
and large ( > 1000 bp) fragments from the libraries, SPRIselect
beads (Beckman Coulter) were used. Library yield was quan-
tified using NEBNext Library Quant Kit for Illumina (New
England Biolabs) and quality assessed with the Agilent Bio-
analyzer and High Sensitivity DNA kit (Agilent). A T AC-seq
libraries were sequenced on the NextSeq 500 (Illumina) plat-
form with paired-end 75 bp-reads. 

ChIPmentation-based ChIP-seq analysis of CTCF 

and TCF7L2 binding, and H3K27 acetylation 

To perform ChIP-Seq on mouse livers, ∼40 mg of frozen tissue
was Dounce homogenized with the loose pestle A in 1 × PBS
with 1 × protease inhibitors (cOmplete, Roche). Tissue sus-
pension was centrifuged at 2000 rpm for 5 min and the pellet
was resuspended in 1 ml PBS containing 1% formaldehyde
for 10 min and quenched with glycine 150 mM for 5 min
at room temperature. The cross-linked samples were washed
twice with ice-cold 1 × PBS with 1 × protease inhibitors.
Cells were lysed by pelleting and diluting twice in ice-cold SDS
lysis buffer (50 mM Tris–Cl, 0.5% SDS, and 10 mM EDTA,
1 × protease inhibitor) and incubating for 10 min at 4 

◦C with
gentle mixing. The cell lysate was then Dounce homogenized
with the tight pestle B in 1 ml ice-cold of SDS lysis buffer and
the homogenate was filtered through a 100 μm cell strainer.
The samples were split into 3 × 300 μl aliquots in 1.5 soni-
cation tubes and incubated on ice for 10 min. Chromatin was 
sheared with Bioruptor Plus sonicator (Diagenode) for 35 cy- 
cles at high setting. Each cycle was 30s ON, 30s OFF and af- 
ter each 10 cycles the sonicator was allowed to cool down 

for 5 min. To neutralize SDS, Triton-X-100 was added to fi- 
nal concentration of 1% along with 50 × protease inhibitors 
(final 1 ×). All the aliquots were combined and centrifuged at 
13000 rpm for 20 min. Supernatant with sheared chromatin 

was collected. An aliquot of 100 μl was taken for assessment 
of chromatin shearing and a 10 μ aliquot was taken for prepa- 
ration of input control. Rest of the sample was divided to 190 

μl aliquots for immunoprecipitation. 
ChIP and library preparation were performed using the 

recently described ChIPmentation protocol ( 30 ) with mi- 
nor modifications. For ChIP, 2 μg of rabbit polyclonal anti- 
CTCF antibody (Diagenode, #C15410210), 5 μl of rabbit 
monoclonal anti-TCF4 / TCF7L2 antibody (Cell Signaling,
C48H11) or 2 μg of Anti-Histone H3 (acetyl K27) antibody 
(Abcam, #4729) was added to 50 μl Protein G-coupled Dyn- 
abeads (Thermo Fisher Scientific) in 1 × PBS with 0.5% 

bovine serum albumin (BSA) and rotated at 40 rpm for 4 h 

at 4 

◦C. Antibody-coated Dynabeads were washed three times 
with PBS with 0.5% BSA and then mixed with 190 μl chro- 
matin samples in 1.5 ml tubes. The samples were rotated at 
40 rpm overnight at 4 

◦C. Immunoprecipitated chromatin was 
washed with 150 μl of low-salt buffer (50 mM Tris-Cl, 150 

mM NaCl, 0.1% SDS, 0.1% sodium deoxycholate, 1% Triton 

X-100, and 1 mM EDTA), high-salt buffer (50 mM Tris-Cl,
500 mM NaCl, 0.1% SDS, 0.1% sodium deoxycholate, 1% 

Triton X-100, and 1 mM EDTA) and LiCl buffer (10 mM Tris–
Cl, 250 mM LiCl, 0.5% IGEPAL CA-630, 0.5% sodium de- 
oxycholate, and 1 mM EDTA), followed by two washes with 

TE buffer (10 mM Tris–Cl and 1 mM EDTA) and two washes 
with ice-cold Tris–Cl pH 8. Immunoprecipitated bead-bound 

chromatin was resuspended in 30 μl of 2 × TD buffer and 1 μl 
of transposase (Nextera, Illumina) for tagmentation. Samples 
were incubated at 37 

◦C for 10 min followed by two washes 
with low-salt buffer. Bead-bound tagmented chromatin was 
diluted in 23 μl of water and 25 μl of 2 × Ultra II Q5 Master 
Mix (New England BioLabs, M0544S) and 1 μl of both ampli- 
fication primers ( 29 ) were added. For adapter extension and 

reverse cross-linking, the libraries were incubated as follows: 
72 

◦C 5 min (adapter extension); 95 

◦C 5 min (reverse cross- 
linking); followed by 11 cycles of 98 

◦C 10s, 63 

◦C 30s and 

72 

◦C 3 min. After PCR amplification, double-sided purifica- 
tion was performed using SPRIselect beads (Beckman Coul- 
ter). To prepare input controls, 2 μl of 50 mM MgCl 2 was 
added to 10 μl sonicated lysate to neutralize the EDTA in the 
SDS lysis buffer. Tagmentation and amplification was done as 
described above. The library yield was quantified with Qubit 
DNA High Sensitivity assay (Invitrogen) and quality control 
was performed on the Agilent Bioanalyzer with DNA 1000 kit 
(Agilent). ChIP-seq libraries were sequenced on the NextSeq 

500 (Illumina) with single-end 75 bp-reads. 

ChIP-qPCR 

To perform ChIP-qPCR on mouse livers ∼100–150mg of 
frozen tissue from chow-fed mice was Dounce homogenized 

with a tight pestle B in Farham Lysis Buffer (5 mM PIPES 
pH 8.0, 85 mM KCl, 0.5% IGEPAL) and then cross-linked 

with 1% formaldehyde in Farham Lysis Buffer for 10 min 

at RT while rotating. This reaction was stopped by adding 
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were defined as active. Peaks were filtered for the ENCODE 
25 mM glycine at RT. Homogenized tissue was then collected
n ice-cold 1x PBS with 1x protease inhibitors and subse-
uently centrifuged, and resuspended in RIPA buffer (1 × PBS,
% IGEPAL, 0.5% sodium deoxycholate, 0.1% SDS), supple-
ented with 1 × protease inhibitors. Chromatin was sheared
ith Bioruptor Plus sonicator (Diagenode, #UCD-300) at
 

◦C for 40 cycles at high setting to yield 200–400 bp DNA
ragments. 

For ChIP 10 μg of mouse anti-HNF4 α antibody (K9218,
b41898; Abcam) was added to the sonicated chromatin in
IPA buffer and rotated at 40 rpm overnight at 4 

◦C. After 16
 magnetic protein G Dynabeads (Invitrogen, 10004D) in 1 ×
BS with 0.5% BSA were added to the antibody bound chro-
atin and rotated at 40 rpm overnight at 4 

◦C. Immunoprecip-
tated chromatin was washed five times in LiCl IP wash buffer
100 mM Tris (pH 7.5), 500 mM LiCl, 1% (w / v) IGEPAL,
% (w / v) sodium deoxycholate] and twice in TE buffer [1
M EDTA, 10 mM Tris–HCl (pH 8.1)]. Bead bound chro-
atin was eluted in 200 μl elution buffer (0.1 M NaHCO 3

nd 10% SDS) by incubation at 65 

◦C for 1 hour. The proteins
ere decrosslinked by adding Proteinase K (New England Bi-
Labs, #T2002) and incubating at 65 

◦C for 4 h and DNA
urified using the Monarch PCR & DNA Cleanup Kit (New
ngland BioLabs, #T1030), and eluting in 50 μl of Monarch
NA Elution Buffer. qPCRs were carried out as individual bi-
logical replicates for each of the immunoprecipitated and in-
ut DNA samples. qPCR analysis was carried out with Light-
ycler 480 SYBR Green I Master (Roche Diagnostics Gmbh).
esults were calculated using the formula 100 × 2 

DCp × E,
here DC p = C p (Input) – C p (ChIP) and E = Percentage of In-
ut over Total Chromatin as a factor. Control region for the
6-up regions was selected as intronic non-enhancer regions
ithin Cenpl region and for 129-up the selected control re-

ion was a region with accessible chromatin in both strains
ear Egf . 

seudogenome generation 

seudogenome and transcriptome for 129 mice was cre-
ted using g2gtools (v0.2.9, https:// Github.com/ churchill-lab/
2gtools ) with SNPs and InDels from Mouse Genomes Project
ersion 5 (MGPv5), GRCm38 genome and Gencode M17
ene annotation. 

