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In this paper, we describe the advances in the design, actuation, modeling, and control field of continuum robots. After decades of
pioneering research, many innovative structural design and actuation methods have arisen. Untethered magnetic robots are a
good example; its external actuation characteristic allows for miniaturization, and they have gotten a lot of interest from
academics. Furthermore, continuum robots with proprioceptive abilities are also studied. In modeling, modeling approaches
based on continuum mechanics and geometric shaping hypothesis have made significant progress after years of research.
Geometric exact continuum mechanics yields apparent computing efficiency via discrete modeling when combined with
numerical analytic methods such that many effective model-based control methods have been realized. In the control, closed-
loop and hybrid control methods offer great accuracy and resilience of motion control when combined with sensor feedback
information. On the other hand, the advancement of machine learning has made modeling and control of continuum robots
easier. The data-driven modeling technique simplifies modeling and improves anti-interference and generalization abilities.
This paper discusses the current development and challenges of continuum robots in the above fields and provides prospects

for the future.

1. Introduction

Inspired by the tentacles of elephant trunks, snakes, and
octopuses, continuum robots use a series of continuous arcs
structurally rather than skeletal structures to generate bend-
ing motion [1], with flexibility, lightweight, inherent safety,
scalability, and potential for low-cost parts. This design
approach was initially applied primarily in industrial scenar-
ios such as large-scale grasping, movement, and positioning
[2] and even urban search and rescue operations in confined
environments [3]. With the development of some advanced
materials, the scale of the continuum robot is getting smaller
and smaller [4]. With its soft characteristics, it has been
widely used in the field of medical surgery.

In addition to the robots composed entirely of continuum
medium, super-redundant robots with many discrete links are
also regarded as continuum robots. The earliest work can be

located in 1967, when Anderson [5] studied the first tensor
arm composed of stacked plates that can generate motion by
stretching tendons. After that, there is a lot of research on
super-redundant continuum robots [6-8]. A typical example
is the super-redundant robot developed by CardioARM [9],
which is a highly redundant serpentine arm for cardiac abla-
tion. In recent years, parallel designs of continuum robots have
also been developed. This kind of robot uses multiple elastic
rods connected in parallel arrangement and has higher accu-
racy and stiffness than the serially connected continuum robot
[10-12]. Some typical examples of parallel continuum robots
include the multispine snake robot proposed by Ding et al.
[13], Festo bionic tripod manipulator [14], and Stewart-
Gough continuum design [15].

In general, the actuation mechanism of continuum
robots [16, 17] can be divided into internal and external
actuation mechanism [18]. Internal actuation mechanism
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refers to the robot actuator being located inside and as part
of the ontology [19]. A typical example is pneumatic robots,
where deformation is caused by the expansion of an internal
elastic chamber [20]. External actuation mechanism refers to
the use of external components to change the robot configu-
ration, such as the magnetic continuum robot. Different
actuation mechanisms would bring different characteristics
to robots [21]. For instance, the magnetic robot is easy to
miniaturize while the tendon-driven robot has a relatively
large load capacity. In addition, even if the same design pro-
totype is used, different degrees of manufacturing error will
bring different model parameters to the robot. As time goes
by, the wear effect will further damage the modeling accu-
racy of the robot.

Considering the nonlinear deformations caused by actu-
ation, material elasticity, and sensitivity to contact with the
environment, continuum robots face great challenges in pre-
cise analytical modeling. Although the kinematic modeling
of traditional rigid linkage robots is completely defined by
the size of linkage and joint coordinates, the almost unlim-
ited freedom of continuum robots greatly increases the com-
plexity of its modeling. One of the major challenges in
modeling soft continuum robots is to simplify the models
and compromise the relationship between computation
complexity and model accuracy. At present, the main
modeling methods of continuum robots include the contin-
uum model, geometric model, and data-driven model [22].
In the continuum model, the continuum robot is repre-
sented by an infinite number of infinitesimal microsolids
in continuous accumulation [23], with geometric accuracy.
The geometric model assumes that the continuum robot
deforms in a certain geometric form, and the piecewise con-
stant curvature modeling method is the most commonly
used assumption for the continuum robot at present [24].
Recently, data-driven modeling, in which the model of the
system is derived by using datasets and learning processes
without making such physical simplification assumptions,
has also been widely studied [25-27].

