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Recombination breaks down genetic linkage by reshuffling existing variants onto new
genetic backgrounds. These dynamics are traditionally quantified by examining the
correlations between alleles, and how they decay as a function of the recombination
rate. However, the magnitudes of these correlations are strongly influenced by other
evolutionary forces like natural selection and genetic drift, making it difficult to tease out
the effects of recombination. Here we introduce a theoretical framework for analyzing an
alternative family of statistics that measure the homoplasy produced by recombination.
We derive analytical expressions that predict how these statistics depend on the rates
of recombination and recurrent mutation, the strength of negative selection and genetic
drift, and the present-day frequencies of the mutant alleles. We find that the degree of
homoplasy can strongly depend on this frequency scale, which reflects the underlying
timescales over which these mutations occurred. We show how these scaling properties
can be used to isolate the effects of recombination, and discuss their implications for the
rates of horizontal gene transfer in bacteria.

INTRODUCTION

The statistical associations between mutations, also
known as linkage disequilibrium (LD), contain a wealth of
information about the evolutionary forces acting within a
population (Slatkin, 2008). Chief among these is recom-
bination, which breaks up genetic linkage by reshuffling
existing variants onto new genetic backgrounds. Link-
age disequilibrium has played a central role in illuminat-
ing the recombination dynamics of natural populations,
from fine-scale recombination maps in sexual organisms
(Chan et al., 2012; Coop et al., 2008; McVean et al.,
2004; Myers et al., 2005; Spence and Song, 2019) to the
rates of horizontal gene transfer in bacteria (Didelot and
Falush, 2007; Didelot and Wilson, 2015; Garud et al.,
2019; Lin and Kussell, 2017; Liu and Good, 2024; Rosen
et al., 2015), viruses (Neher and Leitner, 2010; Romero
and Feder, 2024; Turakhia et al., 2022; Zanini et al.,
2015), and other microbes (Lynch et al., 2022; Vakhru-
sheva et al., 2020). In addition to recombination, LD also
encodes important information about the demographic
history of a population (Li and Durbin, 2011; Ragsdale
and Gravel, 2019; Ragsdale et al., 2023; Santiago et al.,
2020) and the action of positive (Garud et al., 2015; Sa-
beti et al., 2002; Stephan et al., 2006; Wolff and Garud,
2023) or negative (Corbett-Detig et al., 2013; Garcia and
Lohmueller, 2021; Ragsdale, 2022; Sohail et al., 2017)
selection. However, disentangling the contributions of
these forces remains challenging (Garud et al., 2021; Har-
ris et al., 2018), since the statistical associations between
mutations are only partially understood theoretically.

Much of our existing understanding of LD has focused
on the pairwise correlations between alleles at different
locations on the genome. These pairwise correlations are

often summarized by the squared correlation coefficient,

r2 ≡ (fAB − fAfB)
2

fA(1− fA)fB(1− fB)
, (1)

where fA and fB denote the marginal frequencies of the
mutant alleles at each site, and fAB denotes the fraction
of individuals with mutant alleles at both sites (Hill and
Robertson, 1968). The r2 metric and related measures
likeD′ (Lewontin, 1964) and σ2

d (Ohta and Kimura, 1971)
quantify how the observed genomes deviate from the in-
finite recombination limit (also known as linkage equilib-
rium), where the alleles at each site are independently
distributed across genetic backgrounds (fAB ≈ fA · fB).

The frequencies in Eq. (1) are themselves random
variables that emerge from an underlying evolutionary
model. Several theoretical approaches have been de-
veloped for predicting how the moments of r2 and re-
lated correlation metrics scale with the recombination
rate and other parameters in particular evolutionary sce-
narios (Good, 2022; Lin and Kussell, 2017; Lynch et al.,
2014; McVean, 2002; Ohta and Kimura, 1971; Ragsdale,
2022; Ragsdale and Gravel, 2019; Santiago et al., 2020;
Song and Song, 2007; Stephan et al., 2006). More recent
work has started to explore how these correlations vary
as a function of the frequencies of the two alleles (Eberle
et al., 2006; Good, 2022; Lynch et al., 2022; Rosen et al.,
2015; Sohail et al., 2017; Wolff and Garud, 2023), which
are increasingly accessible with the large sample sizes of
modern genomic datasets (Almeida et al., 2021; Halldors-
son et al., 2022; Sun et al., 2023). Since the frequencies
of these variants are related to the time at which they
arose, this frequency dependence allows us to probe how
evolutionary forces contribute to LD across a range of
different timescales (Good, 2022).
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However, correlation metrics like r2 are just one way
of summarizing the statistical associations between pairs
of mutations. In principle, this information is fully con-
tained in the two-locus haplotype frequency spectrum,
p(fAb, faB , fAB), which is the continuous analogue of the
two-locus sampling distribution that has been explored
in previous work (Hudson, 2001; Ragsdale et al., 2018).
Just as existing metrics like Tajima’s D and Fay and
Wu’s H are sensitive to different portions of the single-
site frequency spectrum (Fay and Wu, 2000; Fu and Li,
1993; Tajima, 1989), other two-locus statistics will gener-
ally capture different portions of the haplotype frequency
spectrum (Good, 2022; Ragsdale and Gravel, 2019), and
may therefore be useful for teasing out the contributions
of different evolutionary forces.

For example, another class of summary statistics de-
rives from the four-gamete test (Hey and Wakeley, 1997;
Hudson and Kaplan, 1985; Neher and Leitner, 2010;
Vakhrusheva et al., 2020), which asks whether all four
combinations of alleles are present within a sample. This
functions as test for homoplasy, since the fourth combina-
tion can only be produced via recombination or recurrent
mutations. While the four-gamete test is usually viewed
as a binary readout, we can also define a more graduated
version,

Λ ≡ fabfAbfaBfAB

f2A(1− fA)2f2B(1− fB)2
, (2)

which is a continuous function of the four haplotype fre-
quencies. Like the original four gamete test, this Λ statis-
tic vanishes in the absence of recombination or recur-
rent mutation, but is normalized so that it approaches
one under linkage equilibrium (fAB ≈ fA · fB). In this
way, Eq. (2) quantifies the deviation from the zero re-
combination limit, similar to how r2 captures the devia-
tion from the infinite recombination limit. This suggests
that homoplasy metrics like Λ could be particularly use-
ful for isolating the effects of recombination. The de-
gree of homoplasy is also important in other evolution-
ary contexts: it determines the “softness” of selective
sweeps from standing genetic variation (Hermisson and
Pennings, 2017), and can reveal the presence of genetic
incompatibilities between loosely linked loci (Corbett-
Detig et al., 2013).

Despite these attractive properties, our quantitative
understanding of homoplasy statistics like Eq. (2) re-
mains limited, even in the simplest evolutionary scenar-
ios. While some properties of the four gamete test can
be derived using coalescent theory (Hey and Wakeley,
1997; Myers and Griffiths, 2003), it is difficult to extend
these calculations to larger sample sizes, or to account
for natural selection or recurrent mutation. Our limited
understanding of these effects leaves many basic ques-
tions unresolved: How does the buildup of homoplasy
compare with the decay of LD as the distance between

sites increases? Does negative selection change this pic-
ture? Can we distinguish recombination from recurrent
mutation using quantitative metrics like Eq. (2)? And
finally, how do the answers to these questions depend on
the frequencies of the two alleles?

Here, we address these questions by generalizing a
recently developed framework for modeling frequency-
resolved LD (Good, 2022) to study homoplasy statistics
like Eq. (2). We focus on weighted moments of Λ, where
the weights are chosen to single out particular frequency
scales of the underlying alleles. Using this approach, we
derive analytical expressions that predict how these ho-
moplasy statistics depend on the rates of recombination
and recurrent mutation, and the additive and epistatic
fitness costs of the mutations. We show how these ap-
proaches can be generalized to predict the full distribu-
tion of Λ, conditioned on the marginal frequencies of the
two alleles. We conclude by discussing the implications
of these results for measuring recombination dynamics in
large microbial datasets.

MODEL AND ANALYSIS

We investigate the dynamics of homoplasy statistics like
Eq. (2) in a two-locus Wright-Fisher model under the
joint action of mutation, recombination, negative selec-
tion, and genetic drift. We consider a panmictic pop-
ulation of N haploid individuals with two biallelic loci,
a/A and b/B, that each acquire mutations at rate µ per
individual per generation. We will restrict our attention
to cases where Nµ≪ 1, which ensures that the pairwise
heterozygosity at each site is also low (Ewens, 2004). We
assume that the A and B alleles lower the fitness of an
individual by sA and sB , respectively, while mutations at
both loci impose a total cost sAB = sA + sB + ϵAB , with
ϵAB denoting the amount of epistasis. Finally, we assume
that the two loci recombine at a total rate R per genome
per generation, which depends on the coordinate distance
ℓ between the two loci. Most of our results will be in-
dependent of the functional form of R(ℓ), provided that
we write our expressions in terms of the map distance R.
These assumptions yield a standard two-locus Wright-
Fisher model (Appendix A) whose equilibrium distribu-
tion we will denote by p(fAb, faB , fAB).

To explore how homoplasy emerges across a range of
different timescales, we extend the approach introduced
in Good (2022) and consider weighted moments of Λ that
condition on the marginal frequencies of the alleles at
each of the two loci. We consider two different classes of
weighting functions in this work. The first class, which
was previously introduced in Good (2022), allows us to
focus on the dynamics when the minor alleles at both
sites are rare. The weighting function in this case is de-
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FIG. 1 Schematic of lineage dynamics that contribute to homoplasy when mutant alleles are rare. (A) separate
mutations. A and B mutations arise separately on the wildtype background ab. Before going extinct, they recombine and
produce the double-mutant lineage AB (vertical dotted line). (B) nested mutations. The wildtype population first acquires
mutation A and then B mutation occurs on the Ab background. The double mutant then recombines with the wildtype and
generates the missing single-mutant haplotype aB. All three mutant lineages are still segregating at the time of observation.
(C) recurrent recombination events. The wildtype population acquires mutation A and then B mutation occurs on the Ab
background. The double mutant then recombines with the wildtype and produces aB, however, by that time the Ab lineage
has gone extinct. The presence of all four haplotypes therefore necessitates an additional recombination event. An analogous
diagram exists for the case of separate mutations with two recombination events (not shown). (D) recurrent mutation events.
Mutation B arises twice on different backgrounds, ab and Ab, to produce the fourth haplotype.

fined as

w2(fA, fB |f0) ∝ f2A(1− fA)
2e−

fA/f0

× f2B(1− fB)
2e−

fB/f0 , (3)

where f0 is a characteristic allele frequency scale, and the
proportionality constant is chosen such that the expecta-
tion of w2(fA, fB |f0) under the equilibrium distribution
p(fAb, faB , fAB) is normalized to one. The average value
of Λ under this weighting scheme is therefore given by

Λ̄2(f0) =

〈
fabfAbfaBfAB e

− fA+fB
f0

〉
〈
f2A(1− fA)2f2B(1− fB)2 e

− fA+fB
f0

〉 , (4)

where the angle brackets ⟨·⟩ denote the expectation under
the equilibrium distribution p(fAb, faB , fAB). The expo-
nential weighting terms in Eq. (4) act like a soft step
function, preferentially excluding alleles with frequencies
≳ f0. The exponential cutoff has convenient analytical
properties that we will exploit below, but many of our

qualitative results will apply for other choices of the cut-
off function provided that they remain sufficiently sharp.

In addition to Eq. (4), we also consider a second class
of weighting functions that allow us to condition on cases
where only one of the two alleles (e.g. A) is rare, while
the other is at an intermediate frequency. The weighting
function in this case is defined as

w1(fA, fB |f0, f∗B) ∝ f2A(1− fA)
2e−

fA/f0

× f2B(1− fB)
2 e−(fB−f∗

B)2/2d2

√
2πd2

,

(5)

where f0 and f
∗
B are a pair of allele frequency scales satis-

fying f0 ≪ f∗B , and d is a characteristic width that deter-
mines the range of fB values that contribute to w1. We
focus on small values of d such that the Gaussian term in
Eq. (5) approaches a Dirac delta function, which forces
fB = f∗B . The average value of Λ under this “single-rare”
weighting scheme is then given by
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Λ̄1(f0, f
∗
B) ≈

〈
fabfAbfaBfAB e

− fA
f0

∣∣∣ fB=f∗B〉〈
f2A(1−fA)2f2B(1−fB)2 e

− fA
f0

∣∣∣ fB=f∗B〉 ,
(6)

where the angle brackets again denote an average over
the equilibrium distribution p(fAb, faB , fAB).