NA-seq preprocessing 

aw reads were trimmed with Trimmomatic (v0.36) ( 31 ).
owtie (v2.2.3) ( 32 ) was used to identify reads that align

o known possible contaminants, which were then dis-
arded. Reads were then aligned using STAR (v2.5.4b)
 33 ) with manual two-pass alignment: on the first pass the
eads were aligned to strain-specifically indexed genome and
ranscriptome, after which the splice junctions were col-
ected and used on the second pass alignment with the
–sjdbFileChrStartEnd’ parameter along with the 2 

nd pass
ndex generated with the splice junctions. Other STAR
arameters were selected from a study reporting opti-
al alignment parameters (–outFilterMultimapNmax 100

outFilterMismatchNmax 33 –seedSearchStartLmax 12 –
lignSJoverhangMin 15 –outFilterMatchNminOverLread 0
outFilterScoreMinOverLread 0.3 –outFilterType BySJout)
 34 ). Read counts for genes were generated using ST AR’ s ‘-
uantMode GeneCounts’ option. 
RNA-seq analysis 

Differentially expressed genes (DEGs) were detected using
DESeq2 (v1.26.0) ( 35 ) between groups of 5 mice for 129
on chow, 6 mice for B6 on chow and 129 on HFD, and 7
mice for B6 on HFD. Genes without any reads in any sam-
ple were excluded from further analysis. PCA was performed
using DESeq2. WGCNA, to obtain co-expression modules,
and GSEA for the module-associated genes, were performed
using CEMiTool (v1.12.0) ( 36 ). Optimal cut-offs for mod-
ule merging (Pearson correlation > 0.95) and gene filtering
( P -value < 0.25) were calculated using centralized enrich-
ment score (CES) as described in Russo et al, 2018. Counts
were normalized before performing network analysis using
variance-stabilizing transformation with DESeq2. Topologi-
cal overlap matrix and networks were constructed as signed.
Over-representation analysis was ran using PANTHER™ GO
slim (version 17.0) annotations ( 37 ). BisqueRNA (v1.05) was
used to estimate cell type ratios using FACS-based mouse liver
scRNA-seq dataset from Tabula Muris ( 38 ,39 ). Cell type spe-
cific genes were determined from the Tabula Muris dataset
as genes that have the mean expression of ln(CPM + 1) > 1
and are > 5 × ln(CPM + 1) more expressed in one cell type
compared to all other cell types. Cell type specific genes were
enriched to modules using clusterProfiler’s (v4.2.2) enricher
function ( 40 ). The proActiv (v1.0.0) was used with default
settings in R to identify actively transcribed TSSs, using both
Major and Minor TSSs when connecting genes to chromatin
features ( 41 ). 

A T AC- and ChIP-seq pre-processing 

Raw reads were trimmed with Trimmomatic (v0.36) and
aligned to strain-specific genome using STAR (v2.5.4b)
with ‘–alignIntronMax 1 

′ to turn off splice awareness
and –alignEndsType ‘EndToEnd’ to prevent soft clipping.
For A T AC-seq the reads were filtered for true pairs and
MAPQ > 30 with Samtools (v1.9) ( 42 ). For ChIP-seq the
reads were filtered for MAPQ > 20. For both, duplicates
were removed after filtering using Picard (v2.8.13, https://
Broadinstitute.github.io/ picard/ ) MarkDuplicates. A T AC-seq
peaks were called with HMMRA T AC (v1.2.9) ( 12 ) using
‘–means 75200400600 –upper 20 –lower 10 

′ . H3K27ac,
CTCF and TCF7L2 ChIP-seq peaks were called with MACS2
(v2.2.7.1) using ‘-g mm -B –call-summits –keep-dup auto’, and
‘-q 0.05 

′ for H3K27ac, ‘-q 0.01 

′ for TCF7L2, and ‘-q 0.001 

′

for CTCF ( 43 ). After peak calling, summits were widened to
peaks with Bedtools (v2.27.1) using ‘slop -b 75 

′ to prevent the
summits of the 129 strain that overlapped the B6 deletions to
be lost during the coordinate conversion ( 44 ). Consensus peak
sets for A T AC-seq and TCF7L2 ChIP-seq were formed from
the peak centres using kernel density estimation -based ap-
proach adapted from Tuoresmäki et al. ( 45 ). The consensus
peak set for CTCF was created by merging the narrowPeaks
from MACS2 using Bedtools merge. For H3K27ac, we used
ChIP-R (v1.2.0) to identify group-wise the regions marked
by H3K27ac ( 46 ). The consensus peak set for H3K27ac
was created by merging the group-specific regions using Bed-
tools merge. We also generated harmonized H3K27ac sum-
mits using kernel density estimation -based approach and se-
lected the summits overlapping group-specific H3K27ac re-
gions for valley-based active nucleosome free region (NFR)
detection. NFRs between two H3K27ac summits ( ±1500 bp)

https://Github.com/churchill-lab/g2gtools
https://Broadinstitute.github.io/picard/
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blacklisted regions ( 47 ). For both A T AC and ChIP-seq, peaks
and filtered BAM-files for the 129-strain were shifted to B6
coordinates using the g2gtools ‘convert’ function. 

A T AC- and ChIP-seq differential analysis 

Differentially accessible regions (DARs), differentially
histone-acetylated regions (DHARs) and TCF7L2 differ-
entially bound regions (DBRs) were detected with csaw
(v1.28.0) adapting from Reske et al. ( 10 ). DARs were de-
tected between groups of 5 mice for 129 on chow, 6 mice
for B6 on chow and 129 on HFD, and 7 mice for B6 on
HFD), DHARs in 4 mice per group, and TCF7L2 DBRs in
2 mice per group. Peaks with log 2 (CPM) > –3 were selected
for analysis. Normalization was done using local regression
fit. To focus on the Tn5 cut sites in read counting, A T AC-seq
reads were shortened to 1 bp tags at 5 

′ -ends. For ChIP-seq
data, csaw function ‘correlateReads’ was used to calculate
cross-correlation coefficients between read positions, and
average fragment lengths were determined from the maxi-
mum cross-correlation coefficient. Reads were extended to
the average fragment length before counting ( 48 ). 

Transcription factor binding motif analysis 

TF motif enrichment for known motifs was done using Gim-
meMotifs (v16.1.fix_rfe) with ‘gimme motifs’ using directly
determined binding motifs from CIS-BP v2.0 collection and
mm10 (B6) genome ( 49 ,50 ). Motif hits for TCF7L2 were
obtained using TCF7L2 binding motifs from the CIS-BP
collection with the motifmatchr R-package (v1.16.0) using
1e-4 as significance cut-off ( 51 ). Motif alterations for the
same motif set were analyzed using motifbreakR (v2.0.0)
with ‘filterp = TRUE, threshold = 1e-4, method = ‘ic’,
legacy.score = FALSE’ and MGPv5 SNPs and InDels ( 52 ).
Comparative motif analyses for gene co-expression module
associated active NFRs and TCF7L2 overlap classes were per-
formed using GimmeMotifs maelstrom. For TCF7L2 overlap
analysis, the peaks were filtered of DBRs and peaks overlap-
ping DARs. Additionally, the CIS-BP collection was filtered
for TCF7L2 and highly similar motifs using universalmotif
(v1.8.0) ( 53 ). First, the motifs were filtered for average infor-
mation score > 0.75 and then compared using Weighted Pear-
son correlation coefficient (WPCC) with normalized scores.
Motifs with WPCC > 0.7 to any of the TCF7L2 motifs in CIS-
BP collection were discarded from the analysis. Motif cluster-
ing and alignment for the DBR-enriched altered motifs were
done using universalmotif commands ‘motif_tree’, with argu-
ments ‘method = ‘EUCL’, tryRC = FALSE’, and ‘view_motifs’
with arguments ‘tryRC = FALSE, method = ‘ ALLR_LL”. V enn
diagrams for DBRs containing motif altering variants were
plotted with nVennR ( 54 ). 

Online resources 

Known TF binding loci for mouse and human ( Q -
value < 1 × 10 

−5 ) were obtained from ChIP-Atlas
Peak Browser ( https:// chip-atlas.org/ peak _ browser ) ( 55 ). For
mouse ‘Cell type: Liver’ and for human ‘Cell type Class:
Liver’ were used for filtering liver specific TF binding
sites. For mouse QTL phenotype enrichment analysis,
lists of mouse QTL alleles, genotypes, mammalian pheno-
type annotation, and genetic markers were obtained from
MGI database ( https:// www.informatics.jax.org/ downloads/
reports/index.html ) ( 56 ). 
Statistical analysis and visualization 

Statistical analyses were performed with R software v3.6.1 

( 57 ) except for the Fisher’s tests, and chipenrich (v2.18.0) ( 58 ) 
enrichment analyses, which were performed in R v4.1.0. For 
TCF7L2 peaks, chipenrich was run with default settings and 

mm10 genome. Chipenrich analyses for active DARs, DHARs 
and TCF7L2 DBRs were performed using ‘method = ‘polyen- 
rich’, genome = ‘mm10’, max_geneset_size = 10000’. Con- 
fidence intervals for chipenrich results were calculated us- 
ing mgcv.helper R package ( https:// github.com/ samclifford/ 
mgcv.helper ). All plots were generated in R v4.1.0. Heatmaps 
were plotted using ComplexHeatmap (v2.1.0) and Enriched- 
Heatmap (v1.24.0) ( 59 ,60 ). Correlation analyses were done 
using Spearman rank correlation with logCPM normalized 

counts. For H3K27ac vs . NFR correlation, signal at consensus 
regions overlapping the valley summits of active NFRs were 
used. P -values shown as < 2.2 × 10 

−16 exceed the limit of the 
precision of the calculation. 

A T AC-seq pre-processing and statistical analysis of 
the F1-cross samples 

To detect sites presenting allelic imbalance, we used 

ASEReadCounter*-pipeline together with Qllelic (v0.3.2) 
( 61 ) statistical analysis tool. 129xB6 reference genome was 
created using 129 SNPs from MGPv5. To turn off splice- 
awareness, STAR parameter ‘–alignIntronMax 1 

′ was added 

to the pipeline. Allelic reads were counted using our A T AC-seq 

consensus peak set. For Qllelic, we selected sites that had > 5 

reads for statistical testing and used FDR P-value correction 

instead of Bonferroni correction. 

Transferring mouse rSNP candidates to the human 

context 

We used liftOver (v1.18.0) for DARs to transfer mouse ge- 
nomic coordinates to their syntenic sequences in the human 

genome (hg38) ( 62 ). GWAS SNPs were acquired from the 
EBI catalog using gwascat (v2.18.0) R package (query on 

4.6.2021) and significant variant-gene pairs for liver eGenes 
were acquired from GTEx Analysis V8 release (Single-Tissue 
cis- QTL Data) ( 63–65 ). Motif alteration analysis for human 

SNPs was performed using motifbreakR as described earlier 
except using directly determined human motifs from CIS-BP 

v2.0 ( 50 ,52 ). 