The control problem for the continuum robot is to find
the proper actuation value to reach the desired state to per-
form a given task. In the control field, most research works
focus on the positioning control and force control of the
end-effector, but the control of the whole body configuration
is rarely studied [16, 28]. Due to the kinematic redundancy
of the continuum robot, a hierarchical control strategy could
be adopted to achieve the optimal control to perform a cer-
tain task and simultaneously achieve the optimal configura-
tion of the body. Currently, the control methods could be
mainly divided into model-based, model-free, and hybrid
model control [29]. Among them, model-based control is
highly dependent on the precise modeling of the continuum
robot and the perception accuracy of the sensor, showing
better performance in motion accuracy [30]. The model-
free control method is a data-driven control method, which
is based on the neural network to learn the model of the
robot, so as to achieve efficient control [31]. The hybrid
model control method is generally combined with the neural
network and physical model, and the neural network model
is used to compensate for nonlinear factors to achieve effi-
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cient control accuracy [32, 33]. In addition, remote opera-
tion is often used to control the continuum robot in the
medical field [34, 35]. Through the user’s visual perception,
with the help of intraoperative images, the robot’s state can
be estimated, and the user can correct its movement
accordingly.

This paper is aimed at summarizing and discussing the
representative work in design, actuation, modeling, and con-
trol of continuum robots, as well as conducting a thorough
and systematic analysis. This paper, in contrast to other
review publications [21, 24, 36, 37], focuses more on major
technical concerns rather than its application in a certain
field. Thus, it could provide a relatively wide perspective
on the development of continuum robots. Furthermore, this
paper is expected to enlighten researchers to pay more atten-
tion to the immature field of continuum robots. This paper
is organized as follows. In Chapter 2, this paper introduces
the design and actuation method of the continuum robots
in detail. In Chapter 3, this paper introduces the develop-
ment of the continuum model, geometric model, and data-
driven model in detail. In Chapter 4, several control
methods of continuum robots, including model-based,
model-free, and hybrid model control strategies, are intro-
duced. In Chapter 5, some prospects and challenges are
offered in order to motivate researchers to address some
new issues. In Chapter 6, we conclude this paper and hope
to give the researcher inspiration and a general understand-
ing of continuum robots.

2. Design and Actuation Methods

2.1. Classification of the Design and Actuation Principle.
Many alternative design and actuation approaches of contin-
uum robots have been presented to fulfill the application in
many sectors. Tendon-driven continuum robots are cur-
rently the most commonly used [38-40]. This kind of robots
has a relatively rigid body [41], can easily obtain the analyt-
ical solution of the kinematics model, and is widely applied
in multitask operation of various small surgical instruments
[42]. Besides, it can usually achieve bending angles in excess
of 100 degrees, achieving positioning accuracy of around
2.0 mm [43]. However, traditional tendon-driven continuum
robots are constrained by traditional manufacturing pro-
cesses and are difficult to be scaled down to smaller scales.

In order to reduce the stiffness of the continuum robot
while maintaining a larger workspace, the fluid actuation
mechanism [55-57] is proposed to replace the tendon actua-
tion. Although its soft body gives the robot the advantages of
safe contact and a large bending angle, it is difficult to achieve
accurate positioning due to its highly nonlinear characteristics
and the increasing complexity of the control system [58]. In
addition, fluid-driven robots are larger than tendon-driven
robots due to their limited actuation mode in shape.

In order to realize the miniaturization configuration of
continuum robots, many cutting-edge materials have been
developed and used to realize the actuation of robots, show-
ing unique advantages [38, 59-61]. The soft continuum
robots embedded with micromagnet or made of ferromag-
netic composite material have accurate steering ability under
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an external controllable magnetic field; its bending angle could
exceed 180 degrees and has high positioning accuracy up to
10 um [49]. Magnetically soft continuum robots, on the other
hand, can achieve small diameters, up to the micron scale,
which ensures their ability to conduct targeted therapy in bron-
chi or in cerebral vessels [62]. However, it is difficult for mag-
netically soft continuum robots to maintain stability under
external forces, and the tiny rigid magnet tips risk falling oft
inside the body during operation. To achieve safer and more
reliable control, shape memory materials are used to drive the
continuum robot and for cardiovascular examination and naso-
pharyngeal administration [63]. The key advantage of this self-
deforming material is that it provides extension, bending, and
torsion for the main stem and can achieve overall actuation
while maintaining a small scale, but its inherent hysteresis
makes it difficult to achieve rapid response and precise position-
ing at the same time, and it has a low load capacity and quite
complex pipeline wiring. Recently, combined with the ionic lig-
uid conductors and tendon-driven method, a kind of contin-
uum robot with proprioception has been studied. This robot
show a promising prospect toward low-cost, scalable position
feedback for small-scale continuum robots [64].