The weighted average in Eq. (4) can be straightfor-
wardly found from the moment generating function,

H(x, y, z) ≡
〈
e−xfAb−yfaB−zfAB

〉
, (7)

using the identity〈
f iAbf

j
aBf

k
AB e

− fA+fB
f0

〉
= (−1)i+j+k∂ix∂

j
y∂

k
zH

∣∣∣∣∣ x=f−1
0

y=f−1
0

z=2f−1
0

t=∞

.

(8)

The conditional averages in Eq. (6) obey a similar rela-
tion involving the conditional generating function,

H(x, y, z|fB=f∗B) ≡
〈
e−xfAb−yfaB−zfAB |fB=f∗B

〉
. (9)

We calculate these quantities by extending the analytical
approach employed in Good (2022), which yields a per-
turbative solution of Eq. (8) that applies in the limit that
the frequencies of the alleles are rare (f0 ≪ 1). The evo-
lutionary dynamics greatly simplify in this limit because
only a few distinct classes of frequency trajectories will
end up contributing to the averages in Eq. (8) (Fig. 1),
each of which can be associated with a corresponding
term in the perturbation expansion of H(x, y, z). We
derive these formal solutions in Appendices B and F, re-
spectively. In the following sections, we use these results
to develop predictions for Λ in different evolutionary sce-
narios.

RESULTS

Neutral alleles

The simplest behavior occurs in the absence of selection
(sA, sB , sAB = 0), when recurrent mutations can be ne-
glected (Nµ → 0). In this case, Λ̄2 in Eq. (4) will only
depend on the population-scaled recombination rate NR
in addition to the frequency scale f0. When f0 ≲ 10%,
we find that the solution for Λ̄2 collapses onto a single-
parameter curve,

Λ̄2(NRf0) ≈
{

2NRf0 if NRf0 ≪ 1,

1 if NRf0 ≫ 1,
(10)

which transitions from a recombination-limited regime
(Λ̄2 ∼ NRf0) when NRf0 ≪ 1 to a recombination-
dominated regime (Λ̄2 ∼ 1) when NRf0 ≫ 1 (Fig. 2;

10−3 10−2 10−1 100 101 102 103

2NRf0

10−3

10−2

10−1

100

Λ̄
2

10−4 10−3 10−2 10−1

f0

FIG. 2 Frequency-resolved homoplasy, Λ̄2(f0), for pairs
of neutral alleles in the infinite sites limit. Points denote
the results of forward-time simulations (Appendix A) with
N = 106 and different combinations of R and f0; each point
represents an average over 109 pairs of loci. The fact that dif-
ferent combinations of parameters collapse onto a single curve
suggests that Λ̄2 is primarily determined by the compound
parameter NRf0. The solid black line shows the theoretical
prediction from Eq. (C6), while the dashed gray lines show
the asymptotics from Eq. (10).

Appendices C and D). The transition between these two
limits occurs when NRf0 ∼ O(1), where the full numeri-
cal solution is necessary to obtain quantitative agreement
with simulations. Since Λ̄2 only depends on the com-
pound parameter NRf0, these results imply that a lower
frequency scale f0 can mimic the effects of a lower recom-
bination rate, and vice versa. In particular, a pair of sites
can be in the recombination-limited regime even if their
nominal recombination rate is high (NR ≫ 1), provided
that the frequency scale is sufficiently low (f0 ≲ 1/NR).

We can develop an intuition for the behavior in
Eq. (10) by considering the haplotype frequency dynam-
ics that contribute to Λ̄2. When recombination is rare,
Λ̄2 will be dominated by trajectories involving a single re-
combination event. In the infinite sites limit (Nµ → 0),
there are only two distinct ways to produce all four hap-
lotypes in the population. In the first case, separate
mutations on the wildtype background can create a pair
of single-mutant lineages, Ab and aB, which recombine
with each other to produce the double-mutant haplotype
AB (Fig. 1A). Alternatively, the double-mutant haplo-
type could be produced by a nested mutation within one
of the single-mutant backgrounds, which then recombines
with the wildtype to create the missing fourth haplotype
(Fig. 1B).

We can estimate the contributions of each scenario to
homoplasy statistics like Λ̄2 using the heuristic approach
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described in Good (2022). The averages in the numerator
and denominator of Eq. (4) can be estimated by multiply-
ing the probability of each event by the typical haplotype
frequencies it is associated with. In both cases, the av-
erages will be dominated by mutations that arose within
the last ∼Nf0 generations and drifted to a characteris-
tic frequency scale ∼f0 (Good, 2022). In the separate
mutations case (Fig. 1A), the two single mutants each
arise at rate ∼Nµ, while the recombinant double mu-
tants are produced at rate ∼NRf20 . In the nested muta-
tions case (Fig. 1B), the second mutation is produced at
rate ∼Nµf0, while the remaining recombinant haplotype
is produced at rate ∼NRf0 · 1 when the double mutant
recombines with the wildtype. The higher production of
recombinants in this case is exactly balanced by the lower
rate of producing nested mutations, resulting in similar
overall contributions to the numerator of Eq. (4):

⟨fabfAbfaBfAB e
− fA+fB

f0 ⟩
∼ (Nµ)2︸ ︷︷ ︸

prob. that
Ab and aB
arise and
reach f0

× NRf20︸ ︷︷ ︸
prob. that
Ab and aB

recombine and
reach f0

× f30︸︷︷︸
typical

frequencies

+ Nµ︸︷︷︸
prob. that
Ab or aB
arise and
reach f0

× Nµf0︸ ︷︷ ︸
prob. that

AB
arises and
reaches f0

× NRf0︸ ︷︷ ︸
prob. that
ab and AB
recombine

and reach f0

× f30︸︷︷︸
typical

frequencies

.

(11)

A similar calculation shows that the denominator of
Eq. (4) is given by

⟨f2A(1− fA)
2f2B(1− fB)

2 e−
fA+fB

f0 ⟩
∼ (Nµ)2︸ ︷︷ ︸

prob. that
Ab and aB
arise and
reach f0

× f40︸︷︷︸
typical

frequencies

,
(12)

so that the ratio between the two expressions yields
the Λ̄2 ∼ NRf0 dependence observed in Eq. (10) when
NRf0 ≪ 1.

The strong recombination regime can be understood
using a similar approach, except that we now have to
account for the greater loss of AB individuals due to
recombination. This outflow imposes an effective fitness
cost R on the double mutant, which prevents it from
rising above a frequency ∼1/NR (Good, 2022). When
this maximum frequency is less than ∼f0, the numerator
in Eq. (11) must instead be replaced by

⟨fabfAbfaBfABe
− fA+fB

f0 ⟩

∼ (Nµ)2︸ ︷︷ ︸
prob. that
Ab and aB
arise and
reach f0

× NRf20︸ ︷︷ ︸
prob. that
Ab and aB

recombine and
reach f0

× f20 · 1

NR︸ ︷︷ ︸
typical

frequencies

, (13)

which divided by Eq. (12) yields the Λ̄2 ∼ 1 scaling ob-
served in Eq. (10) when NRf0 ≫ 1.

As the rate of recombination becomes even larger
(NRf20 ≳ 1), multiple double-mutant lineages will start
to be produced by recombination every generation. In
this case, the total size of the AB haplotype will be deter-
mined by a balance between the production rate of new
recombinants (+NRf20 ) and their loss due to further re-
combination with the wildtype (−NRfAB). The balance
between these terms occurs when fAB ∼ f20 ≪ f0, which
is equivalent to the condition that the A and B muta-
tions are in quasi-linkage equilibrium (Good, 2022). In
this case, our normalization convention in Eq. (2) ensures
that Λ is close to one, so that the average Λ̄2 ≈ 1 as well.
Since this average value is the same as in the NRf0 ≫ 1
case, higher moments of Λ are required to observe the
transition to the quasi-linkage equilibrium regime. We
consider this case in more detail in a separate section
below.

Incorporating negative selection

We are now in a position to understand how nega-
tive selection on the mutants changes the behavior ob-
served above. We begin by considering the simplest case,
where the A and B mutations have the same fitness
cost (sA = sB = s) and there is no additional epista-
sis (sAB = 2s). In this case, we find that the solution for
Λ̄2 exhibits a similar transition from a linear dependence
on R when R → 0 to a saturated regime when R → ∞
(Fig. 3). However, the location of this transition now de-
pends on the relative strengths of negative selection and
genetic drift. When Nsf0 ≪ 1, selection will not have
had a chance to alter the frequencies of the mutations
while they were drifting to their present-day frequencies
(∼ f0). This implies that Λ̄2 will remain close to the neu-
tral result in Eq. (10) (Fig. 3, left). Since the boundary of
this regime depends on the compound parameter Nsf0,
even strongly deleterious mutations (Ns ≫ 1) can be-
have effectively neutrally if f0 is chosen to be sufficiently
low.

In the opposite case, when selection is strong com-
pared to drift (Nsf0 ≫ 1), we find that Λ̄2 can be ex-
pressed as

Λ̄2 ≈
{
R/se if R≪ se,

1 if R≫ se,
(14)

where se ≡ (60/19)s is an effective fitness cost (Fig. 3;
Appendix E). The functional form of this expression sug-
gests that negative selection has a similar effect as impos-
ing a frequency threshold at f eff0 ∼ 1/Nse. The primary
difference occurs in the narrow crossover region where Λ̄2

approaches saturation: a comparison of the two curves
shows that the transition between the recombination-
limited (Λ̄2 ≪ 1) and recombination-dominated (Λ̄2 ≈ 1)
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2NR
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10−2

10−1

100
Λ̄

2

Ns� 1

neutral, s = 0

effectively neutral,
2Nsf0 = 10−1

effectively deleterious,
2Nsf0 = 101

10−3 10−1 101 103

R/se

Nsf0 � 1

2s = 10−2

2s = 10−3

2s = 10−4

10−4 10−3 10−2 10−1

f0

FIG. 3 Frequency-resolved homoplasy, Λ̄2(f0), for pairs of negatively selected alleles. Left: Λ̄2 as a function
of the population-scaled recombination rate (NR) when sA = sB = s, sAB = 2s. Symbols denote the results of forward-
time simulations with N = 106, f0 = 10−3, and different values of s. Solid lines show the theoretical predictions for the
strong selection (Nsf0 ≫ 1; black, Eq. E14) and weak selection (Nsf0 ≪ 1; grey, Eq. C6) limits. The fact that the grey
symbols collapse onto the same curve illustrates that even strongly deleterious mutations (grey triangles, Ns ∼ 102) can behave
effectively neutrally if Nsf0 ≪ 1. Right: an analogous version of the left panel showing Λ̄2 as a function of the selection-
scaled recombination rate, R/se, with se ≡ (60/19)s. Symbols denote the results of forward-time simulations with N = 106 and
different combinations of R, s, and f0. Similar to Fig. 2, the fact that different combinations of parameters collapse onto a single
curve suggests that Λ̄2 is primarily determined by the compound parameter R/se in the strong selection regime (Nsf0 ≫ 1).
The solid line shows the theoretical prediction from Eq. (E14), while the grey dashed lines show the asymptotics from Eq. (14).

regimes is slightly sharper in the presence of strong neg-
ative selection (Fig. 3, left).

Interestingly, we find that in many other cases of
strong selection, individual fitness costs can be absorbed
by the effective cost se, so that the asymptotic behavior
of Λ̄2 is still well approximated by the limits in Eq. (14)
(Appendix E). This continues to hold for a range of
epistatic interactions, as long as single mutations are
not much more deleterious alone than in combination
(sA, sB ≲ sAB).