Results 

Genetics is the stronger driver of differences in the 

liver transcriptome than diet 

High-fat feeding increased the body mass more in B6 

(chow: 28.4 ± 3.2 g vs HFD: 39.1 ± 4.3 g, T -test P - 
value = 1.3 × 10 

−4 ) than in 129 mice (chow: 25.9 ± 1.2 

g versus HFD: 27.6.1 ± 3.1 g, T -test P -value = 0.022) 
( Supplementary Figure SF1 A). Furthermore, concomitant dif- 
ferences were also evident in the liver weights, indicative of 
greater steatosis in B6 mice fed the HFD ( Supplementary 
Figure SF1 B) ( 5 ). We generated RNA-seq data ( N = 5–7 per 
group), Supplementary Table S1: Table 1 ) to identify DEGs 
(FDR < 0.05) between the strains and diets ( Supplementary 
Table S2: Tables 1-4 ). The main segregating factor between 

samples was the strain rather than the diet (Figure 1 A).
Out of the 8224 DEGs, more than half (4792, 58.3%) were 
strain-specific whereas only 15.6% (1286) were diet-specific 

https://chip-atlas.org/peak_browser
https://www.informatics.jax.org/downloads/reports/index.html
https://github.com/samclifford/mgcv.helper
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 1. Most of the differences in gene expression are observed between the strains. ( A ) Principal component analysis on genes with any reads (PC, 
principal component). ( B ) Heatmap of Z-scored VS T-normaliz ed gene expression counts for the DEGs observed in at least one comparison. Row splits 
are determined by the comparisons in which the DEG w as observ ed (Strain: Only in strain, Diet: Only in diet, and B oth: B oth in diet and strain). Columns 
are clustered using Pearson correlation with complete linkage and rows are clustered by Pearson correlation within the splits. ( C ) Volcano plots for the 
DEGs by comparisons. ( D ) Venn diagram of DEG counts. 
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Figure 1 B). The largest number of DEGs for any compari-
on (5840) was observed between the strains on HFD. The
train-DEGs also displayed greater fold changes compared to
iet-DEGs in either strain (Figure 1 C). A large proportion
2061, 43.0%) of the strain-DEGs were common in the two
iet comparisons (Figure 1 D). Panther GO term enrichment
nalysis revealed that the strain-specific DEGs were enriched
n a variety of immune-related processes whereas the diet-
pecific DEGs were strongly enriched to lipid metabolism and
ther processes related to liver metabolism ( Supplementary 
igure SF1 C, D). Fittingly, also genes that were both diet
nd strain-DEGs were mostly enriched in processes related to
etabolism ( Supplementary Figure SF1 E). 

eighted gene correlation network analysis reveals
ifferences in metabolic gene regulation between 

6 and 129 mice 

o shed more light on the biological processes underlying
he observed differences in gene expression, we performed
eighted gene correlation network analysis (WGCNA, pa-

ameter selection shown in Supplementary Figure SF2 A) using
EMiTool ( 36 ). The analysis identified 14 co-expression mod-
les (M1-14 which were significantly (FDR < 0.05) enriched
o at least one GO Panther pathway in an over-representation
nalysis (Figure 2 , Supplementary Figure SF2 B). Gene set en-
ichment analysis (GSEA) revealed that several modules were
ifferentially enriched between both the strains and the di-
ts (Figure 2 panel: Module GSEA). Co-expression modules
p-regulated in 129 mice were related to amino acid (M1)
nd small molecule metabolism (M11). In contrast, modules
hat were up-regulated in B6 mice were enriched for path-
ays related to carbohydrate and lipid metabolism (M2), ex-

racellular matrix (M4 and 9) and the immune system (M3
and 13). There were also modules which were specifically
diet-responsive in B6, including metabolic pathways related
to amino acid metabolism (M5) and DNA organization and
metabolism (M10) (Figure 2 panel: Module ORA word cloud,
Supplementary Figure SF2 B). 

Given that some modules were clearly related to the im-
mune system, we explored the cell type compositions of our
bulk liver RNA-seq samples using BisqueRNA deconvolution
and the cell type specific marker genes derived from the Tabula
Muris data ( 38 ,39 ). This analysis suggested that in all samples
the most frequent cell type was the hepatocyte, representing
about 50% of all cells, while the rest were composed mostly
of liver sinusoidal endothelial cells (LSECs, about 25–30%)
and Kupffer macrophages (about 10%). Interestingly, the B6
livers had a higher proportion of Kupffer macrophages than
the 129 livers, and a concomitantly lower proportion of hepa-
tocytes ( Supplementary Figure SF2 C). Enrichment analysis of
the cell type marker gene sets in network modules showed that
the Kupffer cell markers were highly enriched in the immune-
related networks (M3 and 13). In contrast, hepatocyte mark-
ers tended to be enriched in the metabolic networks ( e.g. M1
and 5), and the LSEC markers e.g. in the cell adhesion (M10)
and ECM (M4) networks (Figure 2 panel: Enrichment to cell
type specific genes). Based on these data, it is likely that the
higher immune-related gene expression in B6 livers is due to
their higher relative Kupffer macrophage content rather than
the transcriptional activation of these genes in hepatocytes. 

Joint analysis of chromatin accessibility and 

H3K27ac ChIP-seq identifies differentially active 

regulatory regions between B6 and 129 mice 

To gain insight into the regulatory chromatin landscape
in the livers of B6 and 129 mice on chow and HFD, we

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 2. Gene co-expression analysis reveals differences between the strains in metabolic gene co-expression modules. Module annotation: Module 
annotation determined by hand from the results of over representation analysis. Gene class ratio: Fractions of genes in different DEG-classes per 
module (Strain: Only in strain, Diet: Only in diet and Diet + strain: Both in diet and strain, Non-DEG: expressed non-DEG gene with zFPKM > –3, 
L o w-e xpressed gene: gene that passed the unsupervised filter of CEMiTools, but is not classified expressed in other analyses). Module GSEA: Gene 
set enrichment analysis results for the modules. NES, normalized enrichment score. Enrichment to cell type specific genes: ORA results for 
module-associated genes in cell type specific gene sets. Module ORA w or d cloud: Word cloud annotation for the results of over representation 
analysis of GO terms. * P -value < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generated A T AC-seq data (N = 5–7 per group)
( Supplementary Table S1: Table 2 ). We called ATAC-
seq peaks to represent NFRs which, among the cross-
nucleosomal fragments, were prevalent in our data
( Supplementary Figure SF3 A). Across all samples, we identi-
fied a consensus set of 135044 non-overlapping NFRs ranging
from 150–721bp that localized preferentially in the promoters
and the non-coding genome ( Supplementary Figure SF3 B). For
the identification of NFRs that represent DARs between the
experimental groups, we opted to use the recently suggested
stringent cut-offs (FDR < 0.01 and fold change > 50%)
( 10 ,11 ). In stark contrast with the RNA-seq results, there
were almost no diet-induced NFRs in either strain while
there was a plethora of DARs observed between the strains
(strain-DARs): 8010 on HFD and 27487 on chow (Figure
3 A, Supplementary Figure SF3 C). Even with the more lenient
cut-offs, only a few diet-induced DARs were observed in any
comparison ( Supplementary Table S3 ). Since it has been sug-
gested that the NFRs flanked on both sides by the H3K27ac
histone modification mark regions that participate actively in
transcriptional regulation ( 9 ), we generated H3K27ac ChIP-
seq data (4 mice per group) ( Supplementary Table S1: Table 3 )
to be integrated with our A T AC-seq data. First, we identified a
consensus set of 121119 genome regions marked by H3K27ac
across all samples, which were mostly localized in the promot-
ers and the non-coding genome ( Supplementary Figure SF3 D).
The analysis of DHARs (FDR < 0.05) revealed that while
the diet induced some changes (1482 DHARs for B6, 7580 

for 129), mostly they were observed between the strains 
(22304 DHARs on HFD, 21835 on chow) (Figure 3 B,
Supplementary Figure SF3 E). 

Upon integration of the A T AC-seq and H3K27ac ChIP-seq 

data, 73646 (55%) of all NFRs were determined as active in 

at least one of our experimental groups. Of the active NFRs,
34761 (54%) were shared by all groups ( Supplementary 
Figure SF3 F). Most of the strain-DARs observed in ei- 
ther HFD or chow were in non-active regions (71% and 

69%, respectively), highlighting the importance of identify- 
ing the active NFRs that represent active enhancers (Figure 
3 C, Supplementary Figure SF3 G). In addition, A T AC- and 

H3K27ac signals were strongly positively correlated at the 
DARs that overlapped DHARs, highlighting the connection 

between strain-specific chromatin accessibility and enhancer 
activity (Figure 3 D). Our integrative approach was further val- 
idated by the finding that active NFRs were, compared to the 
non-active NFRs or H3K27ac-only sites, more enriched for 
the motifs of well-known hepatic regulators, such as HNF4 α,
and enhancer binding proteins belonging to the CEBP-family 
( 66 ). The inactive NFRs were most notably highly enriched 

for the motif of CTCF which is a known transcriptional in- 
sulator (Figure 3 E) ( 67 ). ChIP-seq assays of individual TFs 
further validated the differences observed in the motif enrich- 
ment analysis. We chose TCF7L2 (2 mice per group) instead 

of a transcription factor arising from the enrichment analy- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 3. Differences in enhancer activity and accessibility between strains are dominant over diet-induced effects. ( A ) DAR (FDR < 0.001 and fold 
change > 50%) and ( B ) DHAR (FDR < 0.05) counts in the indicated comparisons. ( C ) Enrichment heatmap of A T AC-seq and H3K27ac signals at DARs 
observ ed betw een 1 29 and B6 mice on HFD . R o ws are grouped to up and do wn differences betw een the strains at activ e and non-activ e regions. ( D ) 
Density plot of correlations between active NFRs (DARs and non-DARs) and the classes of histone acetylated regions of the H3K27ac v alle y summits 
(DHARs and non-DHARs). ( E ) Motif enrichment for group-wise active and non-active NFRs and H3K27Ac peaks. Heatmap columns and rows are 
clustered by Euclidean distance and columns are split using K -means clustering. Values shown are for the most significant motif for a given TF. Motifs 
for heatmap were selected by group-wise filtering of redundant motifs. (F, G) Venn diagrams of TCF7L2 ( F ) and CTCF ( G ) bound regions overlapping 
active and non-active NFRs. 
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events. 
is due to its’ prevalent role in the regulation of metabolic
enes ( 22 ,23 ). We also performed ChIP-seq for CTCF (2
ice per group) to confirm its’ binding at non-active NFRs.
CF7L2 binding sites ( N = 13571) primarily (63.7%) over-

apped active NFRs (Figure 3 F). In contrast, majority (71.9%)
f CTCF binding was outside of both active and non-active
FRs. However, 24.0% of non-active NFRs were bound
y CTCF, which is 1.7 times that of active NFRs (14.2%)
Figure 3 G). 

