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Abstract 
 

Structured RNA lies at the heart of many central biological processes, from gene 

expression to catalysis. While advances in deep learning enable the prediction of 

accurate protein structural models, RNA structure prediction is not possible at present 

due to a lack of abundant high-quality reference data1. Furthermore, available sequence 

data are generally not associated with organismal phenotypes that could inform RNA 

function2–4. We created GARNET (Gtdb Acquired RNa with Environmental 

Temperatures), a new database for RNA structural and functional analysis anchored to 

the Genome Taxonomy Database (GTDB)5. GARNET links RNA sequences derived 

from GTDB genomes to experimental and predicted optimal growth temperatures of 

GTDB reference organisms. This enables construction of deep and diverse RNA 

sequence alignments to be used for machine learning. Using GARNET, we define the 

minimal requirements for a sequence- and structure-aware RNA generative model. We 

also develop a GPT-like language model for RNA in which overlapping triplet 

tokenization provides optimal encoding. Leveraging hyperthermophilic RNAs in 

GARNET and these RNA generative models, we identified mutations in ribosomal RNA 

that confer increased thermostability to the Escherichia coli ribosome. The GTDB-

derived data and deep learning models presented here provide a foundation for 

understanding the connections between RNA sequence, structure, and function.  
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Main 
 

RNAs serve many fundamental roles in biology ranging from gene expression to 

catalysis, and can adopt complex three-dimensional folds to carry out these functions. 

Inspired by the successes in protein structure prediction6,7, multiple groups have made 

progress towards developing deep learning models for RNA secondary and tertiary 

structure prediction8–15. However, based on assessment of the CASP15 RNA modeling 

challenge and the metrics used therein, RNA structure prediction using deep learning 

approaches has not reached human-tailored model performance, and human modeling 

of RNA structure is still not at the level of protein structure prediction1,16–18. A 

fundamental weakness in RNA modeling is the state of RNA sequence, structural, and 

phenotypic databases available for training deep learning models1,19. Rfam, the closest 

analogue to Pfam for proteins20, provides curated seed sequences, alignments and 

homology models for thousands of RNA families2. However, Rfam alignments have 

limited phylogenetic scope, only drawing from Uniprot reference genomes (n=14,451). 

The SILVA database contains highly-curated information for 16S and 23S ribosomal 

RNA (rRNA) sequences3, but not for other RNAs. Another major database, RNAcentral, 

aggregates RNA sequence and structural information from a range of RNA databases4. 

However, RNAcentral overrepresents rRNAs, tRNAs, lncRNAs and a few small RNA 

families (i.e. snRNAs, snoRNAs, miRNAs, and piRNAs). Furthermore, some of the 

underlying databases are no longer maintained or updated, or have substantial 

sequence overlap leading to redundant entries in the database. Taken together these 

databases are far less extensive than protein databases that include hundreds of 

millions of unique sequences20. Furthermore, a related fundamental challenge with RNA 

structure prediction is the difficulty in building robust sequence alignments for intact 

functional RNAs due to limitations in identifying their 5’ and 3’ ends and the uneven 

sampling of sequences across phylogeny21,22. Finally, the number of available high-

quality RNA structures in the Protein Data Bank (PDB)23 lags those for proteins by 

orders of magnitude, and is heavily biased towards a small number of RNA structural 

types, particularly those found in ribosomes1. 
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The ribosome is a major target for engineering an expanded genetic code24. 

Ribosomal RNA (rRNA) catalyzes peptide bond formation by the ribosome, and many 

efforts have attempted to use directed evolution of rRNA to engineer ribosomes that can 

incorporate non-proteinogenic monomers into polypeptides25–28. However, the 

complexity of ribosome assembly constrains directed evolution of the ribosome for novel 

functions29–32. In Escherichia coli, ribosomes comprise three ribosomal RNAs (5S, 16S, 

and 23S rRNAs) and 54 proteins, along with many protein factors required to assemble 

them in cells. As a result of this complexity, ribosomes obtained from directed evolution 

experiments often have defects in their assembly and lose activity33. Strategies for the 

directed evolution of proteins for new function often begin with thermostable proteins, 

which are more robust to mutations required to recover functional variants34–36. It is 

presently infeasible, however, to replace the E. coli large ribosomal subunit RNA (23S 

rRNA) with a thermostable 23S rRNA from another organism, as efforts at 23S rRNA 

directed evolution beginning from the rRNA from other organisms have so far been 

unsuccessful30. 

 

Here we leveraged the Genome Taxonomy Database (GTDB)5 to build more 

comprehensive RNA sequence databases and alignments. The GTDB provides a 

standardized taxonomy across all high-quality bacterial and archaeal genomes including 

metagenome-assembled genomes and single-cell amplified genomes. This greatly 

expands the available RNA sequence diversity, as the vast majority of microbes are 

unculturable. Furthermore, as a standardized taxonomy, the GTDB provides a 

framework for linking sequence data to phenotypes and other experimental data, which 

are often limited to cultured microbes. The taxonomy presently includes over 400,000 

bacterial and archaeal genomes organized around over 85,000 species clusters, which 

provides a rich resource for principled genomic comparisons, sequence analysis and 

sequence alignment. We find that RNA sequences mined from GTDB genomes 

represent a more diverse set of sequences than state-of-the-art databases with only 

one clear exception–16S rRNA. We mapped growth temperatures from other sources to 

the GTDB and used an existing machine-learning approach to predict optimal growth 

temperatures for reference genomes lacking direct growth temperature information. We 
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combined these with the RNA sequences mined from the GTDB to create the GARNET 

(Gtdb Acquired RNa with Environmental Temperatures) database. Using GARNET, we 

developed two types of machine learning models to map sequence to functional 

properties of the RNA. We trained a compact RNA generative Graph Neural Network 

(GNN) using a 23S rRNA multiple sequence alignment (MSA) with structural 

conditioning. We also trained Generative Pretrained Transformer (GPT)-like RNA 

language models that revealed an optimal triplet encoding for RNA. By finetuning these 

RNA generative models on hyperthermophilic RNA sequences, we were able to predict 

mutations in the Escherichia coli ribosome that increased its thermostability. These 

results open new approaches to expand computational algorithms for predicting RNA 

structure and altering RNA function in biology. 

  

Building RNA sequence datasets from GTDB genomes 
   

To generate diverse and minimally-redundant alignments of RNA sequence 

families for the GARNET database, we turned to the GTDB genomes which represent 

80,789 bacterial and 4,416 archaeal species clusters (release 214.1) (Fig. 1a). First, we 

built an rRNA sequence dataset by searching each GTDB species reference genome 

for 23S, 16S, and 5S rRNA sequences. Searches were performed with Infernal21 using 

the corresponding Rfam covariance models (CMs), taking the top hit per genome with 

an e-value <1e-5 and aligning to at least 85% of the consensus CM sequence. If no 

such hit could be found, we additionally searched the available non-representative 

genomes in each species cluster. We further ensured alignment quality by removing hits 

that broke a substantial fraction of the consensus base pairs or had exceedingly long 

insertions (see Materials and Methods for details). For 23S rRNA, which is roughly 2.9 

kb in length, we identified a 23S rRNA sequence for 32,317 species (Fig. 1b). The 

absence of a full-length 23S or 16S rRNA sequence in many genomes likely reflects the 

fragmented nature of some metagenome-assembled genomes and the occasional 

presence of introns that cause partial hits. We additionally searched all GTDB 

representative genomes for 228 RNA families using Rfam models that are likely to 

occur in bacteria or archaea and are over 100 nucleotides long, applying the same 
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quality-control criteria as for ribosomal RNAs except allowing for multiple hits per 

genome. This search identified a total of 714,662 sequences, with the seven largest 

families comprising 58% of the 228 RNA sequence dataset (Fig. 1c). 

 

We evaluated the sequence diversity of the GTDB-derived datasets by assessing 

the number of unique sequences at different fractional identity thresholds compared to 

state-of-the-art datasets for these RNA families. For 23S and 16S rRNA alignments, we 

compared against the SILVA database3; for 5S rRNA, we compared against the 

5SRNAdb37 and the Rfam full alignment2; for the top three most abundant of the 228 

RNA families (T-box leader, cobalamin riboswitch, and TPP riboswitch), we compared 

against Rfam full alignments. In all cases, except for 16S rRNA and 23S rRNA, the 

GTDB-derived alignments had substantially greater sequence diversity compared to the 

state-of-the-art dataset (Fig. 1d-e, Extended Data Fig. 1c-d). For 23S rRNA, the SILVA 

database had comparable diversity to the GTDB-derived alignment, and for 16S rRNA, 

the SILVA database had greater diversity (Fig. 1d, Extended Data Fig. 1c), likely due 

to the widespread use of 16S rDNA sequencing of new microbial isolates and 

environmental samples. Taken together, these results highlight the benefit of using the 

GTDB as a framework for building comprehensive RNA sequence datasets. 
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Fig. 1: The Genome Taxonomy Database as a source for RNA sequences. a. 
Construction of the GARNET database centered on the GTDB structure, linking RNA 

alignments mined from GTDB genomes with growth temperature prediction through a 

consistent taxonomy. b. Number of GTDB species found to have at least one high-
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quality, near-full length hit for 23S, 16S, and 5S rRNA. c. Top seven non-rRNA Rfam 

families with most sequences found in GTDB representative genomes compared 

against the Rfam full alignment. In contrast to the rRNA alignments, multiple sequences 

per genome were allowed. Information for the entire 228 RNA dataset can be found in 

Supplementary Table 1. d. Comparing diversity of GARNET RNA sequences against 

state-of-the-art datasets for 23S rRNA, 16S rRNA, and 5S rRNA by filtering the 

sequences at a range of pairwise fractional identity thresholds with VSEARCH38. e. 
Diversity comparison for the top three most abundant of the 228 RNA families in 

GARNET with VSEARCH. 