The simplicity of this behavior can be understood by
revisiting our heuristic picture above. The frequency
trajectories of deleterious alleles are similar to those of
neutral alleles, except that negative selection prevents
them from growing to frequencies much larger than the
drift barrier at ∼ 1/Ns (Fisher, 2007). When this maxi-
mum frequency is smaller than f0, the sizes of the single-
mutant lineages will be capped at f eff0 ∼ 1/Ns instead
of the nominal threshold at f0. Similarly, the typical fre-
quency of the double mutant will depend on the relative
strengths of selection and recombination,

fAB ∼ min {1/NsAB , 1/NR, f0} . (15)

Substituting these typical frequencies into Eqs. (11) and
(12) yields the asymptotic behavior in Eq. (14).

We note, however, that while this simple expression
captures the behavior of Λ̄2 across a wide range of pa-
rameter space, more complex scenarios are possible. One
notable exception occurs for strong antagonistic epista-
sis, where the double mutant is much less costly than ei-
ther of the single mutants alone (sAB ≪ sA, sB). In the
extreme case where the single mutants are strongly dele-
terious (Nsf0 ≫ 1) but the double mutant is effectively
neutral (NsABf0 ≪ 1), the population must first cross a
“fitness valley” (Weissman et al., 2009, 2010) to generate
the double-mutant haplotype. Once this lucky double
mutant arises, it can drift to much higher frequencies
than the single-mutant lineages, which are likely to go
extinct by the time that the double mutant is eventually
sampled. In order for all four haplotypes to be present
in the population, the surviving double mutant will have
to recombine with the wildtype population closer to the
time of sampling to regenerate the single-mutant lineages
(Fig. 1C). These extra recombination events lead to a
faster-than-linear dependence on R in the recombination-
limited regime (R ≪ s, Fig. 4). Moreover, while Λ̄2 still
saturates at one when R → ∞, we find that it can ex-
ceed this value in the intermediate region where R ∼ s
(Fig. 4).
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FIG. 4 Homoplasy under strong antagonistic epis-
tasis. An analogous version of Fig. 3, right panel for
sA = sB = s = 10−2, sAB = 0, and N = 106. Symbols de-
note the results of forward-time simulations across a range of
recombination rates R and f0 = 10−2. For comparison, the
solid line shows the theoretical prediction from Eq. (E14) for
the additive case in Fig. 3 (sAB = 2s). Strong antagonistic
epistasis changes the functional form of Λ̄2 compared to the
additive case: at small recombination rates, Λ̄2 grows faster
than linearly with R, and can temporarily exceed one (dashed
line) before returning to the recombination-dominated limit
when R ≫ s.

Effects of recurrent mutations

Our analysis has so far focused on the infinite sites limit
(Nµ→ 0) where the recombination was the only way to
generate all four haplotypes in the population (Fig. 1A-
C). However, at small but finite values of Nµ, recur-
rent mutations at either A or B locus can also create
the fourth haplotype (Fig. 1D). This poses challenges for
interpreting homoplasy statistics like Λ, since recurrent
mutations can obscure signals of recombination, and vice
versa. In this section we extend our heuristic approach
to account for these effects, and show how the scaling
of Λ̄2 can help us distinguish between these otherwise
confounding processes.

Recall that we can estimate the averages in Λ̄2 by cal-
culating the probability that all four haplotypes arise in
a population and multiplying it by their typical frequen-
cies. At small mutation rates (Nµ≪ 1), recurrent muta-
tions will not affect the typical haplotype frequencies, but
they will still alter the rate at which these haplotypes are
produced. In order to produce all four combinations of
alleles, at least three mutation events must happen: the
wildtype population must generate a mutation at both
sites and one of the single mutants must acquire an ad-
ditional nested mutation. When all of these mutations
are neutral, their contribution to the numerator of Λ̄2 is

given by a generalization of Eq. (11),

⟨fabfAbfaBfAB e
− fA+fB

f0 ⟩
∼ (Nµ)2︸ ︷︷ ︸

prob. that
Ab and aB
arise and
reach f0

× Nµf0︸ ︷︷ ︸
prob. that

AB
arises and
reaches f0

× f30︸︷︷︸
typical

frequencies

.
(16)

Dividing this result by the denominator in Eq. (12), we
find that recurrent mutations cause Λ̄2 to saturate at a
lower limit of ∼Nµ. This signal will overwhelm the con-
tribution from recombination when Nµ≫ NRf0, which
leads to a modified version of Eq. (10),

Λ̄2 ∼


Nµ if NRf0 ≪ Nµ,

NRf0 if Nµ≪ NRf0 ≪ 1,

1 if NRf0 ≫ 1.

(17)

This result shows that recombination can be distin-
guished from recurrent mutation by examining the scal-
ing behavior of Λ̄2. At small values of NRf0, recombi-
nation leads to a linear dependence on f0 and R, while
recurrent mutation yields a constant value. Moreover,
since Nµ is small, recurrent mutation will not affect
the crossover to the saturated regime when NRf0 ∼ 1
(Fig. 5, left panel). Similar results apply for strong nega-
tive selection, with recurrent mutations having a negligi-
ble effect once NRf eff0 ≳ Nµ (Fig. 5, right panel). These
differences in scaling arise from the graduated nature of
the Λ statistic in Eq. (2), which weights large amounts of
homoplasy more strongly than the small amounts pro-
duced by recurrent mutation. This suggests that the
scaling behavior of Λ̄2(f0) could provide a more robust
signal of recombination than binary measures like the
four-gamete test.

Distribution of Λ and the transition to linkage equilibrium

While the average in Eq. (4) contains significant informa-
tion about the haplotype dynamics within a population,
the full distribution of Λ can provide additional insight
into the evolutionary forces at play. In this section, we
explore the distribution of Λ conditioned on both alleles
being rare (fA, fB ≪ 1). We will constrain our analysis
to neutral dynamics in the infinite sites limit, although it
can be extended to account for certain forms of negative
selection.

When recombination is frequent (NR≫ 1/fA, 1/fB),
double-mutant lineages are typically short-lived com-
pared to the single-mutant lineages that produce them.
In this case, previous work has shown that the total fre-
quency of the double mutant approaches a local equilib-
rium,

p(fAB |fA, fB) ∝ f2NRfAbfaB−1
AB e−2NRfAB , (18)
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FIG. 5 Frequency-resolved homoplasy, Λ̄2(f0), in the presence of recurrent mutations. Left: Analogous version
of Fig. 2 for Nµ ∈ {10−4, 10−3, 10−2}. Symbols denote the results of forward-time simulations of neutral alleles for N = 106

and f0 ∈ {10−4, 10−3, 10−2}. The black line shows the infinite sites prediction from Eq. (C6), while the colored lines indicate
the corresponding positions where the infinite sites theory is predicted to break down (NRf0 ∼ Nµ). When NRf0 ≪ Nµ,
recurrent mutations provide the dominant contribution to homoplasy, and Λ̄2 approaches a constant value ∼Nµ. However,
as long Nµ ≪ 1, recurrent mutations do not affect the value of Λ̄2 at higher values of NRf0, including the transition to
the saturated regime when NRf0 ∼ 1. Right: an analogous version of the left panel for additive strongly deleterious alleles
(sA = sB = 2, sAB = 2s). Symbols denote the results of forward-time simulations for N = 106 and f0 ∈ {10−4, 10−3, 10−2}
across a range of recombination rates R and selection coefficients s; colors are the same as in the left panel. The black line
shows the infinite sites prediction from Eq. (E14), while the colored lines indicate the analogous positions where the infinite
sites theory is predicted to break down (R/se ∼ Nµ). These results suggest that recombination can be distinguished from
recurrent mutation using the scaling behavior of Λ̄2.

that depends on the current values of fA and fB (Good,
2022). When fA = fB = f0, the conditional distribution
of Λ will therefore follow a Gamma distribution,

p(Λ|fA, fB) ∝ Λα−1e−αΛ , (19)

with shape parameter α = 2NRf20 .
The average of Eq. (19) is always equal to one,

consistent with our previous result for recombination-
dominated regime in Eq. (10). However, Eq. (19) im-
plies that the distribution of Λ transitions between two
qualitatively distinct regimes depending on the shape pa-
rameter α (Fig. 6A). When α≪ 1 (NRf20 ≪ 1), the dis-
tribution of Λ contains a large peak near zero, with an
exponential cutoff at Λ ∼ 1/NRf20 ≫ 1. The probability
mass near zero corresponds to scenarios where only three
haplotypes are present at appreciable frequencies, while
the exponential tail reflects the size distribution of a sin-
gle AB lineage. While the realized values of Λ can be
much larger than one in this regime, the smaller proba-
bility of these events brings the average value of Λ̄2 back
down to one.

In the opposite case where α ≫ 1 (NRf20 ≫ 1), the
distribution of Λ becomes sharply peaked around one,
with a variance of order 1/NRf20 ≪ 1. In this quasi-
linkage equilibrium (QLE) regime, recombination is so
frequent that many double-mutant lineages are always
present in the population at the same time. The sum of
their individual sizes gives rise to the Gaussian-like be-
havior in Eq. (19) (Fig. 6A). This illustrates how higher
moments of Λ can provide information about the transi-
tion to QLE, even when the average value of Λ̄2 remains
constant.

We can quantify the transition between these two
regimes by examining the total probability of observing
all four haplotypes (Λ > 0) as a function of the allele
frequency scale f0. In Appendix G, we show that for a
sample of size n, this probability can be approximated
by

P (Λ > 0|f0, n) ≈ 1−
(
1 +

n

2NR

)−2NRf2
0

, (20)

which grows quadratically with f20 at low frequencies and
approaches one when f0 ≳ 1/

√
2NR log (1 + n/2NR)
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FIG. 6 Conditional distribution of Λ when both alleles are rare. (A) Kernel density estimates of the distribution
of Λ from simulations, conditioned on both alleles falling in a narrow range of frequencies near f0. The probability mass at
Λ = 0 reflects the fraction of simulation runs where only three haplotypes were observed. Simulations were performed for
neutral mutations with N = 106, R ≈ 5.6 · 10−7, f0 ≈ 1.5 · 10−2 (purple) and N = 106, R ≈ 5.6 · 10−2, f0 ≈ 1.5 · 10−3 (light
green), f0 ≈ 4.7 · 10−3 (dark green), f0 ≈ 4.7 · 10−2 (teal). When recombination is rare (NRf0 ≪ 1, purple), the distribution
of Λ has a long tail that reflects the size of the occasional double-mutant lineage (fAB ≲ f0). As the rate of recombination
becomes larger (NRf0 ≳ 1), this long tail acquires an exponential cutoff with slope NRf2

0 , reflecting the new maximum size of
a double-mutant lineage (fAB ≲ 1/NR). Finally, when NRf2

0 ≳ 1, the distribution approaches the quasi-linkage equilibrium
limit, with a sharp peak around Λ ≈ 1. (B) The total probability of observing all four haplotypes (Λ > 0) in a sample of size
n = 104 when fA = fB = f0. Symbols denote the results of forward-time simulations for neutral mutations with N = 106 and
R = 10−1, while the solid line denotes the theoretical prediction from Eq. (20).

(Fig. 6B). The location of this transition provides an-
other way to estimate the magnitude of NR.

When recombination is rare (NRf0 ≲ 1), the local
equilibrium in Eq. (18) breaks down, which makes it dif-
ficult to obtain an analagous expression for the condi-
tional distribution of Λ. Nevertheless, our heuristic cal-
culations above suggest that rare double mutants that
reach frequencies of order f0 will create a long tail in
the Λ distribution, with Λ values as large as ∼ 1/f0 (see
Fig. 6A). This long tail is balanced by an even smaller
probability of reaching this maximum size (∼ NRf20 ),
which brings the average back down to NRf0, consistent
with our previous results in Eq. (10).

Relaxing the assumption that both alleles are rare

All of the above results were derived for the first class
of weighting functions in Eq. (3), which conditions on
scenarios where both alleles are rare (fA, fB ≲ f0 ≪ 1).
We now consider extensions to the “single-rare” case in
Eq. (5), where one of the two alleles can reside at a much
larger frequency (fA ≲ f0 ≪ fB).