CF7L2 binds primarily to NFRs classified as active 

nhancers hosting a binding motif 

or a closer evaluation of how TF binding relates to the
dentified active NFRs, we performed additional analyses us-
ng the TCF7L2 ChIP-seq data ( Supplementary Table S1:
able 4 ). Compared to NFRs and H3K27ac, TCF7L2 bind-

ng was even more prominently focused on promoters and in-
ergenic regions (Figure 4 A). Mapping TCF7L2 binding sites
o the nearest TSSs of module-associated genes revealed that
CF7L2 binding was depleted at immune-associated modules
3 and 13 as well as LSEC specific gene enriched M9. Inter-

stingly, TCF7L2 bound regions were enriched to metabolism
nd hepatocyte associated-related modules such as M5 and
NT-signalling associated M12 (Figure 4 B). Additionally,

he TCF7L2-bound regions were highly enriched to the loci
f hepatocyte-specific genes confirming the previously docu-
ented role of TCF7L2 in the liver metabolism (Figure 4 C)

 22–24 ). 
As our approach in identifying TF binding sites that are

ltered by genetic variation is reliant on TF binding motifs,
we scanned the active / non-active NFRs overlapping and non-
overlapping TCF7L2 binding sites for three direct-evidence
TCF7L2 binding motifs from the CISBP database. In all NFR
overlap categories, the presence of a TCF7L2 binding motif
associated with higher TCF7L2 signal density (Figure 4 D). In-
terestingly, the dependency of TCF7L2 binding on the pres-
ence of TCF7L2 motif was the highest at non-overlapping
sites (2124 of 3560 sites, 60%), second highest at non-active
NFRs (617 of 1341 sites, 46%), and the lowest at active
NFRs (2894 of 8681 sites, 33%). We also explored the dif-
ferences in motif enrichment across the three different classes
of TCF7L2 bound regions with and without TCF7L2 mo-
tif and observed three distinct motif clusters that defined the
classes (Figure 4 E). Even though we excluded the motifs of
TCF7L2 and its’ close relatives from this enrichment analy-
sis, Cluster 1, which defined all classes with a priori TCF7L2
motif, became populated by binding motifs belonging to the
SOX-family TFs such as SOX10, as well as HNF4 α, which all
bear some similarity to the TCF7L2 motif used in the classi-
fication ( 50 ). The most important difference in motif enrich-
ment patterns, however, was observed in Cluster 2, where the
TCF7L2 peaks with no motif overlapping active NFRs were
highly enriched with motifs for FOXA2, a known TCF7L2 co-
binding factor, and CEBPB ( 27 ); this cluster may indeed iden-
tify TFs that assist TCF7L2 binding at sites that lack a clear
TCF7L2 binding motif. Finally, as expected, Cluster 3 that
defined TCF7L2 binding at non-active NFRs was enriched
for CTCF motifs. These findings show that an in silico anal-
ysis based on a simple binary classification of active NFRs,
while highly effective, appears to miss some of the true binding

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 4. Effects of location, chromatin state, and motif co-occupancy on o v erall TCF7L2 binding. ( A ) Enrichment of TCF7L2 binding sites to genomic 
features. Enrichment of TCF7L2-bound regions at the loci of ( B ) module-wise and ( C ) cell type -specific gene sets. ( D ) Mean signals of TCF7L2 ChIP-seq, 
A T AC-seq and H3K27ac ChIP-seq in different o v erlap classes of NFRs and TCF7L2 binding sites with and without a TCF7L2 motif. ( E ) Heatmap of motif 
enrichment in different TCF7L2 classes. Column splits are done using K-means clustering with the number of clusters determined using gap-statistic 
with 1-SE rule. R o ws and columns are clustered using Euclidean distance . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differentially accessible regions are enriched with 

genetic variation and connected with metabolism 

associated traits 

Since differences in chromatin accessibility were only observed
between the strains, we combined the strain-DARs for both
diets for further analysis of the role of genetic differences
in differential accessibility. Compared to non-D ARs, D ARs
overlapped genetic variation (MGPv5 SNPs, insertions and
deletions) more often (Figure 5 A; the breakdown of overlap
counts per diet to variant class is given in Supplementary 
Figure SF4 A). This was especially evident for high-confidence
DARs (FDR < 0.001 and fold change > 50%) which over-
lapped with variants 3.7 times more often than did non-DARs
(55 versus 15%, Fisher’s Exact test P -value < 2.2 × 10 

−16 ).
Furthermore, the fraction of DARs containing variants was
higher at higher statistical significance levels suggesting a
strong link between chromatin accessibility and genetic vari-
ation (Figure 5 B). In addition, the most significant DARs (ab-
solute fold-change > 50% and FDR < 10 

−5 ) more often
had multiple variants ( > 3) compared to less significant DARs
( Supplementary Figure SF4 B). Since we observed differential
accessibility to be closely connected to genetic variation, we
hypothesized that the DARs without variants might not repre-
sent independent differences in accessibility, but rather reflect
the presence of nearby DARs with variants. Of the DARs with-
out SNPs 4564 (23.4%) were found within 20 kb of a DAR
with variant(s) and 2791 (14.3% of the DARs without SNPs)
had at least one DAR with SNP that presented strong posi-
tive correlation within this window (Spearman’s rho > 0.7,
P -value < 0.05) (Figure 5 C; Supplementary Figure SF4 C). In
summary, genetic variation strongly affects chromatin accessi-
bility directly but also propagates equidirectional effects onto 

the nearby chromatin landscape. 
To validate that it is genetics that underlies differential ac- 

cessibility, we performed A T AC-seq on liver samples from 

chow-fed male 129xB6 F1-mice (N = 4). Within our con- 
sensus set of NFRs, 3688 exhibited allelic imbalance (AI) 
( Supplementary Figure SF4 D), most of which ( N = 2890,
78%) overlapped a strain-DAR ( Supplementary Figure SF4 E).
Most notably, the strain whose allele exhibited dominance in 

AI was also almost always the strain for which the DAR was 
‘up’ (Figure 5 D). It should be noted that at comparable se- 
quencing depths, AI analysis is less sensitive than DAR detec- 
tion, which explains why many of our smaller DARs did not 
exhibit statistically significant AI. Secondly, the AI-analysis 
pipeline we used, or any other to our knowledge, cannot cur- 
rently incorporate InDels into the analysis, which leads to the 
exclusion of those variant-overlapping DARs that only have 
InDels (6.6%). In summary, these results confirm the very 
strong association of differential chromatin accessibility and 

genetic variation. 
After establishing the strong connection between genetic 

variation and chromatin accessibility, we explored the asso- 
ciation of our DARs to the QTL-associated phenotypes ob- 
tained from the MGI database ( 56 ). Interestingly, DARs with 

variants were enriched ( P -value < 0.05, compared to NFRs 
with variants using Fisher’s test) to QTLs associated with 

metabolism and immune response, including the top hit for 
increased body weight (OR = 2.31, P -value = 2.58 × 10 

−274 ) 
( Supplementary Figure SF4 F). Since these QTLs are derived 

from several different strains and crosses, we also explored 

the QTLs identified specifically from 129 and B6 strains.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 5. Differentially accessible regions are enriched for genetic variants. ( A ) The proportions of combined high-confidence DARs (High-DAR, 
FDR < 0.001, fold change > 50%), DARs (FDR < 0.01, fold change > 50%), and non-DARs with (orange) and without (blue) o v erlapping genetic variants. 
( B ) The fraction of A T AC-seq peaks containing at least one genetic variant (y-axis) in windows of 100 NFRs ordered by the significance of difference 
(x-axis). FDR is for the more statistically significant comparison (129 versus B6 on either chow or HFD). ( C ) Scatter plot displaying correlations of A T AC 

signal between DARs with SNPs and their neighbouring DARs without SNPs in ±20 kb windows around the NFR centres. Colouring scale indicates 
count density (from dark blue for low density to yellow for high density). ( D ) Overlaps of DARs and sites exhibiting AI. The upper plot presents the 
distribution of AI by logarithmic fold change (log 2 FC) for the more significant DAR of chow and HFD comparisons (x-axis). The lower volcano plot shows 
the log 2 FC (x-axis) and -log 10 (FDR) (y-axis) of sites from the strain-wise A T AC-seq differential accessibility analysis that overlap an F1 A T AC-seq site that 
passed the AI analysis. Sites with significant AI are shown, B6-dominant sites in white-to-blue and 129- dominant sites in white-to-red colour scale. AI: 
allelic imbalance. ( E ) Enrichment (Fisher’s test) of DARs with variants to MGI QTL alleles associated with a phenotype in B6 and 129 QTLs, compared to 
non-DARs without variants. 
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he results differed from the above ‘all MGI QTLs’ analy-
is, among the top hits being for oxidative stress (OR = 1.96,
 -value = 5.62 × 10 

−29 ) and increased bone mineral density
OR = 2.03, P -value = 3.40 × 10 

−30 ) (Figure 5 E). These find-
ngs could indicate that additional information on how genet-
cs relates to phenotypes, including obesity, in these strains is
here to be discovered. 