Mapping of optimal growth temperatures to GTDB reference genomes 

The GTDB taxonomic framework allows us to link RNA sequences derived from 

the GTDB genomes to phenotypes, which can aid in RNA modeling and engineering. 

We chose to map GTDB species to optimal growth temperatures (OGTs) from 

TEMPURA39 and Gosha40 databases. However, since the TEMPURA and Gosha 

databases only include cultivated species, they only have experimental OGTs for 15% 

of the GTDB reference species. We therefore inferred OGTs of all GTDB reference 

genomes using TOME41. TOME predicts the OGT for an organism using a machine 

learning model trained on proteome-wide dipeptide (2-mer) distributions. Importantly, 

TOME was trained on only a subset of organisms now available in the TEMPURA and 

Gosha databases. We therefore used these new organisms to validate TOME 

predictions, and found that the predicted OGTs correlated well with the TEMPURA and 

Gosha sets not used for TOME training (Fig. 2a, Supplementary Table 2; R2 values of 

0.868 and 0.881, respectively). We also used isolation source metadata associated with 

each GTDB reference genome as a check on TOME OGT predictions, especially for 

uncultivated species. Although the isolation source of each organism is heterogeneous 

in terminology and may not reflect the actual optimal growth conditions, we found that 

the metadata with unambiguous source information is consistent with TEMPURA and 

Gosha OGTs (Fig. 2b, Supplementary Table 2)(See Materials and Methods). This is 

also true for OGTs predicted using TOME (Fig. 2b, Supplementary Table 2). 
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Interestingly, TOME predicted hyperthermophilic species (OGT >= 60 °C) in both 

archaea and bacteria in clades with no known hyperthermophiles in the TEMPURA or 

Gosha databases (Fig. 2c, Extended Data Fig. 2, Supplementary Table 2). These 

results provide a rich resource for inferring the physiological temperature at which RNAs 

and proteins from GTDB organisms function optimally. We combined the GTDB-derived 

RNA sequences with the TOME-predicted OGTs to create the GARNET (Gtdb Acquired 

RNa with Environmental Temperatures) database, to use for training new RNA deep 

learning models. 
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Fig. 2: Optimal growth temperatures of GTDB reference organisms. a. Correlation 

of TOME-predicted and experimental OGTs from Gosha and TEMPURA, excluding 

species from TOME’s training set  (n = 3,346 and 7,404 species, respectively). b. 
Archaeal phylogenetic tree of GTDB reference organisms, grouped at the Family 

taxonomic rank, arbitrarily rooted. A similar tree for bacteria is in Extended Data Fig. 2. 

Node tip sizes are proportional to the number of species represented by node (log2 

transformed). Inner circle indicates Phylum. The next circle represents TOME-predicted 

min, median, and maximal optimal growth temperatures of all species within rank. The 

next two circles similarly represent empirically measured optimal growth temperatures 

pulled from the TEMPURA and Gosha datasets, respectively. Outer circles represent 

the total number of 23S, 16S, and 5S detected in each rank, respectively (log2 

transformed).  c. Thermal isolation sources for GTDB bacterial and archaeal species 

(manually classified from GTDB metadata) comparing species with hyperthermophilic 

OGTs (>=60 °C) in the Gosha / TEMPURA databases, TOME hyperthermophiles, and 

non-hyperthermophiles. The bottom bar corroborates TOME hyperthermophiles (n=580) 

with no close hyperthermophilic relatives in Gosha / TEMPURA (family-level).  

A sequence and structure based RNA generative model for 23S ribosomal RNA 

Generative deep learning models that integrate structural information provide 

highly compact representations of protein families that have proven useful for protein 

design42. These models leverage the fact that structure is generally conserved within 

protein families. We extended this framework to RNA, creating compact structure-

informed models to circumvent scalability constraints inherent to the extensive length of 

23S RNA. We harnessed the sequence diversity within the GTDB and the wealth of high-

resolution structures available for the large ribosomal (50S) subunit to develop a Graph 

Neural Network (GNN) model. For 23S rRNA, the known representative 3D structures 

provide abundant information to benchmark MSAs and better model the RNA family. Our 

generative model inputs a distance matrix for the representative structure of the family43, 

and is trained on next-token prediction for an aligned MSA42. 
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The model leverages a graph-based representation of the RNA structure to build 

a sparse attention mechanism (i.e. Graph Attention Network) in which the positions attend 

to their k-nearest neighbors in structure space at each layer (Fig. 3a, 3b). We pre-

processed the 23S rRNA MSA of the GARNET sequences for training. The corresponding 

graph was created by choosing k-nearest neighbors to each nucleotide from a distance 

matrix of E. coli 23S rRNA, aligned with the MSA so that nucleotides in matrix columns 

and rows match their counterparts in the MSA (see Materials and Methods). This matrix 

was derived by calculating the minimal interatomic distances between nucleotides pairs 

in the 23S rRNA. We found that using k = 50 nearest neighbors provided an optimally 

trained model, with respect to model size and perplexity (Fig. 3c). For the model input 

analysis, the distance matrix was transformed into a binary contact map by selecting the 

k-nearest neighbors for each nucleotide (see Extended Data Fig. 2). We found that at k

= 50 nearest neighbors, the model samples all contacts below ~12 Å, and a subset of

longer-range contacts up to 24 Å, or distances at which inter-helical packing can be

detected (see Fig. 3d-f, Extended Data Fig. 3 and Extended Data Fig. 4). Complete

model specifications are available in Supplementary Table 3.
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Fig. 3: A 23S rRNA generative model using GTDB sequences and large ribosomal 
subunit structures. a. Graph Neural Network (GNN) model schematic. b. GNN model 

architecture. Panels (a) and (b) are adapted from Ingraham et al.42 to illustrate their use 

for RNA. For detailed model parameters and training data statistics refer to 

Supplementary Table 3. c. Test perplexity of the GNN models plotted as a function of k-
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nearest neighbors, highlighting that the model does not significantly improve for k values 

greater than 50. The final perplexity of the model with hidden dimension d = 128, and k = 

50 was 1.751. d. Histogram of inter-nucleotide distances sampled by selecting k nearest 

neighbors in the distance matrix for E.coli 23S rRNA structure (PDB ID: 7K00)43. 

Choosing k = 50 covers all distances less than 12 Å. e. Comparison of the contact maps 

generated from the distance matrices, based either on the distance cutoff or the k nearest-

neighbors criteria (see Materials and Methods). Top-right, sum of the contact maps for 

18 bacterial and archaeal ribosomal RNA structures, projected onto the MSA sequence 

alignment, and based on the 12 Å distance cutoff criterion. The number of contact maps 

that align for a given pair of nucleotides is color-coded in the colorbar on the right. Bottom-

left, contact map for E. coli 23S rRNA, based on selecting k = 50 nearest neighbors to 

each nucleotide. The two types of contact maps show high similarity. f. Structure of the 

three stem-loops highlighted in (e). A 12 Å inter-helical packing contact is shown with a 

dashed line in (f), and with an arrow in (e). 