Our solution for the “double-rare” case relied on a
branching approximation for the three mutant haplo-
types, which breaks down if one of the alleles (e.g. B)

drifts to intermediate frequencies. However, if the A al-
lele is present at a much lower frequency than B, then
the frequency of the B allele will remain approximately
constant over the lifetime of the A allele (Fig. 7). This
separation of timescales suggests that we can analyze a
simpler model where only the frequencies of Ab and AB
haplotypes are changing. Interestingly, this two-locus
problem is equivalent to a single-locus model of a sub-
divided population, where the demes correspond to the
B/b alleles, and migration occurs when an A allele re-
combines onto a different B/b background. This yields a
second branching approximation for the Ab and AB hap-
lotypes, which allows us to obtain a solution for the con-
ditional generating function H(x, y, z|fB=f∗B) in Eq. (9)
when fA ≪ fB (Appendix F).

By applying these results to the homoplasy statistic
in Eq. (6), we find that the average value Λ̄1(f0, f

∗
B) is

qualitatively similar to Λ̄2 (Fig. 8). In the absence of
selection or recurrent mutation, Λ̄1 is again determined
by the compound parameter NRf0,

Λ̄1(NRf0) ≈
{

4NRf0 if NRf0 ≪ 1,

1 if NRf0 ≫ 1,
(21)

which transitions from a linear regime at low recombi-
nation rates (NRf0 ≪ 1) to a saturated regime when
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FIG. 7 Schematic of the lineage dynamics contributing to
homoplasy when one allele frequency is much larger than
the other. The frequency of the common allele (B) remains effec-
tively constant, while the dynamics of the rare allele (A) are much
faster. In this regime, recombination events can be modeled as
migrations between two approximately constant-sized demes (Ap-
pendix F).

NRf0 ≫ 1, and is independent of f∗B .
When recombination is frequent (NRf0 ≫ 1), we can

again derive an analytical expression for the distribution
of Λ (Appendix F). In this “single-rare” case, the condi-
tional distribution of Λ can be expressed as

Λ|fA, fB ≈ 1− 1− 2fB√
fB(1− fB)

Z√
2NRfA

− Z2

2NRfA
,

(22)

where Z is a Gaussian random variable with mean zero
and variance one. When NRfA ≫ max{1, 1/fB}, this
distribution is sharply peaked around Λ ≈ 1. This im-
plies that when the B allele is common (fB ≳ 10%), the
transition to the QLE regime occurs when NRf0 ≳ 1.
The location of this transition is dramatically different
from the case where both alleles were rare (Fig. 6), which
required the stronger condition that NRf20 ≳ 1.

Our heuristic picture provides an intuitive explana-
tion for this difference. When B allele is present at
intermediate frequencies, the rate at which the double-
mutant lineages are created via recombination is of order
NRfAfB ∼ NRf0, rather than ∼ NRf20 . This implies
that multiple AB recombinants will start to be produced
when NRf0 ≫ 1, making it easier to attain linkage equi-
librium.

DISCUSSION

Homoplasy is a fundamental signature of recombination,
but its quantitative behavior is less well understood.
Here, we have studied a particular class of two-locus ho-
moplasy statistics in a Wright-Fisher model under the
joint action of recombination, recurrent mutation, ad-
ditive and epistatic fitness costs, and genetic drift. By
modeling the forward-time dynamics of the underlying
lineages, we derived analytical expressions that predict

10−3 10−2 10−1 100 101 102 103

2NRf0
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10−1

100

Λ̄
1

10−4 10−3 10−2 10−1

f0
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FIG. 8 Frequency-resolved homoplasy, Λ̄1(f0, f
∗
B),

when only one of the alleles is rare. An analogous ver-
sion of Fig. 2 illustrating the “single-rare” statistic in Eq. (6)
with f∗

B = 10−1 and d ∼ 10−3. Symbols denote the results of
forward-time simulations for the same parameters as in Fig. 2,
while the dashed lines denote the asymptotic predictions in
Eq. (21).

how these homoplasy measures scale with the evolution-
ary parameters, as well as the present-day frequencies
of the two alleles. We observed striking transitions as a
function of this frequency scale, providing an indepen-
dent lever for probing the dynamics of recombination
across a range of ancestral timescales.

The homoplasy measures we considered in this work
are conceptually similar to the γ statistic previously an-
alyzed by Hey and Wakeley (1997), which represents the
conditional probability of observing all four haplotypes
in a sample of size n = 4. However, our focus on rare
alleles allowed us to extend this approach to arbitrarily
large sample sizes, and also to study the effects of nega-
tive selection and recurrent mutation that are challenging
to model with traditional coalescent approaches (Wake-
ley, 2008; Walczak et al., 2012). The ability to condition
on allele frequencies turned out to be particularly useful
in these cases, suggesting new ways to potentially dis-
tinguish between these confounding evolutionary forces
(Fig. 5).

Our homoplasy measures also share some qualitative
features with traditional LD metrics like r2. For example,
the complement of our homoplasy statistic, 1 − Λ̄2, de-
cays as ∼ 1/NR (Appendix E), similar to the frequency-
weighted average of r2 (Good, 2022). But despite these
high-level similarities, there are also important quantita-
tive differences between these statistics that can be use-
ful for distinguishing the underlying evolutionary forces.
For example, previous work has shown that the numer-
ical values of r2 at low recombination rates are strongly
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FIG. 9 Frequency-resolved homoplasy in the commensal human gut bacterium Eubacterium rectale. SNVs were
obtained for a sample of 4, 872 metagenomically assembled genomes reconstructed from different human hosts (Almeida et al.,
2021; Appendix H). (A) Observed values of Λ̄2 as a function of the estimated coordinate distance (ℓ) for pairs of synonymous
SNVs in core genes. Solid lines were obtained by applying the unbiased estimator in Appendix G to all pairs of SNVs within
0.2 log units of ℓ in sliding windows. The genome-wide averages were calculated from randomly sampled pairs of SNVs from
widely separated genes; the two estimates are connected by a faint line for visualization. (B) An analogous version of the
top left panel as a function of the frequency scale f0. The observed values of Λ̄2 grow larger as f0 decreases, contrary to the
theoretical prediction from Fig. 2. (C) The observed distribution of Λ when both alleles are rare. The histograms show kernel
density estimates for pairs of SNVs separated by ℓ > 106 bp with marginal mutation frequencies f0 ∈ (0.175, 0.1925) (purple)
and f0 ∈ (0.025, 0.0275) (teal). The shapes of these two distributions are qualitatively similar to the NRf2

0 ≫ 1 and NRf2
0 ≪ 1

regimes predicted in Fig. 6A. (D) The total probability of observing all four haplotypes (Λ > 0) in a sample of size n = 4, 600
as a function of the frequency scale f0. Symbols denote the observed values computed for pairs of sites with allele frequencies
fA, fB in the range (0.3f0, 3f0), which were separated by ℓ > 106 bp. The lines denote the theoretical predictions from Eq. (20)
for the maximum and minimum possible values of NR inferred from the f0 values in panel C (30 ≲ NR ≲ 1, 500). At low
frequencies, the observed value of P (Λ > 0|f0, n) is much larger than theoretically predicted.

influenced by negative selection and genetic drift (Good,
2022), making it difficult to calibrate the overall scale.
If there is greater epistasis among physically co-located
sites (e.g. within the same gene or protein domain), then
it is even possible to observe a decaying r2 curve – a clas-
sic signature of recombination – in an otherwise purely
clonal population. In contrast, our analysis above shows
that the values of Λ̄2 that are most informative about the
underlying recombination rate (Nµ ≲ Λ̄2 ≲ 1) cannot be
produced by other forces. Moreover, the transition to this

regime occurs not only for loci with small map distances
(i.e. R ≲ 1/N), but also for alleles with low present-day
frequencies (f0 ≲ 1/NR). Since these rare alleles typi-
cally comprise the majority of segregating variants, these
frequency-resolved homoplasy measures could be partic-
ularly useful for exploring the dynamics of genetic linkage
in large genomic datasets.

As an illustrative example, we used this approach to
measure frequency-resolved homoplasy in a collection of
n = 4, 872 metagenomically-assembled genomes of the
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commensal human gut bacterium Eubacterium rectale
(Fig. 9; Appendix H). Previous estimates of LD in this
species have suggested that E. rectale strains in differ-
ent hosts experience high rates of homologous recombina-
tion (Good, 2022; Liu and Good, 2024), which provides a
natural opportunity for exploring the homoplasy metrics
discussed above. The core genomes of these strains con-
tained a total of 338,669 synonymous single-nucleotide
variants (SNVs), the vast majority of which were rare
(median minor allele frequency of 0.6%). We developed
an unbiased estimator of the Λ̄2(f0) statistic in Eq. (4)
that accounts for finite sample effects and applies for fre-
quency scales as small as f0 ≳ 2/n (Appendix G). With
a sample size > 4, 000, this dataset allowed us to quantify
the emergence of homoplasy in E. rectale across nearly
three orders of magnitude of allele frequencies (Fig. 9).

At intermediate frequency scales (f0 ≳ 10−2), we
found that the observed values of Λ̄2 were qualitatively
consistent with our theoretical predictions in Fig. 2: Λ̄2

increases with the coordinate distance ℓ between the sites
(a proxy for their total map distance R), and eventually
saturates at one at large distances (Fig. 9A). Similarly,
the conditional distribution of Λ for the most widely sep-
arated sites (ℓ ≳ 106 bp) exhibits a transition from a
broad distribution at lower frequencies (f0 ≈ 10−2) to
a unimodal shape when f0 ≈ 10−1 (Fig. 9C). This shift
is qualitatively consistent with the predicted transition
to the quasi-linkage equilibrium regime (NRf20 ≫ 1)
in Fig. 6A. Since the typical SNV in E. rectale has a
frequency < 1%, these results indicate that the vast
majority of SNVs have not yet reached linkage equilib-
rium, even though the genome-wide values of LD are low
(Garud et al., 2019). This observation has important
implications for the application of demographic inference
methods like ∂a∂i (Gutenkunst et al., 2009; Kim et al.,
2017; Mah et al., 2023), which assume that most variants
are in linkage equilibrium with each other.

In addition to these qualitative similarities, we also
observed several striking departures from the predictions
of our simple model above. For example, at sufficiently
low frequencies (f0 ≲ 10−2), we find that Λ̄2 decreases as
a function of f0 (Fig. 9B), in contrast to what we would
expect from Fig. 2. The reason for this discrepancy can
be traced to the distribution of Λ in Fig. 9C: while the
nonzero part of this distribution is qualitatively similar
to our predictions in Fig. 6A, the total probability of ob-
serving a nonzero value increases more slowly with f0
than expected theoretically (Fig. 9D). This implies that
there are more combinations of all four haplotypes at
lower frequencies than we would expect in our model,
which is responsible for elevating the mean value Λ̄2(f0)
in Fig. 9B. This illustrates how a quantitative under-
standing of homoplasy can reveal qualitative features of
the data that require additional theoretical explanation.

The existence of such discrepancies is not too sur-
prising, since we have focused on a simple evolutionary

model that omits many known complexities of natural
microbial populations. One important limitation is the
assumption of a panmictic population with a constant
size. In reality, host-associated organisms like gut bac-
teria can exhibit complex population structures that de-
pend on their history of dispersal and co-diversification
with their hosts (Falush et al., 2003; Mah et al., 2023;
Suzuki et al., 2022). Another crucial assumption is the
absence of positive selection and hitchhiking of linked
neutral loci, which are thought to play an important role
in shaping the genetic diversity of natural bacterial pop-
ulations (Birzu et al., 2023; Liu and Good, 2024; Wolff
and Garud, 2023). While further work will be required to
account for these effects, many of the qualitative features
of our analysis – in particular, the lineage decomposition
in Fig. 1 – will continue to apply in these more complex
scenarios. Our theoretical framework may therefore pro-
vide a useful starting point for understanding frequency-
resolved linkage more broadly.
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et al., 2021) and can be accessed using the accessions
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M. Möller et al., 2023 A weakly structured stem for human
origins in Africa. Nature 617: 755–763.