ariants in binding motifs are predictive of 
ifferential TCF7L2 and CTCF binding 

o directly evaluate the association between genetic varia-
ion and TF binding, we used TCF7L2 ChIP-seq data for
6 and 129 livers. Like DARs, almost all 1078 differentially
ound regions (DBRs) for TCF7L2 were observed only be-
ween the strains (Figure 6 A). Similarly, also the TCF7L2
train-DBRs were enriched for variants, although only 17% of
ven the most significant DBRs (FDR < 6.5 × 10 

−7 ) contained
ny TCF7L2 motif-altering variants (Figure 6 B). Even with
he inclusion of altered motifs for known hepatic TCF7L2
o-binding factors, HNF4 α and FOXA2 ( 27 ), only 24% of
he highest-significance DBRs contained any of the included
otif-altering variants. Genetic variants affecting binding mo-

ifs for TCF7L2 and HNF4 α only had a minor overlap with
he five TCF7L2 binding variants also affecting an HNF4 α

otif, suggesting that despite the motif similarity, the candi-
ate rSNPs for these two TFs are mostly specific (Figure 6 C).
Among all the 13571 TCF7L2 peaks, the variant-altered

CF7L2 motif frequently co-occurred with differential bind-
ing (67.3%; 70 DBRs among 104 peaks with variant-altered
motif). Of note, for CTCF, for which the strain-specificity and
motif-altering variant frequency of DBRs were very similar to
those of TCF7L2 ( Supplementary Figure SF5 A, B), also the
frequency of variant-altered motif co-occurrence with differ-
ential binding was similar (70.7%; total peaks: 82823, 1132
DBRs among 1602 peaks with variant-altered motif). When
an alteration at any motif was allowed, the co-occurrence with
DBRs was much less frequent: 22.1% for TCF7L2 and 32.0%
for CTCF. Due to the fundamental functional differences be-
tween TCF7L2 and CTCF, these data suggest that the poten-
tial of TF-specific motif-altering variants to predict differential
TF binding on ChIP-seq data is high. 

Since altered binding motifs for the known co-binding
TFs for TCF7L2 were only present in a fraction of DBRs,
we explored more broadly the commonly occurring altered
TF motifs in the DBRs. Unsurprisingly, the highest enrich-
ment in DBRs over non-DBRs was observed for the bind-
ing motif for TCF7L2 and motifs highly similar to it (Fig-
ure 6 D, Supplementary Figure SF6 A). There was a large over-
lap between DBRs hosting altered TCF7L2 and TCF7L2-
like motifs, and some instances where the DBR only hosted
an altered TCF7L2-like motif (Figure 6 E). There were also
other altered motifs enriched to the DBRs (Fisher’s test
P-value < 0.01 and > 80% of altered motifs with col-
lateral scores, i.e. higher motif score in the strain with
higher TCF7L2 binding): HNF4 γ, PPAR γ, RXR α, RXR β,
NR5A1, NR1H4 and HLF. Even though the motifs of
these TFs shared similarity with the TCF7L2 binding motif

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 6. Effects of variants on strain-specific TF and TCF7L2 binding. ( A ) TCF7L2 DBR (FDR < 0.05) counts by comparison. ( B ) The fraction of TCF7L2 
binding sites containing at least one genetic variant (‘Any’) or at least one motif-altering variant for TCF7L2 or a known co-binder for TCF7L2 in windows 
of 100 binding sites (y-axis) ordered by the significance of difference (x-axis). The displayed FDR-value is the highest per peak of the two strain 
comparisons (129 vs B6 on either chow or HFD). Combined: at least one of the TFs (TCF7L2, HNF4 α and / or FOXA2) has an altered motif. ( C ) Counts for 
altered binding motifs for TCF7L2 and known co-binders in DBRs. ( D ) Comparison of variant-altered TF binding motifs between DBRs and non-DBRs 
using Fisher’s test. TFs with P -value < 0.01 are coloured, and those with > 80% of altered motifs with collateral motif score to DBR log 2 FC and 
P -value < 0.01 are labelled. Venn diagrams of TCF7L2 peaks with altered binding for ( E ) TCF7L2 and TCF7L2-like motifs and ( F, G ) motifs not related to 
TCF7L2, significantly o v errepresented in the Fisher’s enrichment analysis . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Supplementary Figure SF6 B), the sets of DBRs with altered
motifs for these TFs were largely independent of the DBRs
with altered TCF7L2 and TCF7L2-like motifs (Figure 6 F-G).
To further consolidate the view on altered motifs and TCF7L2
DBRs, we explored the concordance of the SNP-driven change
in the motif score and the log 2 FC of TCF7L2 DBRs. Unsur-
prisingly, the motif for TCF7L2 itself showed the highest con-
cordance, but also the other motifs arising from the enrich-
ment analysis showed statistically significant positive corre-
lation (Spearman’s P -value < 0.05, Supplementary Figure 
SF6 C). In some contrast, for CTCF DBRs the only enriched
motifs where those for CTCF itself and its paralog CTCFL
( Supplementary Figure SF7 A). Collectively, these observations
suggest that while the binding of TFs can also be affected by
genetic variation at similar and possible co-binder TF motifs,
the binding of TFs is mainly mediated by their own, specific
binding motif. 

Differential TCF7L2 binding is linked to differences 

in chromatin landscape 

We next explored how the differential TCF7L2 binding is re-
flected onto the chromatin landscape. Among the TCF7L2
DBRs, 517 (48%) overlapped active NFRs, out of which
approximately half (50.5%) were DARs. However, a large
proportion of the DBRs overlapped neither active nor in-
active NFR (37.8%) (Figure 7 A). Similar to the pattern al- 
ready seen with all TCF7L2 peaks (Figure 4 D), these non- 
overlapping DBRs more often had a motif for TCF7L2 than 

the DBRs overlapping active NFRs (2.2-fold, 62.9% ver- 
sus 28.5%) (Figure 7 A). In addition, the DBRs very often 

correlated positively with overlapping chromosome acces- 
sibility at DARs as well as histone acetylation at DHARs 
(Figure 7 B, C). 

Although the overall overlap between DBRs and DARs was 
relatively poor, we nevertheless evaluated the predictive po- 
tential of using motif-altering variants with differential chro- 
matin accessibility data instead of differential binding data 
since A T AC-seq data is often easier to generate than TF- 
specific ChIP-seq data. In these analyses we used as the ground 

truth TCF7L2 and CTCF DBRs which are well predicted by 
respective motif alterations. Surprisingly, only 8.73% of all 
NFRs, or 10.71% of all DARs, with TCF7L2 motif-altering 
variants overlapped a TCF7L2 DBR (Table 1 ). When the NFR 

and DAR sets were further divided to active and non-active 
subset, the overlaps in active sets were clearly higher than in 

non-active sets, reaching 13.85% for active DARs. These re- 
sults were contrasted by much higher overlaps between acces- 
sible chromatin with altered motif and CTCF DBRs (up to 

58.5% for non-active DARs; Table 1 ), although in line with 

CTCF’s tendency to bind non-active NFRs, here the DBRs at 
non-active NFRs and DARs were better predicted than those 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 7. Chromatin landscape of genetically determined transcription factor binding. ( A ) Signals of TCF7L2 ChIP-seq, A T AC-seq and H3K27ac ChIP-seq 
at NFRs with or without a TCF7L2 motif o v erlapping or not o v erlapping DBRs. Density plots of correlations between TCF7L2 DBRs and the classes of 
( B ) active NFRs (DARs and non-DARs) and ( C ) H3K27ac regions (DHARs and non-DHARs). ( D ) Counts of TCF7L2 DBRs in different o v erlap categories. 
Three DBRs overlapping adjacent active and non-active NFRs were counted as active (1 active DAR and 2 active NFR). ( E ) Alluvial plot of DAR counts 
across study phases. ( F ) Comparison of variant-altered TF binding motifs between DARs and non-DARs using Fisher’s test. TFs with P -value < 0.01 are 
coloured, and those with > 80% of altered motifs with collateral motif score to DBR log2FC and P -value < 0.01 are labelled. ( G ) Results from HNF4 α
ChIP-qPCR of altered HNF4 binding sites in DARs with ChIP-Atlas o v erlap. *, Mann–Whitney U -test P -value < 0.05; ns, non-significant. 
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Table 1. Altered binding motifs o v erlapping TCF7L2 and CTCF DBRs across different region sets 

Motif-DBR overlap a 

Region set TCF7L2 CTCF 

Altered Motif TF-specific motif NFR 18 / 206 (8.74%) 170 / 495 (34.34%) 
Non-active NFR 3 / 86 (3.49%) 122 / 270 (45.19%) 
Active NFR 15 / 120 (12.50%) 48 / 225 (21.33%) 
DAR 12 / 112 (10.71%) 99 / 210 (47.14%) 
Non-active DAR 3 / 47 (6.38%) 76 / 130 (58.46%) 
Active DAR 9 / 65 (13.85%) 23 / 80 (28.75%) 
TCF7L2 peak 70 / 104 (67.31%) 1132 / 1602 (70.66%) 

Any motif NFR 315 / 20160 (1.56%) 1370 / 20160 (6.80%) 
Non-active NFR 65 / 9323 (0.70%) 889 / 9323 (9.54%) 
Active NFR 250 / 10837 (2.31%) 481 / 10 837 (4.44%) 
DAR 199 / 8266 (2.41%) 642 / 8266 (7.77%) 
Non-active DAR 44 / 4163 (1.06%) 400 / 4163 (9.61%) 
Active DAR 155 / 4103 (3.78%) 242 / 4103 (5.90%) 
TCF7L2 peak 544 / 2461 (22.10%) 6306 / 19734 (31.96%) 

a Given as: altered motifs overlapping DBR / altered motifs in peaks (%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

at active NFRs and DARs. In summary, although candidate
rSNPs clearly are identifiable based only on chromatin acces-
sibility data, especially if integrated with histone mark data,
the view remains incomplete in the absence of direct TF bind-
ing data in the form of e.g. ChIP-seq data. 