 

A modified GPT language model for RNA 
 

AlphaFold relies on MSAs as a central component of an end-to-end deep 

learning algorithm for protein structure prediction6. However, large language models for 

proteins such as ESM-2 replace MSAs in structure prediction, and are particularly useful 

when MSA information is lacking. In the case of RNA, obtaining robust MSAs can be 

challenging21,22, even with databases as large and diverse as GARNET. Furthermore, 

whereas GNNs require a structural prior for training, language models are not restricted 

by structural constraints or assumptions about RNA flexibility or whether an RNA might 

adopt multiple folds. We therefore tested whether a language model (LM) for RNA could 

be developed using sequences from GARNET. We first modified a compact GPT model 

architecture–nanoGPT44– for training on RNA sequences and tested different methods 

of tokenizing nucleotides (Fig. 4a). Using 23S ribosomal RNA (rRNA) sequences from 

GARNET (Fig. 1, Supplementary Table 1), we found that models trained using tokens 

representing three nucleotides, with a 1-nucleotide shift per token, performed 

substantially better than using either individual nucleotides or paired nucleotides (Fig. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.04.05.588317doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588317
http://creativecommons.org/licenses/by/4.0/


15 

4b, Supplementary Table 3 and Materials and Methods). We also found using rotary 

positional embedding (RoPE)45 in each attention layer allowed RNA LMs to be trained 

with paired-nucleotide encodings. However, paired-nucleotide tokenization required 

training models with a slower learning rate, and these models had a higher validation 

perplexity than models using RoPE with triplet-nucleotide encoding (Fig. 4b). In addition 

to 23S rRNA, we also trained a more general RNA LM using sequences from 231 RNA 

families in GARNET (228 RNA dataset plus three rRNA datasets), as described above 

(Fig. 4c). These models had lower validation perplexities compared to the RNA LMs 

trained only on 23S rRNA sequences (Supplementary Table 3). They also are capable 

of generating RNA sequences that align with full-length 23S and 16S rRNA when 

queried with their respective 5’ ends (Fig. 4d). 

Fig. 4: Tokenization schemes for RNA language models. a. Representation of 

nucleotides as tokens for single, paired, or triplet nucleotides. Tokens are encoded for 

nucleotides in 1-nucleotide steps, i.e. are overlapping for paired and triplet nucleotides. 

Beginning and end tokens are also included in the token library. b. Perplexity of RNA 

language models trained on 23S rRNA sequences, with the nanoGPT model modified to 
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use an overall rotary positional embedding (RoPE), or with RoPE applied to each 

attention layer. Training with paired-nt and overall RoPE was conducted for 100,000 

iterations, whereas the other models were trained for 1M iterations, with a batch size of 

18 in all models. A perplexity value of 4 would be random (i.e. 4 nucleotides to choose 

from), and a value of 1 would indicate perfect certainty in nucleotide choice. The 

perplexity after training for a random model should be 4 regardless of the tokenization 

scheme, due to the 1-nucleotide steps used with the paired and triplet encoding. c. 

Perplexity of an RNA LM pretrained on 231 RNA sequence families in GARNET 

(Supplementary Table 1). The perplexity of an RNA LM model finetuned on 

hyperthermophilic RNAs, starting from the pretrained general model, is 1.33. For 

detailed model parameters and training data statistics in panels (b) and (c) refer to 

Supplementary Table 3. d. Alignment of 23S rRNA sequences generated using the 

more general pretrained 231-RNA LM, showing the 3’ end of the generated sequences 

(n = 100). e. Alignment of 16S rRNA sequences generated using the more general 

pretrained 231-RNA LM, showing the 3’ end of the generated sequences (n = 100). 

Sequence generation in panels (d) and (e) was seeded with 100 nucleotides of E. coli 

23S rRNA or 16S rRNA, respectively, and using a temperature of 0.2. The bottom row is 

the E. coli sequence, and E. coli nucleotide numbering is also shown. White space 

shows regions where insertions and deletions are present in the sequences. 

 

Finetuning RNA deep learning models to identify mutations that increase 
ribosome thermostability 
 
 Replacing the E. coli 23S rRNA with a thermostable 23S rRNA from another 

organism is presently not feasible30. We therefore tested whether finetuning the GNN 

and RNA LM models using hyperthermophilic 23S rRNAs could help identify mutations 

that make the E. coli ribosome more stable for future directed evolution efforts. We 

finetuned the GNN and RNA LM pretrained models described above using 23S rRNA 

sequences from hyperthermophilic bacteria and archaea with TOME-predicted OGTs of 

60°C or higher (Materials and Methods). We then used the resulting pretrained and 

finetuned models to generate sets of 1000 RNA sequences seeded with the 5’-end of E. 
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coli 23S rRNA, and a range of “temperature” scaling factors to modulate the 

probabilities of token generation (Materials and Methods).  

 

We assessed the quality of the RNA sequences generated from the models, i.e. 

how “23S-like” they are, by comparing them to the covariance model for bacterial 23S 

rRNA in Rfam (RF02451) using cmsearch in the Infernal suite of programs21,30. We 

evaluated the full set of 23S rRNA sequences in the GARNET database as a control. 

Naturally occurring sequences in GARNET had cmsearch scores that clustered around 

1900 and 2700 for archaeal 23S and bacterial 23S, respectively (Fig. 5a-d). Sequences 

generated from the GNN had high cmsearch scores within the range of natural 

sequences, although these dropped at higher generation temperatures likely due to the 

dropout of local RNA sequence segments (Fig. 5a, 5b, and Extended Data Fig. 5). 

Sequences generated by the RNA LMs also had high cmsearch scores, suggesting they 

have bacterial 23S rRNA-like properties across all generation temperatures tested (Fig. 
5c, 5d). At lower generation temperatures, the finetuned RNA LM generated some 

sequences that harbored long stretches of repetitive sequence, resulting in low 

cmsearch scores (Extended Data Fig. 6c, 6d). 

 

We also examined secondary structure preservation as a separate measure of 

the 23S-like properties of the generated sequences. Naturally occurring 23S rRNAs 

typically contain a small percentage of non-canonical base pairs (i.e. base pairs other 

than standard Watson-Crick-Franklin and G-U pairs) in the consensus secondary 

structure for RF02451 model (Fig. 5e-h). Sequences generated by the pretrained RNA 

LM retained a similar proportion of non-canonical base pairs up to a generation 

temperature of 0.9, while the finetuned models inserted more non-canonical pairs 

relative to natural sequences at temperatures higher than 0.5 (Fig. 5g, 5h, and 

Extended Data Fig. 6d). The GNN models started to include a higher percentage of 

non-canonical pairs at generation temperatures of 0.6 or higher (Extended Data Fig. 
5d). Taken together, these quality control measures inform selection of sequence 

generation temperatures that can aid subsequent analyses of sequences generated 
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from the 23S rRNA GNNs and RNA LMs trained on GARNET sequences (Extended 
Data Fig. 7, Supplementary Table 3). 

Fig. 5: 23S rRNA sequences generated by GNN and GPT-like RNA models. a-d. 
Cmsearch scores for sequences generated from the pretrained GNN model (a), 

finetuned GNN model (b), pretrained RNA LM (c), and finetuned RNA LM (d) trained on 

23S rRNA sequences at generation temperature T=0.5 compared to naturally occurring 

23S rRNAs in GARNET. For the GARNET reference distributions, random subsets of 

1000 bacterial sequences and 1000 archaeal sequences were used. e-h. 23S rRNA 

sequences generated from the pretrained GNN model (e), finetuned GNN model (f), 
pretrained RNA LM (g), and finetuned RNA LM (h) according to the fraction of disrupted 
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canonical base pairs (i.e. Watson-Crick-Franklin and G-U) relative to the Rfam RF02541 

consensus secondary structure (denoted non-canonical base pairs) in the generated 

sequences compared to naturally-occuring 23S rRNAs. 
 

 

 To identify potential mutations to the E. coli 23S rRNA that might confer 

thermostability, we examined sequences generated from the 23S rRNA GNN and LM 

pretrained and finetuned models (PT and FT models, respectively) using a generation 

temperature of T=0.5 (Materials and Methods). We first compared the Jensen-

Shannon divergence (JSD) of nucleotide frequency distributions of the FT-generated 

sequences relative to the PT-generated sequences, after masking the positions used as 

the seed as well as those with less than 50% occupancy in the alignment 

(Supplementary Table 4). We also calculated the JSD of natural hyperthermophilic 

23S rRNA sequences used for finetuning relative to the entire GARNET 23S rRNA set 

(Supplementary Table 4). 23S rRNA positions with high JSDs differ the most in which 

nucleotides are generated by the PT and FT models, indicating mutations that may be 

important for thermostability (Extended Data Figs. 8-10). Interestingly, there was very 

little overlap in positions with the highest JSDs when comparing GNN- or RNA LM-

generated sequences to those predicted by comparing natural sequences, whereas 

there was substantial overlap between the deep learning approaches (Fig. 6a). 

Nucleotide positions predicted to confer thermostability using the 231-RNA trained LMs 

also differed from those obtained from natural sequences in GARNET (Fig. 6a). These 

results show that the deep learning models predict nucleotide changes in E. coli 23S 

rRNA that differ markedly from those that could be gleaned from the 23S rRNA data in 

GARNET. 