Romero, E. V., and A. F. Feder, 2024 Elevated HIV viral
load is associated with higher recombination rate in vivo.
Molecular Biology and Evolution 41: msad260.

Rosen, M. J., M. Davison, D. Bhaya, and D. S. Fisher, 2015
Fine-scale diversity and extensive recombination in a qua-
sisexual bacterial population occupying a broad niche. Sci-
ence 348: 977–978.

Sabeti, P. C., D. E. Reich, J. M. Higgins, H. Z. P. Levine, D. J.
Richter et al., 2002 Detecting recent positive selection in
the human genome from haplotype structure. Nature 419:
832–837.

Santiago, E., I. Novo, A. F. Pardiñas, M. Saura, J. Wang
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Appendix A: Forward-time simulations

We validated our analytical predictions by comparing them to forward-time simulations of the two-locus Wright-Fisher
model. In each generation t, the haplotype frequencies were first updated using the deterministic update rule

fab(t+ 1) =
wab

w̄
fab(t) + µfAb(t) + µfaB(t)− 2µfab(t)−RD(t), (A1a)

fAb(t+ 1) =
wAb

w̄
fAb(t) + µfab(t) + µfAB(t)− 2µfAb(t) +RD(t), (A1b)

faB(t+ 1) =
waB

w̄
faB(t) + µfab(t) + µfAB(t)− 2µfaB(t) +RD(t), (A1c)

fAB(t+ 1) =
wAB

w̄
fAB(t) + µfAb(t) + µfaB(t)− 2µfAB(t)−RD(t), (A1d)

where D ≡ fABfab − fAbfaB is the coefficient of linkage disequilibrium, wi ≡ exp(si) is the Wrightian fitness of the
haplotypes, and w̄ =

∑
i fiwi is the mean fitness of the population. Genetic drift was then incorporated by drawing

a random number of individuals for each haplotype using a Poisson distribution with mean Nfi.

To speed up the simulations, we only simulated time intervals where both loci contained a segregating mutation.
Without loss of generality, we let A correspond to the earlier of the two mutations, and B correspond to the later
one. We assumed that when the B mutation arises, the initial frequency of the A mutation can be approximated by
the single-locus site frequency spectrum (Sawyer and Hartl, 1992),

p(fA) ∝
e2NsA(1−fA)−1

fA(1− fA)
. (A2)

This will be a good approximation as long as Nµ ≪ 1. Based on this random value of fA, the new B mutation was
assigned to an AB or aB haplotype with probabilities fA and 1− fA, respectively. The resulting population was then
evolved using the update rule above until one of the two mutations went extinct, and the process was then restarted
with a new pair of mutations. The frequencies of the four haplotypes were recorded every ∆t = 100 generations, and
were used to generate the figures in the main text.

Appendix B: Perturbative solution for the moment generating function of the haplotype frequency distribution

Good (2022) previously derived a perturbative solution for the moment generating function in Eq. (7) that is valid
for sufficiently small allele frequencies. We reproduce this solution here for completeness, since it will form the basis
for many of our analytical calculations below.

Since the generating function does not explicitly depend on the allele frequencies, it is helpful to define a rescaled
version of Eq. (7),

H̃(x, y, z) ≡
〈
e−

xfAb
f0

−−yfaB
f0

− zfAB
f0

〉
= H

(
x

f0
,
y

f0
,
z

f0

)
, (B1)

which is dominated by frequencies ≲ f0 when x, y, and z are O(1). Choosing small values of f0 then allows us to
focus on small values of fA and fB .

When fA and fB are both small compared to one (f0 ≪ 1), the two-locus model in Appendix A reduces to the
branching-process-like form,

∂tfAb = −sAfAb + µ+RD(t) +

√
fAb

N
ηAb(t) , (B2a)

∂tfaB = −sBfaB + µ+RD(t) +

√
faB
N

ηaB(t) , (B2b)

∂tfAB = −sABfAB + µ(fAb + faB)−RD(t) +

√
fAB

N
ηAB(t) , (B2c)
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where D ≡ fAB−fAfB and ηAb(t), ηaB(t), ηAB(t) are independent Brownian noise terms with mean zero and variance
one (Good, 2022). By differentiating Eq. (B1) with respect to time and applying the stochastic dynamics in Eq. (B2),
one finds that the generating function must satisfy the partial differential equation,

∂H̃

∂τ
= −

(
γAx+ x2

) ∂H̃
∂x

−
(
γBy + y2

) ∂H̃
∂y

−
[
(γAB + ρ)z + z2 − ρ(x+y)

] ∂H̃
∂z

− θ(x+y)H

+ θf0z

(
∂H̃

∂x
+
∂H̃

∂y

)
− ρf0(z−x−y)

∂2H̃

∂x∂y
,

(B3)

subject to the initial condition H̃(x, y, z, 0) = 1, where we have defined a collection of scaled variables,

θ = 2Nµ, τ = t/2Nf0, ρ = 2NRf0,

γA = 2NsAf0, γB = 2NsBf0, γAB = 2NsABf0 .
(B4)

In the limit that θ ≪ 1 and f0 ≪ min{1, ρ−1}, the solution to Eq. (B3) can be expressed as a power series (Good,
2022):

H̃(x, y, z, τ) ≈ 1− θ(HA +HB) +
θ2

2
(HA +HB)

2

+ θ2f0Υ+ θ2f0

∫ τ

0

dτ ′ψ(τ ′) [Φx(τ
′) + Φy(τ

′)− ρΦx(τ
′)Φy(τ

′)] +O(f20 , θ
3),

(B5a)

where

HA(x, τ) ≡ ln

[
1 +

x(1− e−γAτ )

γA

]
, (B5b)

HB(y, τ) ≡ ln

[
1 +

y(1− e−γBτ )

γB

]
, (B5c)

Φx(τ
′) ≡ − [1− e−γA(τ−τ ′)][γA + x(1− e−γAτ ′

)]

γA [γA + x(1− e−γAτ )]
, (B5d)

Φy(τ
′) ≡ − [1− e−γB(τ−τ ′)][γB + y(1− e−γBτ ′

)]

γA [γB + y(1− e−γBτ )]
, (B5e)

Υ(x, y, τ) =

∫ τ

0

dτ ′ρ [x(τ ′) + y(τ ′)] Φx(τ
′)Φy(τ

′), (B5f)

and ψ(τ ′) is a solution to the characteristic curve,

∂τ ′ψ(τ ′) = −(γAB + ρ)ψ(τ ′)− ψ2(τ ′) + ρ
γAxe

−γAτ ′

γA + x(1− e−γAτ ′)
+ ρ

γBye
−γBτ ′

γB + y(1− e−γBτ ′)
, (B6)

with the initial condition ψ(0) = z.

The individual terms in the perturbation expansion in Eq. (B5a) correspond to different classes of haplotype
frequency trajectories. For example, the HA and HB terms enter the series at first order in the scaled mutation rate
(θ = 2Nµ) and correspond to trajectories where only one of the two loci is mutated at any given time. Two-locus
statistics like Λ that require both sites to be mutated will therefore only start to enter at order O(θ2). The functional
form of the Λ̄2 statistic in Eq. (4) leads to further simplifications. The numerator of Eq. (4) depends on a triple
derivative of the generating function,〈

fABfAbfaB · e−
fA+fB

f0

〉
= −∂x∂y∂zH

∣∣∣∣∣ x=f−1
0

y=f−1
0

z=2f−1
0

t=∞

= −f30∂x∂y∂zH̃
∣∣∣∣∣x=1
y=1
z=2
t=∞

, (B7)
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which we can evaluate using Eq. (B5). Many of the terms in Eq. (B5a) are independent of z, and therefore vanish
when taking the z derivative in Eq. (B7). The lowest-order terms that depend on z are the ψ(τ ′) terms, so that
Eq. (B7) reduces to〈

fABfAbfaB · e−
fA+fB

f0

〉
= −θ2f40∂x∂y∂z

∫ τ

0

dτ ′ψ(τ ′) [Φx(τ
′) + Φy(τ

′)− ρΦx(τ
′)Φy(τ

′)] . (B8)

In this way, the problem of calculating Λ̄2 reduces to finding the solution of the characteristic curve in Eq. (B6).
Solutions to this nonlinear equation were previously obtained by Good (2022) for the special case where x = y = 1.
However, the presence of the x and y derivatives in Eq. (B8) now require us to extend this solution to arbitrary values
of x and y in the local neighborhood of x = y = 1, where the previous solution method employed by Good (2022)
breaks down.

Here we account for this behavior using two complementary approaches. In Appendix C, we first outline a nu-
merical method for directly calculating the derivatives of ψ(τ ′) with respect to x, y, and z. We use this approach to
calculate the numerical curves in Figs. 2, 3, & 5. In addition, we also use a separation of timescales approximation to
derive approximate analytical solutions to Eq. (B6) that apply for specific parameter regimes, which correspond to
cases where selection and recombination are weak compared to drift (Appendix D), or strong compared to drift (Ap-
pendix E), respectively. These asymptotic solutions cover a broad range of parameter space, and provide additional
insights into the evolutionary dynamics in each regime.

Appendix C: Numerical solution for Λ̄2(f0)

The characteristic curve in Eq. (B6) is difficult to solve in the general case because the inhomogeneous terms vary
over many different timescales. However, we saw in Eq. (B8) that the moments of Λ only depend on the behavior of
ψ(τ ′) in the local neighborhood around x = 1, y = 1, and z = 2, suggesting a perturbative expansion of the form

ψ(τ ′, x, y, z) =
∞∑

i,j,k=0

δxiδyjδzkψxiyjzk

i+j+k (τ
′) , (C1)

where δx = x− 1, δy = y − 1, and δz = z − 2.

After substituting the ansatz in Eq. (C1) into Eq. (B6), expanding in powers of δx, δy, and δz, and collecting like

terms, we obtain a system of ordinary differential equations for the ψxiyjzk

i+j+k (τ
′) functions,

∂τ ′ψ0 = −(ρ+ γAB)ψ0 − ψ2
0 +

ργAe
−γAτ ′

1 + γA − e−γAτ ′ +
ργBe

−γBτ ′

1 + γB − e−γBτ ′ , ψ0(0) = 2, (C2a)

∂τ ′ψx
1 = −(ρ+ γAB)ψ

x
1 − 2ψ0ψ

x
1 +

ργ2Ae
−γAτ ′

(1 + γA − e−γAτ ′)2
, ψx

1 (0) = 0, (C2b)

∂τ ′ψy
1 = −(ρ+ γAB)ψ

y
1 − 2ψ0ψ

y
1 +

ργ2Be
−γBτ ′

(1 + γB − e−γBτ ′)2
, ψy

1 (0) = 0, (C2c)

∂τ ′ψz
1 = −(ρ+ γAB)ψ

z
1 − 2ψ0ψ

z
1 , ψz

1(0) = 1, (C2d)

∂τ ′ψxy
2 = −(ρ+ γAB)ψ

xy
2 − 2ψ0ψ

xy
2 − 2ψx

1ψ
y
1 , ψxy

2 (0) = 0, (C2e)

∂τ ′ψxz
2 = −(ρ+ γAB)ψ

xz
2 − 2ψ0ψ

xz
2 − 2ψx

1ψ
z
1 , ψxz

2 (0) = 0, (C2f)

∂τ ′ψyz
2 = −(ρ+ γAB)ψ

yz
2 − 2ψ0ψ

yz
2 − 2ψy

1ψ
z
1 , ψyz

2 (0) = 0, (C2g)

∂τ ′ψxyz
3 = −(ρ+ γAB)ψ

xyz
3 − 2ψ0ψ

xyz
3 − 2ψx

1ψ
yz
2 − 2ψy

1ψ
xz
2 − 2ψz

1ψ
xy
2 , ψxyz

3 (0) = 0, (C2h)

which are independent of δx, δy, and δz. We solved this system numerically using the solve ivp() function from the
SciPy Python library (Virtanen et al., 2020).