We finally evaluated whether ChIP-seq data from public
sources could allow the detection of variants altering TF bind-
ing. To identify potential rSNPs and their affected TFs, we
first performed motifbreakR analysis for the active DARs with
variants using the CIS-BP database motif collection ( 50 ,52 ).
The analysis identified 7345 variants, which altered motifs
for 461 TFs in 4103 of the 5097 active DARs with variants
(Figure 7 E). Among the most enriched altered motifs were
those for HNF4 α and other TFs shown to exhibit pioneer
activity like ETV2 and CEBPA ( 68 ,69 ). Also TCF7L2 was
enriched, although most of the altered TCF7L2 motifs were
not in the direction of DAR (Figure 7 F). We then evaluated
these findings using mouse liver ChIP-seq data from ChIP-
Atlas for the available TFs ( 55 ). Score changes at the 1352
motifs overlapping a DAR and a TF binding site from ChIP-
Atlas ( Supplementary Table S4 ) displayed stronger positive
correlation with the log 2 FC of the overlapping DAR (Spear-
man’s rho 0.49, P -value < 2.2 × 10 

−16 ) ( Supplementary 
Figure SF7 B), compared to all motif score changes observed
at any DAR (Spearman’s rho 0.15, P -value < 2.2 × 10 

−16 )
( Supplementary Figure SF7 C). This suggests that ChIP-seq
data from public sources might identify rSNPs using active
DARs as a marker for altered TF binding. As an additional val-
idation, we performed HNF4 α ChIP-qPCR ( N = 4, per strain)
for eight sites that were predicted to have altered HNF4 α

binding by the motifbreakR analysis and overlapped active
DARs that express allelic imbalance and locate near strain-
DEGs ( Supplementary Figure SF7 D). All eight sites displayed
high concordance with the predicted outcome, i.e. there was
more HNF4 α binding in the strain that had a stronger binding
motif and higher accessibility (Figure 7 G). 

Differential accessibility and histone acetylation are 

predictive of nearest gene expression 

Next, we aimed to identify how chromatin accessibility at
NFRs, histone acetylation, and TF binding by TCF7L2 were
associated to gene expression. To that end, active NFRs,
H3K27ac regions and TCF7L2 bound regions were assigned 

to all expressed genes within ±1Mb, except for regions at ac- 
tive gene promoters which were only assigned to that gene. We 
then performed an enrichment analysis to the nearest DEGs 
across the different assays using chipenrich (Figure 8 A), on 

the background of expressed genes. Active non-DARs were 
enriched to all DEG classes likely due to the known, general 
association of active chromatin accessibility and gene expres- 
sion. On the other hand, strain-DARs were enriched especially 
to strain-DEGs and, as expected, not enriched to diet-DEGs.
Additionally, active NFRs, both within DAR and non-DAR,
showed higher enrichment to different DEG-categories com- 
pared to the respective non-active class, further solidifying the 
added benefit of the categorization of NFRs. The same pattern 

was observed with a more basic peak density approach: Ac- 
tive DARs populated the proximal regions of the strain and 

‘diet + strain’-DEGs more densely than the non-active DARs 
(Figure 8 B). DHARs also displayed an expected pattern as 
each class of DHARs was most enriched to the corresponding 
class of DEGs (Figure 8 A). Strain-DBRs and non-DBRs had 

a largely similar pattern than their active DAR counterparts.
The enrichment of non-DBRs to diet-DEGs and ‘diet + strain’- 
DEGs may reflect the role of TCF7L2 in metabolic pathways 
affected by the HFD (Figure 8 A). Interestingly, the density of 
DBRs near strain-DEGs was observed to be much higher for 
those DBRs that contained variants compared to those that 
had no variants (Figure 8 B). 

Based on our findings that TCF7L2 preferentially binds at 
active NFRs (Figure 4 D) and active DARs show enrichment 
and proximity to DEGs (Figure 8 A, B), we focused on ac- 
tive NFRs to assess how the regions identified by the differ- 
ent assays correlate with the expression of their nearest DEGs 
(Figure 8 C). Strain-DARs most often correlated (Spearman’s 
P -value < 0.05) with the expression of their nearest strain- 
DEGs, especially when the DAR hosted a variant (with vari- 
ant: 65.4%, without: 46.3%). The mixed-effect ‘diet + strain’- 
DEGs correlated less often (with variant: 48.2%, without: 
33.2%) whereas the diet-DEGs and expressed non-DEGs 
rarely correlated. DHARs and DEGs correlated the most 
within the corresponding class. TCF7L2 DBRs more rarely 
correlated with their nearest DEGs: only 31.0% of strain- 
DBRs with variant correlated with the nearest strain-DEGs 
(Figure 8 C). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 8. Relationships between DEGs and DARs, variants and TF binding motifs. ( A ) c hipenric h enric hment analy sis results f or different assa y s. 
Non-DEGs were included in the background. ( B ) Densities of the distances between peaks of the different classes and their nearest DEG of e v ery class. 
( C ) Heatmap of the fractions of DAR, DHAR and DBR peaks with significant correlation (Spearman’s P -value < 0.05) with the nearest gene in each 
DEG-class. ( D ) Heatmap of motif enrichment in the nearest active NFRs of module-associated genes. Rows and columns are clustered using Euclidean 
distance. Only the most rele v ant TFs (Z-score > 3 in at least one module) are sho wn. ( E ) Cumulativ e distribution plots for the absolute distance between 
the active DAR (top panel), DHAR (middle panel) and DBR (bottom panel) peaks and the nearest DEG of the same class. Y-axis depicts the proportion out 
of all the DEGs in the class. (B, C) Assa y -class: Differential analysis annotation for NFRs, H3K27ac and DBRs. Strain: different between strains only, 
Diet + strain: difference observed in both inter-strain and intra-strain diet comparisons, and Diet: different only between diets. 
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Since co-expression is thought to represent co-regulation,
e performed motif enrichment analysis with the closest

ctive NFRs of module-associated genes to identify poten-
ial direct regulators and found that the modules clustered
ostly according to their likely originating cell type. Im-
une modules M3 and 13 were more enriched for motifs for
nown immune-related TFs like the interferon regulatory fac-
ors (IRF) ( 70 ), while hepatocyte modules M1 and M5 were
ore enriched for e.g. HNF4 γ (M1) and HNF1 β (M1 & 5)

Figure 8 D). 
Finally, we assessed the degree of differential gene ex-

ression that could be explained by the different datasets.
e linked every DEG to their closest (within 1Mb) corre-

ating active-DAR, DHAR and DBR of the same class (e.g.
iet-DEG to diet-DHAR). Additionally, DARs and DBRs
ere also linked to ‘diet + strain’-DEGs. Strain compar-

sons were highlighted in this approach (Figure 8 E). Corre-
ating strain-DHARs were found in the ±1 Mb neighbour-
oods of 95% of the strain-DEGs, which was the high-
st percentage among all the assays. In addition, 92% of
train-DEGs had co-correlating active DARs in the neighbour-
ood. As expected, among all DEGs fewer genes had a co-
orrelating DBR in the neighbourhood, reflecting the inher-
ntly smaller target gene set of a single TF (Figure 8 E). Alto-
ether, these results show that especially the inter-strain dif-
erences in the chromatin landscape underlie differential gene
xpression. 
Linking rSNP candidates to DEGs reveals both 

known and novel regulatory interactions between 

TFs and genes 

After observing that differential accessibility at active NFRs
is strongly linked to differential gene expression and that the
closest active NFRs often contain relevant TF binding motifs,
we aimed to identify possible targets of that regulatory vari-
ation. We linked active DARs with motif breaking variants
to their closest correlating (Spearman’s P -value < 0.05) DEG
of either ‘strain’ or ‘diet + strain’-class ( Supplementary Table 
S5 A). To establish whether there were known TF-gene inter-
action pairs within these connections, we used the TRRUSTv2
TF-gene interaction database ( 71 ). There were 23 known in-
teractions of TFs and target genes overlapping our data. In
addition, based on ChIP-Atlas data, 694 of our candidate
rSNPs overlapped with a binding site of the corresponding TF.
For example, an active B6-up DAR upstream of Cenpl over-
lapped an HNF4 α binding site from ChIP-Atlas and hosted
rs45630040 whose G allele of 129 mice presents a weaker
binding motif for HNF4 α (Figure 9 A). Additionally, this lo-
cus also hosted rs258291433 whose T allele in 129 mice also
weakens the binding motif for HNF4 α. Cenpl was also more
expressed in B6 mice, strengthening the case of HNF4 α-driven
regulation of Cenpl ( Supplementary Figure SF8 A). The Cenpl
locus also hosted two other B6-upregulated DEGs ( Gas5
and Dars2 ), suggesting a broader local regulation mediated
through this enhancer region, and affected by the two rSNPs.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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Figure 9. Example loci of candidate rSNPs for known hepatic regulators and their target genes. ( A ) Candidate rSNP locus where rs245630040 alters a 
known binding motif for HNF4 α in an active DAR overlapping HNF4 α from ChIP-Atlas that correlates with Cenpl expression. Additional correlating DEGs 
in the neighbourhood include Dars2 and Gas5. ( B ) A DBR-DAR near the Apcs gene, which hosts rs47508685 that alters the binding motif for TCF7L2. (A, 
B) Gene names of inferred target DEGs are shown and their transcripts boxed in purple. Blue boxes indicate a down-regulated DEG which was not 
directly inferred as the target by the analysis. The insets on the right display zoomed views into the indicated data tracks of the main plot highlighted in 
pale red background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the motif of the same TF than in mouse and that locate 
Roles of both Cenpl and Dars2 in liver have not been ex-
plored outside of hepatocellular carcinoma but Gas5 has been
shown to play a critical role in non-alcoholic fatty liver disease
( 72–74 ). 