 

 Although sorting by JSD can help identify candidate stabilizing mutations, 

individual mutations may depend on sequence context and may require evaluation as 

part of an entire 23S rRNA sequence. Furthermore, the generated sequences may not 

represent all stabilizing mutations learned by the models. For example, a rare sequence 

variation in the A loop of 23S rRNA at positions U2554 and U2555 only occurs in a 
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single phylum of archaeal hyperthermophiles, Thermoproteota, in which one or both 

nucleotides are mutated to a C46. These mutations in the E. coli ribosome are known to 

improve ribosome stability46, yet neither position appears as a top candidate using the 

JSD filtering described above. To assess whether the GNN and RNA LM FT models 

support these mutations, we calculated the probability of generating mutant E. coli 23S 

rRNA sequences. Since the models were trained on sequences similar to E. coli, 

mutations away from the wildtype (WT) E. coli sequence often lead to lower 

probabilities. We therefore compared the probability of generating a mutant E. coli 23S 

sequence from the FT model relative to the PT model, and normalized it to that of the 

WT sequence (∆∆logP) (Fig. 6b). Using this methodology, a U2554C mutation is 

supported by the FT model better than 85.4% and 72.3% of all possible single mutants 

when evaluated by the 23S LM and 231-RNA LM, respectively, and 57.4% of single 

mutants when evaluated by the GNN model (Extended Data Fig. 11 and 

Supplementary Table 5), consistent with the moderate increase in thermostability seen 

with E. coli 50S subunits harboring this mutation46. We also found that the combined 

U2554C-U2555C mutation had a positive ∆∆logP predicted from the GNN and RNA 

LMs (Supplementary Table 5). Taken together, JSD-based sorting and the use of 

model probabilities help identify sites in 23S rRNA that could confer higher 

thermostability to the E. coli 50S subunit.  
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Fig. 6: Mutations in 23S rRNA predicted by deep learning models to confer 
thermostability on E. coli ribosomes. a. Matrix showing the overlap in the 200 

positions with highest Jensen-Shannon divergence in finetuned (FT) model-generated 

versus pretrained (PT) model-generated sequences for the GNN, LM models, and in the 

hyperthermophilic versus total GARNET 23S rRNA sequences. b. Strategy for 

calculating ∆∆logP values for candidate mutations, using log likelihoods of sequence 
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generation from FT versus PT models, with WT E. coli serving as a normalization 

control. c. Positions within four regions of the E. coli 23S rRNA with JSD values ranked 

in the top 200. Coloring indicates the number of models which identify each position.  d. 
Analysis of the four regions in panel (c) for candidate thermostabilizing mutations. For 

each position, the most frequent nucleotide in FT generated sequences (top FT 

nucleotide) is grafted into the E. coli 23S rRNA sequence and used to calculate ∆∆logP 

for the 23S LM, 231-RNA LM, and GNN models. Overlapping values are denoted with 

an asterisk in the graph for clarity. e. Schematic for the heat-treatment in vitro 

translation assay. Purified 50S subunits are incubated at the indicated temperature, 

cooled to room temperature, and then added to a HiBit in vitro translation assay. The 

peptide complements an inactive protein fragment to form an active luciferase. f-i. 
Activity of pre-incubated ribosomes in the HiBit in vitro translation assay. Secondary 

structures of helices H89 (f), H92 (g), H68 (h), and H81/H82 (i) of E. coli 23S rRNA. 

Positions that were mutated in this study are shown in red. For panels f through i, WT 

and mutant 50S subunits all contain an MS2 tag (Materials and Methods). Relative 

activity is calculated as the slope of the initial increase in luminescence during 

translation and normalized to the WT value at the given temperature. Data and error 

bars represent the average and standard deviation of three reactions, respectively.  

 
Experimental tests of 23S rRNA mutations predicted to stabilize the ribosome 
 

One of the strongest predictions from the LM and GNN models for a mutation 

that could confer thermostability to the E. coli 50S subunit occurs in the closing loop at 

the end of helix H89 in 23S rRNA, adjacent to the peptidyl transferase center of the 

ribosome. The H89 stem-loop folds late in 50S subunit assembly, and also engages 

with ribosome assembly factors47,48. We therefore examined the JSDs of generated 

sequences and model probabilities in this region for potential mutations that might 

stabilize the ribosome. The finetuned GNN model and both finetuned LMs predict a U to 

C mutation in the apical loop of H89 at position 2477 to confer thermotolerance using 

the JSD calculation (ranked 65, 18, or 178 by the 23S rRNA GNN, 23S rRNA LM, or 

231-RNA LM, respectively). By contrast, nucleotide 2477 is not a top hit when using the 
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JSD metric on natural GTDB sequences (ranked 1007 out of 2904 positions). 

Introducing the U2477C mutation in E. coli 23S rRNA is also supported by the log-

probability calculations (Fig. 6d, Extended Data Fig. 11a). The models also support 

sequences with U to C mutations at nearby positions 2473 and 2474, either individually 

(U2474C) or in combination, and predict these to confer thermotolerance 

(Supplementary Table 5, Fig. 6d), consistent with their slight enrichment in 

hyperthermophilic 23S rRNAs in GARNET (Supplementary Table 4, Supplementary 
Table 1). The sequences generated by the GNN and RNA LMs often introduced 

compensatory base pair changes in H89, and the models yielded lower ∆∆logP values 

when only one nucleotide in a pair was changed (Extended Data Fig. 11b). However, 

we did not prioritize base pair changes in the H89 stem, as compensatory base pairs 

were deemed unlikely to have a dramatic impact on ribosome stability at the initial 

stages of unfolding based on our previous work46. Given the importance of H89 late in 

ribosome assembly, we made mutations at positions 2473, 2474, and 2477 to test their 

effects on E. coli 50S subunit thermostability. We also re-examined the A loop 

mutations in the closing loop of H92 at positions 2554 and 2555 (Supplementary Table 
5, Fig. 6c, 6f, 6g). As noted above, U2554C and U2555C mutations in H92 (H92-CC) 

were previously shown to globally stabilize the E. coli 50S subunit46. 

 

We purified in vivo assembled 50S subunits with U2473C-U2474C, U2477C, 

U2554C-U2555C, and U2477C-U2554C-U2555C mutations using MS2-tagging49,50. We 

additionally purified WT E. coli 50S subunits with an MS2-tag to serve as a control. To 

test for thermal stability, we pre-incubated the 50S subunits at 65 °C, cooled them to 

room temperature, and then assessed if they maintained activity after heat treatment in 

an in vitro translation reaction (Fig. 6e). We found that H89 mutations U2473C-U2474C 

and U2477C do not affect the activity of ribosomes at 37 °C (Fig. 6f). However after 

pre-incubation at 65 °C, 50S subunits with a U2477C mutation are roughly twice as 

active as WT subunits (Fig. 6f), indicating that this mutation stabilizes the 50S subunit. 

By contrast, ribosomes with the U2473C-U2474C mutations are not more active than 

WT after pre-incubation at 65 °C (Fig. 6f), indicating these mutations do not stabilize the 

50S subunit in this assay. We also examined whether the stabilization from mutations in 
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H89 and H92 are additive. 50S subunits with U2554C-U2555C (H92-CC) mutations 

were more than threefold as active as WT subunits after pre-incubation at 65 °C. 

Addition of the U2477C mutation to the H92-CC mutations (U2477C-H92-CC) did not 

increase the stability past that of the H92-CC mutations on their own (Fig. 6g).  

 

We focused on two additional regions in domains IV and V—helix H68 and 

helices H81 and H82—that contained multiple positions ranking in the top 200 highest 

JSD values (Fig. 6c, Extended Data Fig. 8-10). Domain IV is the penultimate domain 

to fold32,47 and includes helix H68, which harbors multiple non-canonical base pairs in 

the middle of the stem43 with high JSD values. Notably with the GPT-like LMs, pairwise 

changes for all three of these non-canonical pairs independently resulted in higher log 

probabilities than changes to individual bases in a pair (Fig. 6d). Due to the fact that 

H68 includes multiple adjacent non-canonical base pairs, we tested the H68 changes as 

a group (H68mut) and found that changing these base pairs increased E. coli ribosome 

stability  (Fig. 6h). A second set of nucleotides with high JSD values that cluster in 

helices H81/H82 involve four changes in two Watson-Crick-Franklin base pairs, from A-

U to C-G pairs (Fig. 6i). The fifth nucleotide, G2286, is unpaired (Fig. 6i) and interacts 

with rProtein bL33. In contrast to H68, the two base pair changes do not result in more 

positive ∆∆logP values using any of the language models, and the change G2286A 

gives differing results across the three language models (Fig. 6d). As with H68, we 

tested these five mutations as a group (H81/H82mut), given their close proximity in the 

structure. Consistent with our hypothesis that canonical base pair changes are unlikely 

to be limiting for thermostability in the E. coli context, the H81/H82 mutations result in 

ribosomes with equivalent activity and thermostability as WT ribosomes (Fig. 6i). Thus, 

taking the H68 and H81/H82 mutation groups together with the mutations in H89 and 

H92, the GNN and LM models are able to inform 23S rRNA mutations that stabilize the 

E. coli 50S subunit in four of six cases tested here, and one tested previously46. 

 

Discussion 
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Here we show that two distinct deep learning frameworks, a GNN and a 

generative RNA LM, could be used to identify functional RNA mutations in the 

ribosome. RNA structure prediction and design using deep learning has lagged behind 

efforts for proteins, in large part due to the limited abundance and quality of available 