We combined these numerical solutions with Eq. (B8) to compute our frequency-resolved homoplasy statistic
Λ̄2(f0). Substituting Eq. (C1) into Eq. (B8), we find that the leading order contribution to the numerator of Λ̄2 is
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given by 〈
fAbfaBfAB · e−

fA+fB
f0

〉
≈ θ2f40

[
ρ

∫ τ

0

dτ ′ ψz
1Φ

x
1Φ

y
1 −

∫ ∞

0

dτ ′ ψxz
2 Φy

1 (1− ρΦx
0)

−
∫ ∞

0

dτ ′ ψyz
2 Φx

1 (1− ρΦy
0) +

∫ ∞

0

dτ ′ ψxyz
3 (Φx

0 +Φy
0 − ρΦx

0Φ
y
0)

] (C3)

where we have defined

Φx
0(τ

′) ≡ lim
x→1
τ→∞

Φx(τ
′) = −1 + γA − e−γAτ ′

γA(1 + γA)
, Φy

0(τ
′) ≡ lim

y→1
τ→∞

Φy(τ
′) = −1 + γB − e−γBτ ′

γB(1 + γB)
, (C4a)

Φx
1(τ

′) ≡ lim
x→1
τ→∞

∂xΦx(τ
′) =

e−γAτ ′

(1 + γA)2
, Φy

1(τ
′) ≡ lim

y→1
τ→∞

∂yΦx(τ
′) =

e−γBτ ′

(1 + γB)2
. (C4b)

At lowest order in f0, the denominator of Λ̄2 will usually be dominated by the two single mutation terms, so that〈
f2A(1−fA)2f2B(1−fB)2e−

fA+fB
f0

〉
≈
〈
f2Abf

2
aBe

− fA+fB
f0

〉
≈ θ2f40∂

2
x∂

2
yHAHB

∣∣∣∣∣ x=1
y=1
τ=∞

=
θ2f40

(1 + γA)2(1 + γB)2
. (C5)

Combining this with Eq. (C3), we can obtain a corresponding expression for Λ̄2(f0):

Λ̄2 ≈ (1 + γA)
2(1 + γB)

2

[
ρ

∫ τ

0

dτ ′ ψz
1Φ

x
1Φ

y
1 −

∫ τ

0

dτ ′ ψxz
2 Φy

1 (1− ρΦx
0)

−
∫ τ

0

dτ ′ ψyz
2 Φx

1 (1− ρΦy
0) +

∫ τ

0

dτ ′ ψxyz
3 (Φx

0 +Φy
0 − ρΦx

0Φ
y
0)

] ∣∣∣∣∣
τ=∞

,

(C6)

as a function of the numerical solutions ψz
1 , ψxz

2 , ψyz
2 , ψxyz

3 from Eq. (C2). In the neutral limit
(γA → 0, γB → 0, γAB → 0), this expression further reduces to

Λ̄2 ≈
∫ ∞

0

dτ ′ [ρψz
1 − [1 + ρ(1 + τ ′)] [ψxz

2 + ψyz
2 ] + (1 + τ ′) [2− ρ(1 + τ ′)]ψxyz

3 ] . (C7)

which only depends on the value of the compound parameter ρ = 2NRf0. We evaluated this integral numerically by
approximating it as a Riemann sum over the discretized solutions for ψz

1(τ
′), ψxz

2 (τ ′), ψyz
2 (τ ′), ψxyz

3 (τ ′) above using
a step size of δτ ′ = 3× 10−6/ρ. We used this procedure to generate the theoretical curves in Figs. 2, 3A, and 5A in
the main text.

Appendix D: Analytical solution for Λ̄2(f0) for neutral loci and weak recombination

To obtain an analytical solution for Λ̄2, we begin by considering the limit where γA, γB , γAB are small compared to
both 1 and ρ. Physically, this means that selection is weak in comparison to drift and recombination. Recall that
since γA, γB , γAB contain a power of f0, this regime also applies to nominally deleterious alleles, provided that f0 is
sufficiently small. In this case, we can rewrite Eq. (B6) as

∂τ ′ψ(τ ′) = −ρψ(τ ′)− ψ2(τ ′) + ρ
x

1 + xτ ′
+ ρ

y

1 + yτ ′
, ψ(0) = z. (D1)

If we further assume that ρ ≪ 1, we can solve Eq. (D1) perturbatively in powers of ρ, treating the recombination
terms as a correction to the otherwise asexual dynamics. In the absence of recombination, the characteristic curve in
Eq. (D1) reduces to a logistic equation, whose solution is given by

ψ0(τ
′) =

z

1 + zτ ′
. (D2)

Corrections to this zeroth-order solution can be found by considering the series ansatz

ψ(τ ′) ≈ ψ0(τ
′) +

∞∑
i=1

ρiψi(τ
′). (D3)
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Substituting the above series expansion into Eq. (B6) and matching the coefficients in front of powers of ρ, we obtain
for the first-order correction

∂τ ′ψ1(τ
′) ≈ − z

1 + zτ ′
[1 + 2ψ1(τ

′)] +
x

1 + xτ ′
+

y

1 + yτ ′
, ψ1(0) = 0. (D4)

We can solve this equation with the method of variation of constants, which yields

ψ1(τ
′) ≈ −1

2
+

1

2

1

(1 + zτ ′)2
+
(
1− z

x

) zτ ′

(1 + zτ ′)2
+

(
1− z

y

)
zτ ′

(1 + zτ ′)2

+
(
1− z

x

)2 ln(1 + xτ ′)
(1 + zτ ′)2

+

(
1− z

y

)2
ln(1 + yτ ′)
(1 + zτ ′)2

.

(D5)

We are now in a position to find the averages in Eq. (4). To the lowest order in ρ, the numerator of Λ̄2 follows
from Eq. (8) as〈

fAbfaBfAB · e−
fA+fB

f0

〉
≈ −θ2f40

∫ τ

0

dτ ′ ∂x∂y∂z [−ρψ0ΦxΦy + ρψ1Φx + ρψ1Φy]

∣∣∣∣∣ x=1
y=1
z=2
τ=∞

,

≈ ρθ2f40

[∫ τ

0

dτ ′ ∂xΦx ∂yΦy ∂z
z

1 + zτ ′

+

∫ τ

0

dτ ′ ∂xΦx ∂y∂z
z

y

zτ ′

(1 + zτ ′)2

+

∫ τ

0

dτ ′ ∂yΦy ∂x∂x
z

x

zτ ′

(1 + zτ ′)2

−
∫ τ

0

dτ ′ ∂xΦx ∂y∂z

(
1− z

y

)2
ln(1 + yτ ′)
(1 + zτ ′)2

−
∫ τ

0

dτ ′ ∂yΦy ∂x∂z

(
1− z

x

)2 ln(1 + xτ ′)
(1 + zτ ′)2

] ∣∣∣∣∣ x=1
y=1
z=2
τ=∞

,

= ρθ2f40

[
1

2
− 1

2
− 1

2
+

3

4
+

3

4

]
= ρθ2f40 , (D6)

where have used the identities

∂xΦx

∣∣∣∣∣
x=1
τ=∞

=
(τ − τ ′)2

(1 + xτ)2

∣∣∣∣∣
x=1
τ=∞

= 1, ∂yΦy

∣∣∣∣∣
y=1
τ=∞

=
(τ − τ ′)2

(1 + yτ)2

∣∣∣∣∣
y=1
τ=∞

= 1. (D7)

We note that terms in the integrand of Eq. (D6) correspond to the contributions coming from recombining separate
(first term) and nested (the last two terms) mutations. This observation allows us to connect these terms with their
diagrammatic representation in Fig. 1 and quickly estimate their contributions with a heuristic approach.

The dominant contribution to the denominator of Λ̄2 follows from Eq. (8) as〈
f2Abf

2
aB · e−

fA+fB
f0

〉
≈ θ2f40∂

2
x∂

2
yHAHB

∣∣∣∣∣ x=1
y=1
τ=∞

= θ2f40 , (D8)

which derives from the term in Eq. (B5a) corresponding to two separate separate single mutants. Combining these
two results together, we find that Λ̄2 ≈ ρ if γA, γB , γAB ≪ ρ≪ 1.

Appendix E: Analytical solution for Λ̄2(f0) for strong selection or recombination

When selection or recombination are strong compared to drift, we can solve Eq. (B6) with the separation of timescales
approach (Good, 2022), treating the drift term as a perturbative correction. In the limit that either γAB or ρ are
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large compared to one, we can rescale time in Eq. (B6) so that

∂uψ(u) = −ψ(u)− ϵψ2(u) + αξ(u), ψ(0) = z, (E1)

where u = τ ′/ϵ is the scaled time, ϵ = 1/(γAB + ρ), α = ϵρ, βA = ϵγA, βB = ϵγB , and

ξ(u) =
βAxe

−βAu

βA + ϵx(1− e−βAu)
+

βBye
−βBu

βB + ϵy(1− e−βBu)
(E2)

is a function independent of z.

We can solve Eq. (E1) using a perturbation expansion in ϵ, defining

ψ(u) ≈
∞∑
i=0

ϵiψi(u), (E3a)

ξ(u) ≈
∞∑
i=0

ϵiξi(u). (E3b)

Substituting these expressions into Eq. (E1), we find that the zeroth order terms in ϵ satisify

∂uψ0(u) = −ψ0(u) + αξ0(u), ψ0(0) = z, (E4)

and hence

ψ0(u) = ze−u + αe−u

∫ u

0

eu
′
ξ0(u

′)du′. (E5)

Likewise, the first-order contribution in ϵ satisfies

∂uψ1(u) = −ψ1(u)− ψ2
0(u) + αξ1(u), ψ1(0) = 0, (E6)

and hence

ψ1(u) = αe−u

∫ u

0

eu
′
ξ1(u

′)du′ − e−u

∫ u

0

eu
′
ψ2
0(u

′)du′. (E7)

Finally, at the second order in ϵ, we have

∂uψ2(u) = −ψ2(u)− 2ψ0(u)ψ1(u) + αξ2(u), ψ2(0) = 0, (E8)

and hence

ψ2(u) = αe−u

∫ u

0

eu
′
ξ2(u

′)du′ − 2e−u

∫ u

0

eu
′
ψ0(u

′)ψ1(u
′)du′. (E9)

The ξi terms above will depend on the specific form of selection. We consider three different regimes below.

Case 1: Both single mutants are strongly deleterious. In the case that γA, γB ≫ 1, we can expand the ξ(u)
function as

ξ(u) ≈ xe−βAu
∞∑
i=0

(
−ϵ/βAx(1− e−βAu)

)i
+ ye−βBu

∞∑
i=0

(
−ϵ/βBy(1− e−βBu)

)i
. (E10)

Substituting this expression into Eqs. (E5), (E7), and (E9) above and then applying Eq. (8), we find that the numerator
of Λ̄2 is given by〈

fAbfaBfAB · e−
fA+fB

f0

〉
≈ −θ2f40

∫ τ/ϵ

0

du ∂x∂y∂z
[
−αψ0ΦxΦy − αϵψ1ΦxΦy − αϵ2ψ2ΦxΦy

+ ϵ2ψ1Φx + ϵ2ψ1Φy + ϵ3ψ2Φx + ϵ3ψ2Φy

] ∣∣∣∣∣ x=1
y=1
z=2
τ=∞

,

≈ αϵ4θ2f40
β2
Aβ

2
B(1 + βA + βB)

[
1 +

βA(α+ βA)

(1 + βB)(1 + βB/2)
+

βB(α+ βB)

(1 + βA)(1 + βA/2)

+
2αβAβB(α+ βA + βB)(2 + βA + βB)

(1 + βA)(1 + βB)

]
, (E11)
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where we have used used

Φx

∣∣∣
τ=∞

≈ − ϵ

βA
, Φy

∣∣∣
τ=∞

≈ − ϵ

βB
,

∂xΦx

∣∣∣
τ=∞

≈ ϵ2

β2
A

e−βAu, ∂yΦy

∣∣∣
τ=∞

≈ ϵ2

β2
B

e−βBu.
(E12)

This result holds for any value of ρ if γA, γB ≲ γAB , and for small values of ρ≫ 1 when γA, γB ≫ γAB .