We also overlapped altered TCF7L2 motifs in active DARs
with TCF7L2 DBRs at DEG loci and identified eight overlap-
ping candidate TCF7L2 rSNPs ( Supplementary Table S5 B). At
seven of these SNPs, the difference in allele score was to the
same direction as the change in TCF7L2 binding and in six
of the sites the DAR fold change was in the same direction as
the DBR fold change. Interestingly, half of the genes presented
positive correlation, potentially supporting the proposed dual
role of TCF7L2 as both transcriptional activator and repres-
sor ( 75 ). An example of a likely TCF7L2 rSNP is rs47508685
that is located 8.4kb upstream of the 129-up DEG Apcs and
whose T allele of 129 mice creates a TCF7L2 binding motif
in a 129-up strain-DAR that overlaps a 129-up TCF7L2 DBR
(Figure 9 B, Supplementary Figure SF8 A). Interestingly, Apcs
has been previously recognized as a candidate gene for body
fat percentage related QTL in an F2-cross of 129 and B6 mice
( 8 ). Additionally, the protein product encoded by this gene,
serum amyloid P, has been recently shown to be of great im-
portance in reducing steatosis and inflammation in mice. Apcs
has also been recognized as a possible inhibitor of obesity-
induced effects in humans ( 76 ). 

Additionally, we linked TCF7L2 DBRs with motif alter-
ing variants to their closest correlating DEG of either ‘strain’
or ‘diet + strain’-class to identify additional candidate rSNPs
not found within active DARs ( Supplementary Table S5 C).
This analysis yielded 57 SNPs in 54 DBRs within 1Mb of
DEGs that hosted a TCF7L2 altering variant. Of the DBRs,
14 overlapped with DARs where in six the motif altering vari-
ant was observed within the TCF7L2 DBR and not the active
DAR. One interesting candidate rSNP, rs238427830, creating
a stronger binding motif in 129, was found 17 kb upstream 

of Ttc39b , which is a 129-up and HFD-down ‘diet + strain’- 
DEG suggesting that TCF7L2 may directly regulate Ttc39b 

( Supplementary Figure SF8 A, B). Interestingly, Ttc39b has 
been suggested to participate in the regulation of lipid home- 
ostasis through trans-activating LXR β mediated signalling 
cascades ( 77 ). 

Human eQTL SNPs of the candidate rSNP locus 

gene orthologues are connected to liver-specific 

metabolic functions 

Lastly, we explored the possibility to infer potential mech- 
anisms of action for human rSNPs based on our candidate 
mouse rSNPs. First, we lifted the active DARs overlapping 
SNPs that broke any motif to the human genome using 
liftOver, then identified all human SNPs in these syntenic re- 
gions from the EBI GWAS catalogue, and finally used mo- 
tifbreakR to identify the human TF motifs targeted by these 
SNPs ( 52 , 62 , 64 ). This approach yielded 10 human SNPs for 
the 12 mouse SNPs in 10 active DARs which altered the motif 
for the same TF as in mouse ( Supplementary Table S6 A). In- 
terestingly, these SNPs were associated with various metabolic 
traits. For example, rs36991149, overlapping an active DAR,
and its human counterpart rs2070895 both altered the bind- 
ing motif of PAX7. In humans, rs2070895 is associated with 

several GWAS traits related to cholesterol metabolism. 
For the second approach, since TFs and their target gene 

sets are well conserved between mice and humans ( 17 ,18 ),
we paired the TFs with genetically altered motifs in active 
DARs to their nearest genes and mapped these TF-gene pairs 
to human liver eQTL data ( 65 ). The analysis yielded 1280 

eQTL SNPs in the neighbourhoods of 137 genes that altered 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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ear an orthologous human gene, 53 of which overlapped
ith the corresponding human TF binding site from ChIP-
tlas ( Supplementary Table S6 B). It should be noted here that

he overlap between the GTEx eQTL SNPs and ChIP-Atlas
racks is poor: only 13.2% (53923 out of 407285) of the
iver eQTL SNPs overlap with any liver associated ChIP-Atlas
rack for TFs. We also queried the eQTL SNP hits from the
BI GWAS catalogue and identified GWAS annotation for 113
f them ( Supplementary Table S6 C). Interestingly, also these
ere often related to metabolism. For example, the human

s3809898 that alters an RAR γ binding site associated with
NKS , linked to low density lipoprotein cholesterol levels, has
 mouse counterpart rs30303466 that overlaps an active DAR
nd both locates near the mouse orthologue Tnks and alters
he binding motif for RAR γ. 

Out of our 1280 eQTL SNP hits, 44 overlapped a
CF7L2 DBR in mouse but none altered the binding mo-

if for TCF7L2 ( Supplementary Table S6 D). However, four
ouse variants (rs245402086, rs223056549, rs235169540

nd rs579006641) altered the binding motifs for FOXM1
nd FOXJ3 which are relatives of FOXA2, a known liver
o-binding factor of TCF7L2 ( 27 ). These variants had eight
uman eQTL SNP counterparts also altering one of ei-
her FOXM1 or FOXJ3 binding motifs. Finally, we checked
hether TCF7L2 DBRs with TCF7L2 altering variants could
e found near eGenes with linked TCF7L2 motif-altering vari-
nt. We identified one eQTL SNP with TCF7L2-altering mo-
if found near RAPGEF5 ( Supplementary Table S6 E). Inter-
stingly, Rapgef5 had an upstream TCF7L2 DBR where an
nsertion creates a weaker binding motif in 129 mice, coincid-
ng with weaker TCF7L2 binding in 129 mice. In summary,
sing a strategy based on functional conservation of TF-gene
airs, our analysis short-listed several hundred human SNPs,

ncluding many metabolic GWAS hits, as rSNP candidates for
urther exploration and functional validation. 

iscussion 

ven though B6 and 129 mice have been commonly used to
tudy diet-induced obesity, the genetically driven differences
n their gene regulatory networks are not well understood ( 4 ).
ere we present our findings on how genetic variation, as ob-

erved in the livers of B6 and 129 mice, is linked to differences
n the chromatin landscape and how these relate to the regu-
ation of gene expression. We also propose functionally likely
ausal rSNPs based on an integrative analysis of genome-wide
ssays of gene expression and epigenetic markers and evaluate
he outcomes by using TCF7L2 binding as an example. 

As revealed by both cell type specific gene enrichment anal-
sis of module-associated genes and, to a minor extent, TF
otif enrichment analysis of their neighbouring active reg-
latory regions, differences in the cell-type composition of
he two mouse strains affect some of our analyses. Based
n our data, the analyses prone to this kind of an effect
re those that rely on the correlation of signals, such as
GCNA, in which the genes co-expressed in their specific

ell types appear to drive the co-expression module gener-
tion. Another analysis affected by cell type specific signals
as the motif enrichment analysis for active NFRs neigh-
ouring expressed genes. These findings indicate that study-
ng the effects of genetic variation and TF binding would
reatly benefit from single cell -based approaches. These stud-
es could additionally provide interesting prospects for study-
ing the differing obesity predisposition in 129 and B6 mice.
For example, higher proportion of Kupffer cells in the B6
livers may explain the HFD-induced insulin resistance phe-
notype observed in these mice because Kupffer cell activa-
tion is known to contribute to hepatic insulin resistance
( 4 ,78 ). 

The integration of chromatin accessibility and active en-
hancer marker H3K27ac data allows for the segregation of
functionally meaningful subsets of enhancers ( 9 ). Building on
that, we report here that classifying NFRs as active and non-
active refines the identification of TF binding sites hosting
binding motifs for relevant TFs. In addition, based on the en-
richment of TF binding motifs, the NFRs classified as active
outperform the H3K27ac-only approach in accurately identi-
fying TF binding sites. However, it should be noted that even
though the binary classification we used here was shown to be
effective, it may not fully address the complexity of enhancer
types. Indeed, a recent publication by Sahu et al. describes four
types of enhancers which can present both accessible chro-
matin and H3K27ac or neither ( 15 ). These enhancers are very
often marked by a signal from self-transcribing active regula-
tory region sequencing (STARR-seq), which could be a robust
addition for similar analyses in the future. In addition, they de-
scribe a class of chromatin-dependent enhancers where CTCF
binding co-locates with accessible chromatin and H3K27ac,
validating the small overlap of CTCF binding sites and active
NFRs seen in our analysis. 

TF binding, as exemplified by our TCF7L2 ChIP-seq data,
can also occur at inaccessible chromatin if the TF has pio-
neer activity ( 20 ). In our study, TCF7L2 frequently bound to
chromatin that was inaccessible but still marked by H3K27ac.
As TCF7L2 has been recently shown to have a dual role as
both a transcriptional activator and repressor, this observa-
tion could be indicative of transcriptional repression or high-
lighting a mechanism for pioneer activity by TCF7L2 ( 79 ).
Moreover, we observed that there were differences in the mo-
tif enrichment patterns across the TCF7L2 overlap classes,
hinting further towards the possibility of different functional
roles that depend, site by site, on the local chromatin context.
These findings underline the importance of also including spe-
cific TF ChIP-seq data when searching for, or validating, high-
confidence rSNP candidates. 

The differences we observed across all the genome-wide as-
says were much more pronounced between the strains com-
pared to the effects of HFD. In fact, chromatin accessibility
measured by A T AC-seq was non-responsive to diet in both B6
and 129 mice, similar to a previous report on B6 mice and us-
ing DNAse-seq ( 6 ). The observed high occurrence of genetic
variants in DARs, and their validation by the allelic imbalance
analysis of the F1 livers, identifies genetics as the key determi-
nant of chromatin accessibility. In addition, the high positive
correlation of the DARs without SNPs in the close proximity
of DARs with SNPs highlights a cis -acting role of chromatin
accessibility and genetic variation. These observations align
with previous reports on the heritability of chromatin accessi-
bility ( 80 ). Nevertheless, some of the DARs without variants
had no nearby DARs with variants. Similar incomplete over-
lap of strain-specific sites and local variants has been previ-
ously described ( 17 ). This, together with the incomplete over-
lap of TCF7L2 DBRs with active DARs, highlights the need
for future studies on the degree at which the differences in
chromatin accessibility are mediated by e.g. pre-established
enhancers during liver development, and the degree at which

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1225#supplementary-data
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they are related to the pioneer activity of TFs in the mature
liver ( 6 , 20 , 81 ). 