RNA sequence and structural information1. To address this problem, we created 

GARNET, an entirely new RNA database built from the GTDB5. The GTDB incorporates 

not only bacteria and archaea that can be grown in the lab, but also genomes for 

uncultured microbes, expanding the scope of RNA sequence alignments that can be 

obtained for bacteria and archaea. The GTDB framework also enables linking 

phenotypes to genomes, as well as multiple sequences from the same genome across 

alignments, which can aid studies of protein and RNA complexes. We used a machine 

learning approach41 to assign an optimal growth temperature to each reference genome 

in the GTDB, building on experimental measurements39,40. We then tested whether 

these temperatures, assigned to the RNAs identified in the GTDB genomes, could be 

used to identify thermophilic mutations that stabilize the E. coli ribosome. Using two 

different deep learning architectures–a graph neural network (GNN) and an RNA 

language model (LM)–we were able to identify mutations in E. coli 23S rRNA that 

stabilize the 50S subunit to heat treatment (Fig. 6). Importantly, instead of relying on 

generated sequences individually, we generated sets of 1,000 sequences to analyze, in 

order to avoid possible issues with model-generated artifacts (i.e. “hallucination”). We 

used two different kinds of sequence interrogation to identify stabilizing mutations, 

namely Jensen-Shannon divergence (JSD) and model probability calculations (Fig. 6). 

Sorting positions by JSD identifies individual positions that differ the most between the 

pretrained and finetuned generated sequences. Calculating the model probabilities 

allowed us to evaluate whether these mutations are still supported when grafted 

individually into the E. coli 23S rRNA sequence. We focused on identifying individual 

mutations, or at most several substitutions. Using both metrics seems to be useful in 

discriminating between functional mutations. Whereas mutations in H68 and H81/H82 

were supported by JSD calculations, compensatory base pair mutations in H68 but not 

H81/H82 were promising when using positive ∆∆logP values. Future work to mine 

combinatorial effects of multiple mutations, as well as higher-throughput assays, may 
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help maximize the ability to query the GNN and RNA LMs for stabilizing RNA mutations. 

Overall, the methods used here to identify functional RNA mutations, by comparing 

models pretrained on the entire GARNET RNA dataset to models finetuned on 

GARNET hyperthermophilic sequences, could likely be adapted for protein engineering. 

 

Thermostabilizing mutations identified using GNNs and RNA LMs are distinct 

from those that could be gleaned through direct analysis of natural 23S rRNA 

sequences in GARNET, consistent with these deep learning models extracting new 

information from the sequence data. This may be in part due to sequence co-

dependence. For example, a nucleotide change at U2477C is strongly predicted to 

confer higher thermostability in the E. coli context using the JSD calculation and model 

probabilities, and mutations U2473C-U2474C have a higher probability of conferring 

thermostability relative to the WT E. coli sequence. However, only U2477C is capable of 

stabilizing the E. coli 50S subunit in the in vitro translation assay used here (Fig. 6f), 
suggesting positions 2473 and 2474 may have other dependencies. In the E. coli 

ribosome, the U2477 base stacks with A2476 and interacts with an arginine side chain 

of ribosomal protein (rProtein) bL36 (Extended Data Fig. 12a). Cytosine has a larger 

dipole moment than uridine51, which could increase the strength of the rRNA-rProtein 

interaction and thereby stabilize the E. coli 50S ribosomal subunit. The predicted H89 

mutation maintains and potentially strengthens this rRNA-ribosomal protein interaction 

despite the RNA LMs having no knowledge of ribosomal proteins. By contrast U2473C-

U2474C mutations showed no improvement in ribosome stability, although U2473 

contacts an arginine side chain in ribosome assembly factor ObgE during 50S subunit 

maturation48. Notably, ribosome assembly factors are missing from the in vitro assay we 

used here, suggesting the U2473C mutation might still be beneficial in the assembly of 

destabilized engineered ribosomes in vivo. 

   

While a GNN utilizes both sequence and structural information for training, GPT-

like LMs use only sequences for training. Interestingly, the use of a structural 

component in the GNN model allowed these models to perform as well as the GPT-like 

LM with an order of magnitude fewer parameters (Fig. 5, Supplementary Table 3). 
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Notably, we identified a unique feature of RNA that favors representation of overlapping 

nucleotide triplets as tokens for training GPT-like LMs. These tokens outperform other 

embedding schemes by substantial margins. It is possible that this representation 

captures a fundamental property of RNA, in which nucleotide base stacking is the 

dominant driving force for RNA structural stability52. This contrasts with proteins, in 

which higher-order structure depends more on backbone features, i.e. backbone 

hydrogen bonding in secondary structure elements. Tokenization of nucleotides as 

overlapping triplets effectively represents each of the 4 nucleotides 16 different ways, 

with additional representations for beginning and ending tokens. The fact that 

overlapping triplet encoding substantially decreases the perplexity of the resulting LMs 

suggests that these different representations of the 4 nucleotides capture distinct 

features that are hard to train in a simpler token scheme. In principle the embedding 

dimension for nucleotides encoded individually could be increased and might possibly 

capture this information. For example with proteins, single-amino acid encoding results 

in “clustering” of amino acids by physicochemical properties53. However, for nucleotides 

this is likely infeasible due to the fact that model parameters and memory use scale as 

the square of the embedding dimension for a transformer-based model54. Projecting the 

total embedding dimensions of overlapping triplets to single nucleotides would likely 

require a model with over 100-fold more parameters and memory than used here.   

 

Protein language models can serve as a foundation for structure prediction. For 

example, the ability of ESM-2 to predict correct amino acids in a sequence, as 

measured by a decrease in the model perplexity, correlates strongly with the ability of 

the model to serve as a basis for protein tertiary structure prediction7. For RNA, in which 

alternative secondary and tertiary structures may play important functional biological 

roles55,56, starting from an RNA language model may prove crucial for success in future 

structural prediction efforts. RNA LMs could also benefit from coupling to additional 

data. For example, combining the RNA LM with a protein LM could help refine searches 

for mutations in proteins that confer thermostability to the ribosome, i.e. in ribosomal 

proteins or maturation factors. Language models for RNA could also benefit from 

information on nucleotide modifications. These modifications can have profound effects 
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on nucleotide contributions to RNA secondary and tertiary structure, and hence RNA 

function. However, information on nucleotide modifications is scarce apart from a very 

small select number of organisms. Future efforts to expand post-transcriptional 

modification databases could help improve deep-learning approaches for RNA. RNA 

language models could also be combined with experimental data, for example chemical 

probing data as a means of introducing additional structural information into the model. 

Finally, there is also room to expand RNA sequences in the GARNET database, which 

could improve the RNA LMs created here. For example, the larger diversity present in 

the SILVA 16S rRNA database, which includes ribosomal RNA sequences from species 

without a sequenced genome, suggests the GTDB could grow in species clusters by 

many times in the coming years. The GTDB also presently lacks eukaryotic, 

mitochondrial, and chloroplast genomes, as well as those of viruses. However, even 

with the above limitations, we show that deep learning models including LMs with 

optimized triplet encoding can be built and trained using RNA sequences extracted from 

the GTDB, and applied to RNA functional engineering. 

 

Materials and Methods 
 

RNA sequence searches and multiple sequence alignment construction 
 

Sequences for the three ribosomal RNAs were identified by searching the 

corresponding Rfam 14.9 covariance models (23S rRNA: archaea RF02540, bacteria 

RF02541; 16S rRNA: archaea RF01959, bacteria RF00177; 5S rRNA: RF00001) 

against genomes in the Genome Taxonomy Database (GTDB) v214.1. The 

representative genomes of each GTDB species cluster was searched using Infernal 

1.1.4 with an e-value cutoff of 1e-5 and omitting hits shorter than 85% of the model 

length, keeping the most significant hit per genome. If no such hit could be found, then 

any available non-representative genomes for that species cluster was searched, in 

order of increasing CheckM contamination, which is provided in the GTDB metadata. 
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For each ribosomal RNA family, multiple sequence alignments were created by 

aligning the Infernal hits to a single Rfam covariance model (23S rRNA: RF02541; 16S 

rRNA: RF00177; 5S rRNA: RF00001). The alignments were further filtered for quality by 

1) removing sequences with >5% ambiguity characters, 2) removing sequences that 

aligned to <85% of the Rfam consensus positions, 3) removing sequences with a length 

greater than two standard deviations above the mean (greater than one standard 

deviation for 16S and 23S rRNA), and 4) removing sequences with a fraction of non-

canonical base pairs (not Watson-Crick-Franklin or G-U pairs) in the Rfam consensus 

secondary structure greater than two standard deviations above the mean to remove 

potential pseudogenes. For the GNN approach, the 23S rRNA alignment was further 

processed to remove positions that aligned to insertions relative to the Rfam RF02541 

model and positions that are not present in the E. coli 23S rRNA sequence from PDB 

7K00. 