In order to achieve accurate position prediction and var-
iable stiffness for different environments, researchers have
developed a number of hybrid actuated continuum robots.
By integrating the pneumatic and tendon actuation
methods, the robot exhibited great characteristics and
achieved bending angles greater than 90° [65, 66]. In order
to achieve the interventional treatment of human stenosis,
a continuum robot integrating magnetic- and tendon-
driven methods is proposed [51]. The robot can achieve rel-
atively large angle steering under tendon actuation and high-
precision position control of 10 ym under the external mag-
netic field. It takes the full advantage of both actuation
methods and demonstrates excellent steering and accurate
tracking capabilities.

Recently, some new design and actuation methods of
continuum robots have been studied. A stretchable origami
continuum robot [53] with omnidirectional bending and
twisting has been developed. This kind of robot could
achieve more sophisticated motions such as continuous
stretching and contracting, reconfigurable bending, and
multiaxis twisting with the foundation of the basic inte-
grated motion. Besides, this robot has good scalability that
could be assembled into a multisection continuum robot.
A soft pneumatic robot [67, 68] has been studied that is able
to navigate their environments not through locomotion but
through growth. This motion is achieved by two principles:
the increasing pressure of the thin-walled vessel allows rapid
and substantial extension of the tip and asymmetric length-
ening of the tip allows directional control. By validation, this
kind of robot shows the abilities to navigate through con-
strained environments by exploiting passive deformations.
The Table 1 summarizes some different design and actuation
method of continuum robots.

2.2. Optimization Method of the Structure Parameters. For
some specific occasions, the structure of continuum robots
needs to be specially designed to meet the needs of use.

Two important principles need to be considered: the size
of the workspace and the stiffness. In general, the workspace
and stiffness should be as large as possible, so that the robot
could reach the desired position and apply the required
operating force. The two properties mainly depend on the
structural design and constituent material. In general, a
small diameter and high elastic modulus would take a large
range of workspace; however, small cross-sectional diameter
would reduce the stiffness of the robots. Therefore, there is a
basic compromise between the workspace and the stiffness
of a continuum robot. The super-elastic NiTi skeleton has
high stiffness in a small diameter (about 3 mm), which has
been widely adopted as the backbone skeleton of robots
[38, 69, 70]. Moreover, it has good biocompatibility and is
widely used in the medical field.

In recent years, there have been some studies on the
structure optimization of continuum robots [71, 72]. The
optimization parameters include material properties, whole
length, diameter, and curvature that affect robot capabilities
and properties. It is significant to obtain optimal design
parameters for concentric tube robot [73], considering surgi-
cal task requirements, anatomical constraints, and any other
desired indicators. Heuristics algorithms have been pro-
posed to solve the design optimization problem on work-
space of the robots [74]. However, it has been proven that
this method is actually suboptimal [75]. Recently, a system-
atic set of the evolutionary design algorithm by integrating a
theoretical model and the genetic algorithm is proposed
[76]. The experimental results validate that designed mag-
netic soft continuum robots have a counterintuitive nonuni-
form distribution of magnetic particles to achieve an
unprecedented workspace. Besides, some researcher also
appropriately integrates sampling-based motion planning
in configuration space into stochastic optimization in design
space to obtain the optimal continuum robot for medical
application [77] and provide the asymptotic optimality.

3. Modeling Method

Many researchers have contributed to the development of
mathematical modeling methods capable of describing the
kinematics and dynamics of such robots with infinite
degrees of freedom since the field’s inception. However,
addressing the needs of robotics applications remains a chal-
lenge. The kinematics and dynamics modeling of the tradi-
tional rigid linkage robot can be defined by the size of the
linkage and the coordinate of the joint. However, continuum
robots have almost unlimited degrees of freedom, which
greatly increases the complexity of modeling. In order to
meet the standard of traditional rigid robot technology, the
model of continuum robots should have low computational
costs and sufficient accuracy. It should be able to clarify
mathematical submodels, include them in a unified frame-
work, and provide a systematic modeling process. At pres-
ent, one of the main challenges of continuum robot
modeling is to study and set up reasonable model assump-
tions and simplify modeling, which can accurately predict
robot behavior while improving computational efficiency.
The tradeoft between model complexity, computational cost,
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TaBLE 1: Summary of different design and actuation methods.