As long as γA, γB ≲ γAB , the two separate single mutants will provide the dominant contribution to the denominator
of Λ̄2. Therefore, the denominator follows from Eq. (8) as

〈
f2Abf

2
aB · e−

fA+fB
f0

〉
≈ θ2f40∂

2
x∂

2
yHAHB

∣∣∣∣∣ x=1
y=1
τ=∞

=
ϵ4θ2f40
β2
Aβ

2
B

. (E13)

Dividing Eq. (E11) by Eq. (E13), we obtain

Λ̄2 ≈ α

1 + βA + βB

×
[
1 +

2βA(α+ βA)

(1 + βB)(2 + βB)
+

2βB(α+ βB)

(1 + βA)(2 + βA)
+

2αβAβB(α+ βA + βB)(2 + βA + βB)

(1 + βA)(1 + βB)

]
,

=
ρ

ρ+ γA + γB + γAB

×
[
1 +

γA(ρ+ γA)

(ρ+ γB + γAB)(ρ+ 1/2γB + γAB)
+

γB(ρ+ γB)

(ρ+ γA + γAB)(ρ+ 1/2γA + γAB)

+
4ργAγB(ρ+ γA + γB)(ρ+ 1/2γA + 1/2γB + γAB)

(ρ+ γA + γAB)(ρ+ γB + γAB)(ρ+ γAB)3

]
. (E14)

Eq. (E14) was used to generate the theory curves in Figs. 3, 4, & 5 in the main text. In the case of additive fitness
effects (γA = γB = γ and γAB = 2γ), the expression in Eq. (E14) reduces to

Λ̄2 ≈
{

19/60 ρ/γ if ρ≪ γ,

1 if ρ≫ γ.
(E15)

Defining the effective fitness cost as se = 30/19sAB yields Eq. (14) in the main text.

Case 2: Only one of the two mutations is strongly deleterious. In the limit that γA ≫ 1, γB = 0, we can
solve Eq. (E1) by considering a different series expansion for ξ(u),

ξ(u) ≈ xe−βAu
∞∑
i=0

(
−ϵ/βAx(1− e−βAu)

)i
+ y

∞∑
i=0

(−ϵuy)i . (E16)

In this case, to the lowest order in ϵ, the numerator of Λ̄2 follows from Eq. (8) as

〈
fAbfaBfAB · e−

fA+fB
f0

〉
≈ −θ2f40

∫ τ/ϵ

0

du ∂x∂y∂z
[
−αψ0ΦxΦy − αϵψ1ΦxΦy + ϵ2ψ1Φy

] ∣∣∣∣∣ x=1
y=1
z=2
τ=∞

,

≈ αϵ2θ2f40
β2
A(1 + βA)

[1− βA(α+ βA)] , (E17)

where we have used used

Φy

∣∣∣
τ=∞

≈ −1

y
, ∂yΦy

∣∣∣
τ=∞

≈ 1

y2
. (E18)
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The denominator of Λ̄2 follows from Eq. (8) as〈
f2Abf

2
aB · e−

fA+fB
f0

〉
≈ θ2f40∂

2
x∂

2
yHAHB

∣∣∣∣∣ x=1
y=1
τ=∞

=
ϵ2θ2f40
β2
A

. (E19)

Λ̄2 then follows as

Λ̄ ≈ α

1 + βA
[1− βA(α+ βA)] =

ρ

ρ+ γA + γAB

[
1− ργA(ρ+ γA)

(ρ+ γAB)3

]
, (E20)

and for γAB = γA = γ,

Λ̄2 ≈
{

1/2 ρ/γ if ρ≪ γ,

1 if ρ≫ γ.
(E21)

Defining the effective fitness cost as se = 2sAB yields Eq. (14) in the main text.

Case 3: Both single mutants are neutral. Finally, in the limit that both loci are neutral, but either recombination
is strong or epistasis is strong, considering

ξ(u) ≈ x
∞∑
i=0

(−ϵux)i + y
∞∑
i=0

(−ϵuy)i , (E22)

from Eq. (8) we obtain the numerator of Λ̄2 to the first order in ϵ,〈
fAbfaBfAB · e−

fA+fB
f0

〉
≈ −θ2f40

∫ τ/ϵ

0

du ∂x∂y∂z [−αψ0ΦxΦy − αϵψ1ΦxΦy]

∣∣∣∣∣ x=1
y=1
z=2
τ=∞

,

= αθ2f40 (1− 2ϵ) , (E23)

where we have used

Φx

∣∣∣
τ=∞

≈ − 1

x
, Φy

∣∣∣
τ=∞

≈ −1

y
,

∂xΦx

∣∣∣
τ=∞

≈ 1

x2
, ∂yΦy

∣∣∣
τ=∞

≈ 1

y2
.

(E24)

Approximating the denominator of Λ̄2 by Eq. (D8), we find that

Λ̄2 ≈ α(1− 2ϵ) =
ρ

ρ+ γAB

(
1− 2

ρ+ γAB

)
, (E25)

and therefore

Λ̄2 ≈
{
ρ/γAB(1− 2/γAB) if ρ≪ γAB ,

1− 2/ρ if ρ≫ γAB .
(E26)

Defining the effective fitness cost as se = sAB yields Eq. (14) in the main text.

Appendix F: Relaxing the assumption that both alleles are rare

When fA ≪ fB , the two-locus dynamics in Appendix A can be approximated by a branching process model for
the A mutation on timescales that are short compared to NfB . Defining the rescaled frequencies f1 ≡ fAb/fb and
f2 ≡ fAB/fB , these linearized dynamics can be written in the convenient form,

∂tf1 = −s1f1 + µ+m1(f2 − f1) +

√
f1
N1

η1(t), (F1a)

∂tf2 = −s2f2 + µ+m2(f1 − f2) +

√
f2
N2

η2(t), (F1b)
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where we have defined a new set of constants N1 ≡ Nfb, N2 ≡ NfB , and m1 ≡ RfB , m2 ≡ Rfb. Writing the model
in this way shows that the two-locus model maps on to a single-locus model with migration between two demes, in
which both the migration rates m1, m2 and the effective population sizes N1, N2 depend on the frequency of the
common B allele.

Rewriting Eq. (6) in terms of the rescaled variables yields an analogous relation for Λ̄1,

Λ̄1 =

〈
fabfAbfaBfABe

− fA
f0 δ(fB − f∗B)

〉
〈
f2Af

2
af

2
Bf

2
b e

− fA
f0 δ(fB − f∗B)

〉 ≈

〈
fabfAbf

∗
Bf

∗
Be

− fA
f0

〉
〈
f2Af

∗2
B f∗2b e−

fA
f0

〉 =

〈
f1f2e

− f1fb
f0

− f2fB
f0

〉
〈
f2Ae

− fA
f0

〉 , (F2)

which can be calculated from the joint moment generating function for f1 and f2,

H̃(x, y, t) =

〈
e−x

f1(t)
f0

−y
f2(t)
f0

〉
, (F3)

using the identity 〈
f i1f

j
2 · e−

f1fb
f0

− f2fB
f0

〉
= (−1)i+j f

i+j
0

f ibf
j
B

∂ix∂
j
yH̃

∣∣∣∣∣x=1
y=1
t=∞

. (F4)

By differentiating Eq. (F3) with respect to time and applying the stochastic dynamics in Eq. (F1), we find that the
generating function H̃(x, y, t) must satisfy the partial differential equation,

∂H̃

∂τ
=

(
−γ1x− 1

fb
x2 +M2y

)
∂H̃

∂x
+

(
−γ2y −

1

fB
y2 +M1x

)
∂H̃

∂y
− θ(x+ y)H̃, (F5)

where we have defined the scaled parameters,

τ = t/2Nf0 , θ = 2Nµ , γi = 2Nf0(si +mi) , Mi = 2Nf0mi . (F6)

We derive approximate solutions to this equation in two different regimes below.

Case 1: Rare migration/recombination

When θ ≪ 1 and Mi ≪ 1, we can obtain a perturbative solution for H̃ by repeating the perturbation calculation in
Appendix B. To the lowest order in Mi and θ, we find that

H̃ = θ(H1 +H2) + θ

∫ τ

0

dτ ′ [M1X(x; τ ′)Φy(y; τ
′) +M2Y (y; τ ′)Φx(x; τ

′)] +O(θ2, M2), (F7)

where we have defined the helper functions

X(x; τ ′) ≡ xe−γ1τ
′

1 + x
fbγ1

(1− e−γ1τ ′)
, (F8a)

Y (y; τ ′) ≡ ye−γ2τ
′

1 + y
fBγ2

(1− e−γ2τ ′)
, (F8b)

H1(x; τ) ≡ −
∫ τ

0

dτ ′X(x; τ ′) = −fb log
[
1 +

x

fbγ1
(1− e−γ1τ )

]
, (F9a)

H2(y; τ) ≡ −
∫ τ

0

dτ ′Y (y; τ ′) = −fB log

[
1 +

y

fBγ2
(1− e−γ2τ )

]
, (F9b)

Φx(x; τ
′, τ) ≡ ∂H1

∂x

∣∣∣∣∣x=X(x;τ ′)
τ=τ−τ ′

= −

[
1− e−γ1(τ−τ ′)

] [
1 + x

fbγ1
(1− e−γ1τ

′
)
]

γ1

[
1 + x

fbγ1
(1− e−γ1τ )

] , (F10a)

Φy(y; τ
′, τ) ≡ ∂H2

∂y

∣∣∣∣∣y=Y (y;τ ′)
τ=τ−τ ′

= −

[
1− e−γ2(τ−τ ′)

] [
1 + y

fBγ2
(1− e−γ2τ

′
)
]

γ2

[
1 + y

fBγ2
(1− e−γ2τ )

] . (F10b)
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By combining this solution with Eqs. (F2) and (F4), we can obtain an analytical approximation for Λ̄1.

Observing both A haplotypes in the population requires at least one A mutation event and one migra-
tion/recombination event. This means that only the O(θ,Mi) term in Eq. (F7) contributes to the numerator of
Λ̄1: 〈

f1f2 · e−
fA
f0

〉
= f20

∂2H̃

∂x∂y

∣∣∣∣∣x=fb
y=fB
τ=∞

,

= θf20
M1

fBγ22

∫ ∞

0

dτ ′
e−γ2τ

′(
1 + 1

γ2

)2 e−γ1τ
′[

1 + 1
γ1
(1− e−γ1τ ′)

]2 (F11)

+ θf20
M2

fbγ21

∫ ∞

0

dτ ′
e−γ1τ

′(
1 + 1

γ1

)2 e−γ2τ
′[

1 + 1
γ2
(1− e−γ2τ ′)

]2 .
Since the integrals above involve two timescales, ∼ 1/γ2 and ∼ 1/γ1, it is difficult to find the solution analytically.
However, since our perturbative expansion is only valid at the lowest order inMi, we can further expand the integrands
in Eq. (F11) and evaluate them at the lowest order. For simplicity, we restrict our analysis to the case where both
alleles are neutral. In this case, γ1 =M1 = ρfB , γ2 =M2 = ρfb. When ρ→ 0, Eq. (F11) becomes〈

f1f2 · e−
fA
f0

〉
= θf20 ρ

∫ ∞

0

dτ ′
e−ρτ ′

(1 + ρfb)2
1[

1 + 1
ρfB

(1− e−fBρτ ′)
]2

+ θf20 ρ

∫ ∞

0

dτ ′
e−ρτ ′

(1 + ρfB)2
1[

1 + 1
ρfb

(1− e−fbρτ ′)
]2 ,

≈ θf20 ρ

∫ ∞

0

dτ ′

[1 + τ ′]2
+ θf20 ρ

∫ ∞

0

dτ ′

[1 + τ ′]2
+O(ρ2) ,

≈ 2θf20 ρ+O(ρ2). (F12)

To calculate the denominator of Λ̄1, we simply recall that the neutral site frequency spectrum is given by

p(fA) = 2Nµ/fA, (F13)

and therefore 〈
f2A · e−

fA
f0

〉
=

∫ ∞

0

2Nµ

fA
f2Ae

−fA/f0dfA = θf20 . (F14)

Combining the results above, we find that Λ̄1 scales linearly with the rate of recombination,

Λ̄1 ≈ 2ρ. (F15)

Case 2: Frequent migration/recombination

In the regime where migration or recombination are frequent, we expect f1 and f2 to remain close to the average fA,
which varies on the slower timescale ∼NfA. This suggests that we can use a separation of timescales approach similar
to Eq. (18) to model the fast dynamics of δf ≡ f1 − f2 conditioned on a fixed value of fA ≡ f1fb + f2fB . Subtracting
the two equations in Eq. (F1) yields a corresponding equation for δf ,

∂tδf = −Rδf +

√
f1
N1

+
f2
N2

ηd(t), (F16a)

which reduces to

∂tδf ≈ −Rδf +

√
fA

NfBfb
ηd(t) (F17)
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in the limit that δf ≪ fA. For a fixed value of fA, these short-time dynamics attain the local equilibrium,

p(δf |fA) ∝ exp

(
−NRfBfb

fA
δf2
)
, (F18)

which is a Gaussian distribution with mean zero and variance σ2
δ = fA/2NRfBfb.