 

 For the expanded 228-RNA dataset, we selected 256 Rfam families that are 

present in bacteria and archaea, contain 10 or more sequences in the Rfam seed, and 

have 100 or more consensus positions. The models were then searched against each 

GTDB species representative genome using Infernal 1.1.421 with an e-value cutoff of 

1e-5, allowing multiple hits per genome. Across all models, hits with any overlapping 

nucleotides were resolved by keeping the hit with the lower e-value. The resulting 

sequences were then aligned to their respective Rfam covariance model. These 

alignments were filtered for quality in the same way as described above for rRNA 

sequences, except sequences that aligned to <90% of Rfam consensus positions were 

removed. Rfam families with fewer than 10 sequences after filtering were excluded from 

further analysis, resulting in 228 RNA families in the final dataset.  

 

To compare alignment diversity relative to existing RNA alignments, each 

alignment was filtered at a range of fractional identity cutoffs using a greedy algorithm 

implemented by two methods: VSEARCH v2.15.23,38 with options --cluster_fast --iddef 0 --

id <cutoff> and esl-weight (HMMER version 3.4)57 with options --rna -f --idf <cutoff>. 

VSEARCH takes unaligned sequences as input, while esl-weight requires input 
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sequences to be aligned. For 23S rRNA, the comparison database was SILVA 138.1 

LSURef NR99, and for 16S rRNA, SILVA 138.1 SSURef NR993. The full-length SILVA 

sequences were aligned using SINA 1.7.258 to the corresponding ARB file for esl-weight 

comparisons. For 5S rRNA, two comparison databases were used: 5SRNAdb37 and 

Rfam 14.92 full alignment for RF00001. 5SRNAdb provides aligned sequences and 

Rfam sequences were aligned using Infernal to the Rfam covariance model RF00001. 

For the TPP riboswitch, cobalamin riboswitch, and T-box leader RNA, the comparison 

databases were Rfam 14.9 full alignment for RF00059, RF00174, and RF00230, 

respectively, aligned using Infernal to the corresponding covariance model. 

 

Generation of RNA training and test sets for training deep learning models 
 

We applied hierarchical clustering with CD-HIT-EST59 to generate training and 

test sets from 231 Rfam RNA families extracted from the GTDB genomes. To increase 

cluster diversity, CD-HIT was customized by reducing cluster_thd to 60% in the cdhit-

common.c++ script (line 358) and recompiling the software. Sequences for each Rfam 

family were independently clustered at decreasing percent identities as follows: 90% 

with n-mer=8, 80% with n-mer=5, 70% with n-mer=4, and 60% with n-mer=4. While the 

rRNA families were diverse at the 60% identity level, the remaining Rfam families were 

generally less so due to the stringent filters used in the Infernal search (described 

above). We therefore used the following strategy for dividing these Rfam sequences 

into an overall training and test set. First, for the 124/231 remaining Rfam families that 

had sufficient sequence diversity at the 60% level, clusters were randomly sorted into 

the training and test sets until up to 33% of sequences from a family were in the test set. 

Then, intact Rfam families with single clusters were randomly selected for the test set 

until the test set contained 10% of the total tokens. Rfam families with intermediate 

diversity, i.e. that had dominant clusters within them, were kept intact in the training set. 

For models requiring MSA format, sequences were then formatted using esl-reformat 

(HMMER version 3.4)57. The same method was used to split the 5S, 16S and 23S 

datasets, except 5% of sequences were reserved for testing. 
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Growth temperature curation and prediction 
 

Optimal growth temperatures (OGTs) were predicted by TOME41 from proteome 

sequences from each representative genome in the Genome Taxonomy Database 

(release 214.1), yielding a dataset of 85,205 OGTs. This compares to a total of 13,011 

out of the 85,205 GTDB species with an OGT listed in TEMPURA and/or GOSHA 

databases. To determine the accuracy of the TOME predictions, the R2 value was 

calculated against the optimal growth temperatures from the TEMPURA (Release 

200617)39 and Gosha databases (accessed on 23 October 2023)40, for all species 

absent from TOME’s training set (Fig. 2a. n = 7,404 and 3,346 species for Gosha and 

TEMPURA, respectively). OGTs from TOME were further validated by inspecting the 

NCBI Isolation Source of species in the GTDB metadata. Isolation sources indicating 

direct acquisition from environments warmer than 60 °C were categorized as 

"hyperthermophilic,” while the remaining isolates were classified as "not 

hyperthermophilic" (Supplementary Table 2). Manual labels were compared to 

classifications based on TOME, where species with a predicted OGT > 60 °C were 

categorized as hyperthermophiles (Fig. 2c). 

 

Structural Analysis of 23S rRNA for Graph Representations 

 

The Graph Neural Network (GNN) model takes as input information on the 

nucleotides' structurally proximal neighbors, represented by a graph. Further, the GNN 

model is trained on the Infernal MSA of 23S rRNA sequences from GARNET, truncated 

to align with the E.coli 23S rRNA sequence in PDB entry 7K00 and tailored to the Rfam 

RF02541 model, as detailed in the ‘RNA sequence searches and multiple sequence 
alignment construction’ section. This alignment is further referred to as the ‘GNN MSA’. 

To train the GNN, we generated a graph from a structural distance matrix based on the 

E.coli 23S rRNA structure from PDB entry 7K00, adjusting the nucleotide coordinates in 

the distance matrix to align with those in the GNN MSA. This was accomplished through 

a procedure outlined below. 
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To generate the aligned distance matrices, we chose 18 representative archaeal 

and bacterial ribosome structures from the PDB (3CC2, 4W2E, 5DM6, 5NGM, 8HKU, 

6SKF, 6SPB, 6V39, 7JI1, 7NHK, 7OOD, 7S0S, 7S9U, 7SFR, 8A57, 8FMW, 7K00, and 

4YBB), extracting the 23S rRNA chains. Using a custom script, we converted nucleotides 

with post-translational modifications in these structures to sequences with canonical A, 

C, G, and U, further referred to as the 'PDB-derived sequences’. We then produced 

distance matrices by calculating the minimum all-to-all atom distances between 

nucleotide pairs in the PDB files. To align these distance matrices with the GNN sequence 

alignments, a multi-step matrix adjustment procedure was implemented  (see Extended 
Data Fig. 2). First, to account for the absence of unstructured regions in the PDB-derived 

sequences, these were aligned with the corresponding rRNA FASTA sequences from the 

PDB-derived sequences using MAFFT60. Empty rows and columns were inserted into the 

distance matrices corresponding to the locations of the alignment gaps, signifying the 

regions of unstructured nucleotides. Subsequently, in the second step, the FASTA 

sequences of the 18 rRNAs were aligned with the GTDB-derived 23S rRNA sequences 

using Infernal as outlined above in section ‘RNA sequence searches and multiple 
sequence alignment construction’, ensuring all rRNA sequences were mapped onto a 

consistent coordinate framework with the necessary gaps and insertions. Empty columns 

and rows were again positioned at the coordinates of the gaps and insertions in the 

distance matrices. Finally, in the third step, rows and columns in the distance matrices 

that correspond to the gaps and insertions specific to the E.coli 7K00 sequence in the 

Infernal MSA, were removed, replicating how the GNN MSA was created. The resulting 

aligned distance matrices’ nucleotide coordinates matched their counterpart coordinates 

in the GNN MSA. 

 

The aligned distance matrices, showing internucleotide distances in Å, were 

transformed into binary contact maps, where '1' denotes contact and '0' indicates no 

contact, with two different methods. In the first intuitive method, contact ‘1’ was assigned 

to pairs of nucleotides having a distance below a certain distance cutoff. Analysis of the 

contact map alignment involved summing the 18 maps (see top-right halves of the plots 

in Extended Data Fig. 3a-d and Fig. 3e). The alignment’s accuracy was confirmed by 
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the precise matching of secondary structures across the maps. To quantitatively assess 

rRNA structural homology, we introduced a structural correlation metric 

!"##(%!"	, '!") =
∑ ⬚⬚
",$ &"$'"$

(∑ ⬚⬚
",$ &"$2 ∑ ⬚⬚

",$ '"$2
, 

where %!"	 = %!"	(*) and '!" = '!"	(*) are the two contact maps compared at a distance 

cutoff *, with +, , being the nucleotides coordinates. Pairwise correlation of the contact 

maps generated at * = 12	Å	was on average 0.94 and 0.95 for bacterial species and for 

archaeal species, respectively, and 0.88-0.90 when comparing bacterial to archaeal 23S 

rRNA, which indicated that most of the structural features were identical between all 

ribosomal subunits, and prompted us to combine the sequences for training the GNN (see 

Extended Data Fig. 3e). We further analyzed the average correlation between the 

contact maps as a function of distance cutoff * (see Extended Data Fig. 3f), and saw 

that the structural correlation did not significantly improve for * above 12 Å.  