We assessed how well altered TCF7L2 and CTCF binding
motifs can be used to predict differential binding events in
NFRs, DARs and with TF-specific ChIP-seq derived binding
sites. To no surprise, TF specific ChIP-seq predicted rSNP can-
didates better than chromatin accessibility data. In addition,
while altered CTCF binding motifs provided quite good re-
sults in predicting CTCF DBRs, most of the CTCF binding
located outside accessible chromatin, leaving multiple rSNPs
outside the DAR-based analysis. Based on our findings, TF-
specific ChIP-seq is a necessity at the very least for the vali-
dation of rSNP candidates. This was further supported by the
improved correlation between the DAR fold changes and al-
tered motif scores for altered motifs that overlap their corre-
sponding TF binding sites from the ChIP-Atlas database and
HNF4 α ChIP-qPCR ( 55 ). Indeed, an interesting future study
could be to assess how well public data, such as the ChIP-
Atlas data, aligns with in silico identified rSNP candidates. In
addition, an interesting avenue for future studies would be
to compare genome-wide the induced accessibilities at geneti-
cally altered binding sites between e.g. TCF7L2, a hepatocyte-
enriched, functionally diverse TF, and the TFs with pioneer
activity like HNF, ETV / ETS or CEBP family-related TFs that
were overrepresented in the DARs ( 20 , 68 , 69 , 75 ). This would
help to identify the TFs that modify the liver accessibility land-
scape and characterize how this reflects to the observed phe-
notype since pioneer factors have been shown to be the promi-
nent modifiers of local accessibility ( 20 ,82 ). 

Like A T AC-seq, also altered TCF7L2 binding displayed a
strong connection with genetic variation and minimal diet-
induced effects. A large majority of the genetic effects, how-
ever, appear unspecific for a given TF, since only approx-
imately 15% of the most significant TCF7L2 DBRs con-
tained variants that specifically altered the binding motif for
TCF7L2. This is in line with a previous observation by Soc-
cio et al. who reported that only 20% of the strain-selective
PPAR γ-bound regions in white adipose tissue contained mo-
tif altering variants ( 19 ). One possible explanation for the ap-
parently unspecific genetic effects could be that they target co-
binders of the TF and thereby indirectly also affect the mea-
sured binding the TF itself. However, based on our enrichment
analysis of altered binding motifs in TCF7L2 DBRs, it would
seem that TF specific binding motifs are most predictive of the
TF’s binding. In addition, differences between TFs in this re-
gard are present as can be seen by comparing the enrichment
results of altered binding motifs of TCF7L2 and CTCF DBRs.
The high specificity of altered binding motifs in CTCF DBRs
could be due to its solitary role as a chromatin domain regu-
lator whereas TCF7L2 is known to have multiple co-binding
TFs ( 27 ). Nevertheless, since altered binding motifs explain
only a minority of the strain-specific binding of any TF, ad-
ditional strategies are still needed to characterize the mecha-
nisms behind the strain-selective TF binding events. 

We also explored how our individual assays relate to the ob-
served differences in gene expression. Inter-strain differences
were observed to be the most concordant. This was especially
true for DARs which, when compared to other assays, more
often correlated with their nearest strain-DEG. In addition,
for all assays the regions with variants presented higher like-
lihood of correlation compared to regions without variants.
However, it is important to note that not all DEGs had DARs
and DHARs in their neighbourhood. This is in line with a re-
cent study by Zhang et al. where the depletion of H3K27ac 
signal at enhancers had only minimal effects on gene expres- 
sion ( 83 ). However, in our analysis, correlating strain-DHARs 
were present within 1Mb of almost all strain-DEGs. Overall,
the strong concordance between inter-strain enhancer acces- 
sibility and activity to gene expression, compared to the diet- 
induced differences, suggests that genetically determined en- 
hancer activation is a major driver of the gene regulatory land- 
scape in 129 and B6 mice. However, even though assigning the 
nearest gene to each genomic region has been widely used, and 

also provided well-aligned results in our study setting, the use 
of methods like chromatin conformation capture that directly 
link regulatory regions to target genes could assist in identify- 
ing targets of regulatory variation ( 84 ). For example, as seen 

with our TCF7L2 data, only a fraction of DEGs were observed 

to be correlating within 1Mb of DBRs. This might suggest 
a more distal action of regulation. Inferring distal regulatory 
connections in silico would greatly benefit from chromatin ar- 
chitecture data. Alternatively, together with the high enrich- 
ment of TCF7L2 binding sites to hepatocyte-specific genes,
this may mean that TCF7L2 has fairly few target genes. Yet 
another possibility is that TCF7L2 binds only is certain cell 
types and if so, likely hepatocytes. This could also explain 

why the presence of genetically affected motifs in DARs or 
NFRs predicted TCF7L2 DBRs less well than CTCF DBRs; a 
ubiquitous binder like CTCF would tend to bind in chromatin 

that is accessible in many cell types whereas cell type specific 
binding might focus on chromatin only accessible in some cell 
types, which could additionally limit the detectability of cell 
type specific NFRs because in a bulk tissue sample their A T AC 

signal becomes ‘diluted" by the many other cell types. 
Previous QTL studies of the 129 and B6 strains have de- 

scribed genomic regions related to the phenotypic differences 
observed also in our mice ( 7 ,8 ). For example, a study on 

129P3 / J and C57BL / 6ByJ mice, close relatives to our 129 and 

B6 strains, respectively, identified QTLs driving dietary obe- 
sity ( 7 ). Although these studies used SNP arrays that are low- 
resolution by modern standards, several QTLs overlapped our 
DARs with variants. This warrants a closer look, using e.g.
higher-density genotyping arrays, onto the genetic variation 

that relates to metabolism in these mice. In addition, we de- 
scribe an interesting binding site hosting motif-altering vari- 
ant for TCF7L2 near Apcs, a gene that has been documented 

as a candidate gene for the genetic obesity predisposition in 

B6 mice by multiple studies ( 8 ,85 ), and the human ortho- 
logue of which is reported to have anti-obesity properties ( 76 ).
Since the Apcs knockout studies, to our knowledge, have only 
been performed on persistent lung inflammation and fibro- 
sis, further investigation on the role of Apcs in obesity, liver 
metabolism, and regulation by TCF7L2, seem warranted ( 86 ).
It should be noted that even though we present large-scale as- 
sociation of DARs and genetic variation that involves a mul- 
titude of variants, it remains a remote possibility that much 

of what we see is secondary to the effects by just a few driver 
variants. 

Sequence conservation at open chromatin between human 

and mouse is reportedly 10–20% ( 87 ). Thus, it was no sur- 
prise that chromatin accessibility proved a poor inter-species 
mapping strategy between candidate mouse rSNPs and the hu- 
man GWAS hits. However, our mouse DARs with candidate 
rSNPs near DEGs hosted many variants that mapped to hu- 
man liver eQTL SNP-gene pairs in which the SNP affected 

the binding motif for the same TF as in mice. Moreover, these 



Nucleic Acids Research , 2024, Vol. 52, No. 6 2921 

c  

e  

o  

I  

c  

(  

Q  

B  

t  

t  

i  

m  

n  

t  

i  

m  

t
 

a  

a  

t  

o  

m  

e  

t  

s  

s  

r  

m  

T  

t  

m  

i  

t  

e  

i

D

T  

a  

G  

a  

1  

S

S

A

A  

c  

E  

f  

F  

A

F

A  

F  

s

 

 

 

 

4419–4432.
andidate ‘shared eQTLs’ also included several GWAS hits rel-
vant for the metabolic functions of the liver, and even for the
bserved phenotypic differences between the mouse strains.
nterestingly, one of the themes that arose from both sequence
onservation and eQTL analysis was bone mineral density
BMD). In addition, BMD was one of the top hits from the
TL enrichment analysis of DARs with variants. Interestingly,
MD has been connected to circulating LDL and HDL choles-

erol levels ( 88 ,89 ), but the causal relationships between the
wo phenomena are still largely unclear. Based on our find-
ngs, and supported by previous QTL studies, 129 and B6
ice could provide an interesting platform for studying the ge-
etic determinants of BMD and blood cholesterol that could
hen be translated to the human setting. One limiting factor
n such studies would be the presently low overlap of the hu-
an ChIP-Atlas data and the human SNP, which speaks for

he need of liver ChIP-seq data for additional TFs. 
In conclusion, differences in chromatin accessibility in 129

nd B6 mice are enriched for genetic variation and associ-
ted with differences observed in the hepatic gene regula-
ory landscape. Both H3K27ac at the DARs, and expression
f the nearest DEGs of the DARs often correlate with chro-
atin accessibility. The extent by which the observed differ-

nces in the chromatin accessibility are due to developmen-
ally pre-established enhancers and how this relates to strain-
pecific TF binding events needs further clarification. We also
how that while active DARs can be used to identify candidate
SNPs, better results in the identification of genetically deter-
ined binding sites are achieved using TF specific ChIP-seq.
he data presented in this study offers several leads for inves-

igating potentially causal liver rSNPs that are shared between
ice and humans. Additionally, we provide targets of interest

n identifying genetic determinants of the obesity predisposi-
ion in B6 mice. Our study also highlights TCF7L2 as an inter-
sting, possibly hepatocyte-specific candidate for further stud-
es into the transcriptional regulation of hepatic metabolism. 
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