We can use this result to obtain an analogous approximation for Λ̄1. The numerator of Eq. (F2) is given by〈
f1f2 · e−

f1fb
f0

− f2fB
f0

〉
=
〈
(fA + fBδf)(fA − fbδf) · e−

fA
f0

〉
,

=
〈
f2A · e−

fA
f0

〉
+
〈
fAδf(fB − fb) · e−

fA
f0

〉
−
〈
(δf)2fBfb · e−

fA
f0

〉
,

≈ θf20 − θ
f0

2NR
, (F19)

where in the last line we have first used Eq. (F18) to compute the averages over δf , and then averaged over fA using
the neutral site frequency spectrum p(fA) = θ/fA. Combining this result with Eq. (F14) above, we find that

Λ̄1 ≈ 1− 1

ρ
, (F20)

as expected.

We can also use Eq. (F18) to derive an approximation for the distribution of Λ in this regime. The relationship
between Λ and δf is given by

Λ =
fabfAbfaBfAB

f2Af
2
af

2
Bf

2
b

≈ 1 + δf(fB − fb)/fA − δf2fBfb/f
2
A. (F21)

Since δf follows a Gaussian distribution, we can rewrite the above expression as

Λ ≈ 1 +
fB − fb√

2NRfAfBfb
· Z +

1

2NRfA
· Z2, (F22)

where Z is a Gaussian random variable with mean 0 and variance 1.

Appendix G: Estimating frequency-resolved homoplasy in finite samples

In order to connect our theoretical predictions for the moments of Λ with empirical observations, we need to account
for the effects of finite sampling. In a sample of n genomes, we cannot directly observe the population haplotype
frequencies (fab, fAb, faB , fAB), but rather the discrete counts n⃗ ≡ (nab, nAb, naB , nAB). Although genomic datasets
routinely exceed thousands of samples nowadays and will continue to expand in scale, sampling noise will remain
important for rare alleles at low frequencies (nf0 ∼ 10).

Finite-sample estimator for Λ̄2(f0). To accurately estimate averages such as Λ̄2 across a range of allele frequencies,
we can rely on a class of unbiased estimators for frequency weighted moments that we have used in our earlier work
(Good, 2022). This approach constructs a function,

Mi,j,k,l(n⃗; f0) ≡
[
nAb!(1− 1/nf0)nAb−i

ni(nAb − i)!
· naB !(1−

1/nf0)naB−j

nj(naB − j)!
· nAB !(1− 2/nf0)nAB−k

nk(nAB − k)!
· nab!

nl(nab − l)!

]
, (G1)

which has the property that when averaged over both the sampling noise and the noise from genetic drift, it is equal
to the frequency-weighted average

⟨Mi,j,k,l(n⃗; f0)⟩ =
〈
f iAbf

j
aBf

k
ABf

l
ab · e−

fA+fB
f0

〉
. (G2)

This means that we can estimate any frequency-weighted moment by aggregating many functionally similar pairs of
genetic loci (e.g. similar recombination map length) and averaging the corresponding Mi,j,k,l across these pairs. For
example, the numerator of Λ̄2 can be estimated as〈

fAbfaBfABfab · e−
fA+fB

f0

〉
≈ 1

P

∑
p

M1,1,1,1(n⃗p) , (G3)
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where p indexes a pair of loci and P is the total number of functionally similar pairs of loci.

The denominator of Λ̄2,〈
f2Af

2
Bf

2
af

2
b · e−

fA+fB
f0

〉
=
〈
(fAb + fAB)

2 · (fAB + faB)
2 · (faB + fab)

2 · (fAb + fab)
2 · e−

fA+fB
f0

〉
, (G4)

can be estimated in the same fashion using Eq. (G2). Since the the polynomial in Eq. (G4) involves a total of 28 terms
when expanded in powers of fab, fAb, faB , fAB , we implemented a Python function that programmatically constructs
the associated estimator for a given polynomial. Specifically, this function expands a polynomial using the Python
package SymPy (Meurer et al., 2017) and sums over the estimator for each monomial (Eq. G2). The associated
computer code is available through the Github repository.

Finite-sample estimator for Λ̄1(f0, f
∗
B). A similar approach be used to obtain an estimator for the “single-rare”

case in Eq. (6). The important difference between Λ̄1(f0, f
∗
B) and Λ̄2(f0) is that we now need to condition the

frequency of the B allele. We can achieve this by considering a modified version of our previous moment estimator,
(Eq. G1) to be

M ′
i,j,k,l(n⃗;nB , f0) ≡

nAb!(1− 1/nf0)nAb−i

(nAb − i)!
· naB !

(naB − j)!
· nAB !(1− 1/nf0)nAB−k

(nAB − k)!
· nab!

(nab − l)!

× (nB − j − k)!(nb − i− l)!

n!
δnAB+naB ,nB

,

(G5)

where nB ≡ nf∗B , nb ≡ n− nB , and δn,n′ is the Kronecker delta symbol:

δn,n′ =

{
1 if n = n′,

0 if n ̸= n′.
(G6)

The presence of this delta function constrains the number of B alleles to be exactly equal to nB = nf∗B . We will show
that this modified estimator, when averaged over sampling noise and the stochasticity of the evolutionary dynamics,
gives the appropriate frequency-weighted moments,

⟨M ′
i,j,k,l(n⃗;nB , f0)⟩ ∝

〈
f iAbf

j
aBf

k
ABf

l
ab · e−

fA
f0 · δfB ,nB/n

〉
. (G7)

To see this, we first average M ′ over the multinomial sampling process, assuming that the haplotype frequencies
f⃗ ≡ (fAB , fAb, faB , fab) are all held fixed,

⟨M ′|f⃗⟩n⃗ =
∑
n⃗

n!

nAB !nAb!naB !nab!
fnAB

AB fnAb

Ab fnaB

aB fnab

ab ·M ′
i,j,k,l(n⃗;nB) ,

= f iAbf
j
aBf

k
ABf

l
ab · fnB−j−k

B fnb−i−l
b ·

(
1− fAB

f0
· 1

nfB

)nB−j−k (
1− fAb

f0
· 1

nfb

)nb−i−l

,

≈ f iAbf
j
aBf

k
ABf

l
ab · fnB−j−k

B fnb−i−l
b · e−

fAB
f0

nB
nfB

− fAb
f0

nb
nfb , (G8)

where in the last line we have assumed nb, nB ≫ i, j, k, l. This is justified since we are interested in common B alleles,
nB ≫ 1. The term fnB−j−k

B fnb−i−l
b as a function of fB will be sharply peaked around fB = nB/n, approaching the

delta function δfB ,nB/n when n → ∞. To see this, we recall that the central limit theorem allows us to approximate
the binomial sampling probability with a Gaussian,

n!

nB !(n− nB)!
fnB

B fnb

b ≈ 1√
2πσ2

e−
(nB−nfB)2

2σ2 , (G9)

where σ2 = nfBfb. The Gaussian as a function of fB approaches the desired delta function because of its vanishing
width when n→ ∞. We therefore obtain the approximation

fnB

B fnb

b ≈ nB !(n− nB)!

n!
· 1/n√

2πσ2/n2
e
− (fB−f∗

B)2

2σ2/n2 ≈ nB !(n− nB)!

n · n! · δfB ,f∗
B
,

≈ f∗nB

B f∗nb

b

√
2πf∗Bf

∗
b /n · δfB ,f∗

B
, (G10)
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where we have used the Sterling approximation for the factorials.

With the above approximation, we can now average Eq. (G8) over the distribution of haplotype frequencies to
obtain

⟨M ′
i,j,k,l(n⃗;nB , f0)⟩ ≈ f∗nB−j−k

B f∗nb−i−l
b

√
2πf∗Bf

∗
b /n

〈
f iAbf

j
aBf

k
ABf

l
ab · δfB ,f∗

B
· e−

fAB
f0

− fAb
f0

〉
,

≈ f∗nB−k
B f∗nb−i

b

√
2πf∗Bf

∗
b /n

〈
f iAbf

k
AB · δfB ,f∗

B
· e−

fA
f0

〉
. (G11)

where the last line assumed that f0 ≪ f∗B , so that faB ≈ fB and fab ≈ fb. As a result, j and l will not influence the
average of M ′ in this limit. Using the above identity, we can finally obtain an estimator for Λ̄1,

Λ̄1(f0, f
∗
B) ≈

⟨M ′
1,0,1,0⟩

⟨M ′
2,0,0,0⟩

1−f∗
B

f∗
B

+ 2⟨M ′
1,0,1,0⟩+ ⟨M ′

0,0,2,0⟩
f∗
B

1−f∗
B

. (G12)

Finite-sample estimator for P (Λ > 0). In addition to moments like Λ̄2(f0) and Λ̄1(f0, f
∗
B), we can also develop

finite-sample estimators for other properties of the distribution of Λ, e.g. the probability that all four haplotypes are
present (i.e. Λ > 0) in a sample of size n, conditioned on observing both alleles near frequency f0. For simplicity, we
will restrict our attention to the recombination-dominated regime in Eq. (18), where the double mutant haplotype is
always asymptotically smaller than f0. When nf0 ≫ 1, the probability of observing all four haplotypes is therefore
equivalent to the probability of observing at least one copy of the double mutant:

P (Λ > 0|f0, n) = p(nAB > 0|nA, nB = nf0) ,

=

∫ ∞

0

(1− (1− fAB)
n) p(fAB |fA, fB = f0) dfAB ,

≈
∫ ∞

0

(
1− e−nfAB

)
p(fAB |fA, fB = f0) dfAB . (G13)

After plugging in the conditional distribution in Eq. (18) and evaluating the integral over fAB , we obtain Eq. (20) in
the main text:

P (Λ > 0|f0, n) ≈ 1−
(
1 +

n

2NR

)−2NRf2
0

. (G14)

Appendix H: Applications to polymorphism data in E. rectale

To estimate frequency-resolved homoplasy in the commensal human gut bacterium E. rectale, we downloaded the
genome alignments of a total of 4, 872 non-redundant metagenomically assembled genomes (MAGs) from the Unified
Human Gastrointestinal Genome collection (Almeida et al., 2021). We focused on protein coding genes that are
shared by more than 90% of the genomes in the dataset. Regions shared between overlapping genes were removed.
Since our theoretical analysis considered biallelic loci, we filtered out polymorphic sites with more than two alleles.
We identified the A and B alleles to be the minor alleles in the population. We further restricted our attention to
synonymous polymorphisms. We recorded the two-site haplotype counts, nab, nAb, naB , nAB , and coordinate distances
on the reference genome for all pairs of sites within each gene. We reasoned that at larger coordinate distances, the
gene synteny of individual strains might start to differ from the E. rectale reference genome, which could make it
harder to identify the precise distance between sites.

To include pairs of sites with larger recombination rates, we recorded analogous haplotype counts between 103 pairs
of randomly selected genes. These randomly sampled pair of genes are typically separated by hundreds of kilobases in
the reference genome, which is longer than the typical recombination length in bacteria (Liu and Good, 2024). This
suggests that their recombination rate should approach a constant value, Rmax = limℓ→∞R(ℓ).
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