In the second method, similar to the one applied in the original Structured 

Transformer model introduced by Ingraham et al.42, we sorted pairs of nucleotides 

according to their distances, and selected the k-nearest neighbors for each. To justify the 

use of the second method, we analyzed the distributions of internucleotide distances 

returned for different amounts of nearest neighbors k (see Fig. 3d). We observed that by 

choosing a certain k, all internucleotide distances below a certain cutoff are included (e.g. 

~12 Å for k = 50). We further saw high similarity of the k-nearest neighbors contact maps 

with the contact maps generated for the corresponding cutoff distances captured by a 

given k nearest neighbor value (see Fig. 3e and Extended Data Fig. 3a-d). We 

concluded that the two methods for generating contact maps could be used 

interchangeably, and we chose to proceed with the k-nearest neighbors method for 

generating the graph and training the GNN model. 

GNN model 
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 As described above, the Graph Neural Network (GNN) RNA model takes as input 

a contact map describing the 3D fold of the RNA family that is being modeled to 

construct a fixed graph. Each node in the graph corresponds to a conserved position of 

the RNA family MSA. Each node is connected to the k-nearest neighbors. The graph 

contains node and edge features. Node features consist of a learned absolute positional 

encoding with 16 hidden features as well as information about the sequence. As in 

Ingraham et al.42, this sequence information is causally masked during the decoding 

process. The edge features consist of the sinusoidal relative positional encodings and 

the pairwise distance between nodes in the graph use 16 radial basis functions spaced 

between 0 and 20 Ångstroms, as previously described42. All node and edge features 

were mapped to a hidden dimension of 128 with a learned linear layer. The model 

leverages the transformer encoder-decoder architecture of Ingraham et al.42 A single 

encoder layer and three decoder layers were used. All sequences were tokenized using 

one token per nucleotide with an alphabet consisting of the four nucleotides (A, U, C, 

and G) as well as a gap character (-) and an “unknown” character (X). The “unknown” 

character is found in sequences where, due to sequencing issues, the identity of the 

nucleotide was not determined.  

 

For training, we performed a sweep on the 23S pretraining set, varying both k-

NN (k-nearest neighbors on which to perform message-passing), and layer dimension. 

We trained across values of k = {5, 10, 20, 50, 100} and layer dimension = {64, 128} 

with learning rate 1e-3, to profile the contribution of added structural context and/or 

dimension on autoregressive perplexity. We trained all models using a dropout rate of 

10% and a label smoothing rate of 10%. For training, we initially randomly partitioned 

20% of the training set into a validation set, to allow early stopping based on validation 

perplexity for the hyperparameter sweep. We found that structural context begins to 

saturate after k = 50 nearest neighbors. Using the best set of hyperparameters on the 

holdout, divergent test set (k = 50, layer dimension = 128), we then partitioned the 10% 

of the training set for validation for early-stopping on the final pretrained model. We 

pause training after validation perplexity stopped improving for 5 epochs, training the 

model for 32 epochs. For finetuning on hyperthermophilic sequences, we lowered the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.04.05.588317doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588317
http://creativecommons.org/licenses/by/4.0/


 

35 
 

learning rate to 1e-4, and finetuned the pretrained model (k=50, layer dimension = 128). 

We similarly held out 10% of the hyperthermophiles training set as a validation set to 

allow early stopping based on validation perplexity. Finally, we measured the 

performance of the model by calculating test perplexity after training for 50 epochs. 

Extended details for each model are available in Supplementary Table 3. 

 

RNA language model pretraining and finetuning on hyperthermophilic sequences 
 

To construct a Generative Pretrained Transformer (GPT) RNA language model, 

RNA sequences were converted to n-gram tokens of 1, 2, or 3 nucleotides, with a step 

size of one between tokens (Fig. 4a). A small GPT model, nanoGPT44, was then 

adapted to train an RNA language model for comparisons of these token schemes, 

using 23S rRNA sequences from GARNET. Batch sequences were adjusted to be 

aligned at index = 0, and used padding if the sequence included the RNA 3’-end. 

Padding tokens were excluded from loss calculations. We were unable to find suitable 

hyperparameters for training models with single-nucleotide embeddings. For 

hyperparameter optimization, we divided the 23S rRNA training set described above 

into training and validation sets using CD-HIT-EST59 for hierarchical clustering (85M/4M 

tokens in the training/validation sets). Final models were trained using the full training 

and tests sets for 23S rRNA described above, using the test set as a validation set 

(89M/5.5M tokens in the training/validation sets). The architecture and hyperparameters 

for GPT models in the comparisons shown in Fig. 4b were the following: context 

window = 384 tokens, attention layers = 18, attention heads = 6, embedding dimension 

= 300, learning rate = 5e-5 decayed over 100,000 iterations to 5e-6, AdamW optimizer 

beta2 = 0.998, batch size = 18, use of Flash attention61, and with the nanoGPT model 

modified to use rotary positional embeddings (RoPE) for relative positional 

information45. We also replaced layer normalization in the transformer layer blocks with 

root-mean-square normalization62. We also tested the use of non-overlapping 

dinucleotide and non-overlapping triplet-nucleotide encodings. Non-overlapping 

dinucleotide encodings could be optimized to some degree, possibly benefitting from 

multiple representations of each nucleotide in the token set. However, non-overlapping 
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dinucleotides require additional tokens to account for RNAs with an odd number of 

nucleotides and are not as intuitive to interconvert between tokens and nucleotides. We 

therefore did not pursue non-overlapping embeddings further.  

 

We trained the final RNA language models using the overlapping triplet-

nucleotide scheme (n-gram of 3 with step size 1), and with RoPE applied to each 

attention layer. The final model for the 231 RNA set similarly used the train/test sets 

described above, with the test set used for validation (274M/31M tokens in the 

training/validation sets). We used early stopping based on the validation loss score to 

output the final model checkpoint files. The hyperparameters and perplexity values of 

the pretrained models are given in Supplementary Table 3. 16S and 23S rRNA 

sequences were generated from the pretrained 231-RNA LM using 100 nucleotides of 

E. coli 16S or 23S rRNA, respectively, at a generation temperature of 0.2. These sets of 

100 sequences were aligned using the MAFFT aligner in Wasabi63, with the E. coli 

sequence included for comparison purposes in Fig. 4d and 4e.    
 

RNA language models trained on 23S rRNA sequences from GARNET were 

finetuned using hyperthermophilic 23S rRNA sequences from GARNET identified as 

described above. Hyperthermophilic sequences were divided into a training set and 

validation set splits based on their partitioning in the data used for pretraining, i.e. 

hyperthermophilic sequences in the training set of the pretraining data were used in the 

finetuning training set, and hyperthermophilic sequences in the validation set of the 

pretraining data were used in the finetuning validation set. As with the pretrained 

models, early stopping based on the validation loss score was used to output the final 

model checkpoint files. We also finetuned the RNA language model pretrained on the 

231-RNA dataset using a similar workflow (Supplementary Table 3).  

 

Analysis of 23S rRNA sequences to identify candidate thermophilic mutations 
 

Full-length 23S rRNA sequences were generated from the pretrained and 

finetuned GNN and LM models using a seed sequence beginning with the 5’ end of E. 
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coli 23S rRNA composed of 100 nucleotides (GNN) or 384 nucleotides (LM). 

Sequences were generated in sets of 1,000 using a range of “temperature” scaling 

factors of the model output logits, then aligned to the consensus 23S sequence using 

the Rfam covariance model RF02541 (LSU_rRNA_bacteria). The GNN-generated 

sequences lacked regions in the uL1 and bL12 binding regions, which were missing in 

PDB entry 7K00. These regions were masked in subsequent analyses. Sequences 

generated from the LMs aligned to the Rfam model for 23S rRNA across their entire 

length (Extended Data Fig. 6a, 6c and Extended Data Fig. 7a, 7c). By contrast, the 

GNN models deleted local RNA segments with higher frequency at the higher 

generation temperatures tested (Extended Data Fig. 5a, 5c). Although shorter as a 

function of increasing temperature, the GNN sequences still aligned well to the Rfam 

model (Extended Data Fig. 5, Extended Data Fig. 6, and Extended Data Fig. 7). 

 

To choose an appropriate temperature for generating sequences, they were 

analyzed for their 23S rRNA-like properties as follows. First, generated sequences were 

scored against the Rfam covariance model RF02541 using cmsearch in the Infernal 

suite of programs21. The cmsearch score is a combination of sequence and secondary 

structure conservation, giving a global view of the 23S-like properties of the generated 

RNAs. However, a 1-2% change in secondary structure may not affect the score 

substantially if the rest of the ~3k long sequence is conserved. We therefore used a 

second metric, the fraction of consensus base pairs in the RF02541 model aligned to 

each sequence that deviate from canonical G-C/C-G, A-U/U-A, or G-U/U-G pairs, 

compared to proportion of base pairs disrupted in natural 23S rRNA sequences from 

GARNET. Generated sequences were also visually checked for alignment properties 

using the SILVA Alignment, Classification, and Tree (AC) service58, together with the 

SILVA-associated Wasabi sequence viewer64.  

 

To identify candidate mutations in E. coli 23S rRNA that might confer 

thermostability, we analyzed generated sequences with a generation temperature of 

T=0.5 for all GNN and RNA LMs, except for the 231-RNA FT model, where we used a 

generation temperature of T=0.3. We first aligned the generated sequences to the Rfam 
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RF02541 covariance model using cmalign in the Infernal suite of programs, and 

trimmed the alignment to positions corresponding to the E. coli 23S rRNA sequence.  

We calculated the Jensen-Shannon divergence (JSD) at each nucleotide position in the 

23S rRNA alignment, comparing nucleotide frequencies for sequences generated by the 

pretrained models and models finetuned on hyperthermophilic sequences, after 

masking positions used to seed sequence generation (n=100 for GNN, n=386 for LM to 

account for tokenization) and with nucleotide occupancy <50%.  

 

Since JSD-based sorting considers each position in the sequence independently, 

we also used log probability values for candidate 23S sequences to assess mutations. 

Using the probability of a sequence being generated by an RNA language model allows 

us to assess whether candidate mutations work in the E. coli 23S rRNA context or may 

depend on other co-occurring mutations, i.e. compensatory mutations in base pairs. 

Notably, many of the highest-scoring JSD sites do in fact correspond to base paired 

positions in 23S rRNA, and the deep learning models generated compensatory 

mutations at both nucleotide positions to maintain the base pair. However, given the 

large number of mutations in each GNN- and LM-generated sequence, on the order of 

200 or more per sequence, it is also possible that candidate mutations might not 

function in an otherwise WT E. coli 23S background.  

 

We used four probability calculations in our log probability analysis (Fig. 6b). 

First, we calculated the log probability of the finetuned (FT) model generating a mutated 

E. coli 23S rRNA sequence, and compared this to the log probability from the pretrained 

(PT) model. Second, we calculated the log probability of the FT model generating the 

wildtype E. coli 23S rRNA, and compared this to the log probability from the PT model. 

We evaluated the mutant log probability difference between FT and PT normalized to 

wildtype log probability difference as ∆∆logP. Mutant sequences with a positive ∆∆logP 

are supported by the FT model better than the PT model relative to the wildtype E. coli 

23S rRNA. As controls, we generated all possible single-nucleotide mutations in the E. 

coli 23S rRNA sequence and calculated log probabilities for each of these being 

generated from the FT or PT models. We found the average difference in log 
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probabilities from the FT and PT models, ∆∆logP, to be close to 0 (-0.82 for the 23S 

rRNA GNN, 0.07 for the 23S rRNA LM, and -0.52 for the 231-RNA LM). Comparing 

single mutations to this reference distribution allowed us to assess the percentile of 

individual candidate thermostabilizing mutations. Multiple-mutation cases should be 

compared to an analogous reference distribution considering all the mutations in a 

sequence in the probability calculations, which could be used to investigate nucleotide 

dependencies learned by the models. We chose not to comprehensively assay these 

due to the computational complexity.     

 

Cloning and Ribosome Purification 
 

For ribosome expression, a modified version of the pLK35 plasmid65, which 

contains an IPTG inducible tac promoter followed by the 5S, 16S and 23S rRNA with 

the MS2-tag from Nissley et al.49 inserted in helix H98, was used. 23S rRNA mutations 

were introduced to the pLK35 plasmid using the corresponding primer set 

(Supplementary Table 6) and the In-Fusion Cloning kit (Takara Bio). All sequences 

were confirmed with full plasmid nanopore sequencing (Plasmidsaurus and Elim Bio).  

  

MS2-tagged ribosomes were expressed and purified as previously described46 

with adaptations. pLK35 plasmids were transformed into NEB Express Iq cells (NEB) 

which are a bL21 derivative that constitutively expresses the lac repressor. 

Transformants were grown overnight in LB media and the following day were diluted 

1:100 in 1 L of LB media with 100 µg/mL ampicillin. The cultures were grown at 37 °C 

with shaking and once the cultures reached an OD600 of 0.6, expression of the rRNA 

was induced with 0.5 mM Isopropyl ß-D-1-thiogalactopyranoside. Induced cultures were 

grown for three hours at 37 °C and then cells were pelleted and resuspended in 30 mL 

of buffer A (20 mM Tris–HCl pH 7.5, 100 mM NH4Cl, 10 mM MgCl2) with a Pierce 

protease inhibitor tablet (Thermo Fisher). The cell suspension was lysed by sonication 

and the lysate was clarified by centrifugation at 14,000 rpm (34,000 xg) for 45 min in a 

F14-14 × 50cy rotor (ThermoFisher). The clarified lysate was then loaded onto a 

sucrose cushion with 24 mL of buffer B (20 mM Tris–HCl pH 7.5, 500 mM NH4Cl, 10 
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mM MgCl2) with 0.5 M sucrose and 17 mL of buffer C (20 mM Tris–HCl pH 7.5, 60 mM 

NH4Cl, 6 mM MgCl2) with 0.7 M sucrose in Ti-45 tubes (Beckman-Coulter). Ribosomes 

were pelleted by centrifugation at 27,000 rpm (57,000 xg) for 16 h at 4 °C and then 

resuspended in dissociation buffer (20 mM Tris–HCl pH 7.5, 60 mM NH4Cl, 1 mM 

MgCl2). 

 

 MBP-MS2 fusion protein was purified as previously described33. 10 mg of MBP-

MS2 protein was loaded onto a MBP Trap column (Cytiva) that was equilibrated with 

MS2-150 buffer (20 mM HEPES pH 7.5, 150 mM KCl, 1 mM EDTA, 2 mM 2-

mercaptoethanol). The column was washed with 5 column volumes (CV) of buffer A-1 

(20 mM Tris–HCl pH 7.5, 100 mM NH4Cl, 1 mM MgCl2) and the resuspended ribosome 

pellet (~100 mg) was then loaded onto the column. The column was washed with 5 CV 

buffer A-1 followed by 10 CV of buffer A-250 (20 mM Tris–HCl pH 7.5, 250 mM NH4Cl, 1 

mM MgCl2) and ribosomes were eluted with 10 mL of elution buffer (20 mM Tris–HCl pH 

7.5, 100 mM NH4Cl, 1 mM MgCl2, 10 mM maltose). The 50S subunit sample was then 

concentrated using a 100 kDa cut-off spin filter (Millipore) and washed with buffer A-1. 

50S ribosomal subunits were quantified using the approximation of 1 A260 = 36 nM, flash 

frozen, and stored at −80°C. WT untagged 30S subunits were purified from E. coli 

MRE600 as previously described46.  

  

Endogenous E. coli 50S subunit contamination was quantified using semi-

quantitative RT-PCR. The rRNA from 50 pmol of MS2-purified 50S subunits was 

denatured at 95 °C and precipitated with 4 M LiCl. 75 ng of rRNA was reverse 

transcribed and amplified with 8 PCR cycles using the OneStep RT-PCR kit (Qiagen) 

and primers MS2_quant_F and MS2_quant_R  (Supplementary Table 6). DNA 

products were resolved on a 10% TBE gel, visualized with SYBR gold stain (Thermo 

Fisher), and quantified using Image J software66.   

 

HiBit In Vitro Translation Reactions 
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The 11S nanoluciferase fragment that is complemented by the HiBit peptide to 

enable luminescence67 was purified as previously described46. In vitro HiBit translation 

assays were performed as previously described46 with adaptations. 50S ribosomal 

subunits were diluted to 1.4 μM in buffer A described above with a final concentration of 

10 mM MgCl2. The subunits were then incubated at 37 °C or 65 °C as indicated for 15 

minutes, and then cooled at room temperature for 15 minutes. After cooling, an in vitro 

translation mixture was assembled using the ΔRibosome PURExpress kit (NEB): 3.2 μL 

solution A (NEB), 1 μL factor mix (NEB), 250 nM pre-incubated 50S ribosomal subunits, 

500 nM WT untagged 30S ribosomal subunits, 1 U/μL Murine RNAse inhibitor (NEB), 

400 nM 11S NanoLuc protein, 1:50 (v/v) dilution of Nano-Glo substrate (Promega), and 

1 ng/μL of DNA template encoding the HiBit peptide67 (final volume of 8 μL). 2 μL of the 

in vitro translation mixture was placed in a 384 well plate per well, and luminescence 

was measured for one hour in a Spark Plate Reader (Tecan) set to 37 °C. Ribosome 

activity was calculated by determining the slope of the initial linear region of each in vitro 

translation reaction. The reported ribosome activities are the average from three HiBit in 

vitro translation reactions. 
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