Literature Design principle DOF Actuation Diameter (mm) Accuracy Characteristics

[44] Parallel 5 Rod driven — 2.3% Large workspace and high precision
[45] Backbone 2 SMA driven 5 0.98 mm Modular; teleoperation

[39] Backbone 4 Tendon driven 38 <2mm Passive structural flexibility
[46] Backbone 6 Fluid driven 30 — Variable stiffness

[47] Concentric tube 12 Motor driven 2.74;1.92; 1.21 1% Dual-arm

(48] Backbone 4 Fluid driven 32 1.3% Soft and has variable stiffness
[49] Backbone 6 Magnetic driven — <7.86 Combination of soft and hard joints
[50] Backbone 5 Magnetic driven 2.5 — Variable stiffness

[51] Backbone 5  Tendon and magnetic driven 3 10 um Large workspace and high precision
[52] Backbone 5 Fluid and tendon driven 25 — High load capacity

[53] Backbone 5 Magnetic driven 20 — Omnidirectional bending and twisting
[54] Concentric tube 4 Motor driven 4.36; 2.265 — 3D printed

and accuracy is the main principle that must be considered
when modeling continuum robots. This paper investigates
the modeling techniques that have been proposed so far
and introduces the development of the continuum model,
geometric model, and proxy model, which are relatively rep-
resentative in current academia.

3.1. Continuum Model. The continuum model is an infinite
degree of freedom model in which a robot is represented
by a continuous stack of infinite infinitesimal particles (Cos-
serat bar theory, see [78]). In the field of robotics, the Cos-
serat theory consisting of a finite number of solids
projected on a continuous backbone has been applied to
the dynamics of hyperredundant robots [79]. Recently, the
Cosserat theory has been explicitly applied to soft robot
motion and operation under static and dynamic conditions
[79-81]. The Cosserat model treats the continuum robot as
a deformable curve in which each particle is rigidly con-
nected to a set of orthogonal vectors (controllers) to charac-
terize its direction [82].

In Cosserat theory [79], the configuration of a microso-
lid with material abscissa X € [0, L] on the continuum robot
with respect to the base frame of a continuum robot can be
represented by position vector P and rotation matrix R.
Therefore, the configuration space is defined as a curve
g(-): X g(X) € SE(3) and

R P
g= :
o 1

The strain state of the soft arm is defined by the vec-

(1)

tor field along the curve g(X) given as X l—»E(X) =g'0
g/0X =g 'g' €se(3) where the hat is the isomorphism
between the twist vector representation and the matrix

representation of the Lie algebra se(3). It could be
defined as
- k T
&= 1 €se(3),&= (kT,qT> € RS, (2)
0" 0

where g(X) represents the linear strains and k(X) repre-
sents the angular strains.

The time derivation of the configuration curve g(-) is
represented by the twisted vector field X — 7(X) € R® given
by 7(X)=g'0g/ot=g'g. This field can be detailed in
terms of its components in the (micro)body frames as

1= (w V) ese(3)n=(w' V) €R,  (3)

o' o

where v(X) represents the linear velocity and w(X) repre-
sents the angular velocity at a given time instant.

The time derivation of continuous media (see Figure 1)
can be used to describe the dynamics that relates the time
evolution of stress to the time evolution of strain. It could
be obtained based on Newton’s law, Alembert’s law, and
Hamilton’s law; a set of geometric boundary conditions;
and the constitutive law as follows.

{Mﬁ—ad;M;y:A' —ad{ A+F, @

A(0)=—F,, A(1) = F,,

where ad is the adjoint representation of the Lie algebra,
M is the section, A=
(R™m)", (R™m)"), E= (R'D)", (RTF)")", and it simulates
the stress field on the beam which is the double counterpart
of the strain field.

In order to simplify the modeling complexity, a discrete
Cosserat model based on piecewise-constant strain (PCS)
hypothesis has been proposed in recent years [22]. Com-
pared with finite element simulation and other methods, this
model can express the motion characteristics of discrete
beams by explicit integration. The strain assumptions of
the Cosserat continuous model (including torsion, shear,
curvature, and elongation) are considered. The discrete
modeling framework has excellent modeling accuracy under
different driving conditions and external load models and
can represent the deformation under the interaction with

inertia tensor of the cross
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FIGURE 1: Diagram of force analysis of continuous media [83].

the medium, which promotes the development of modeling
theory in the field of continuum robots.

3.2. Geometric Model. Compared with the Cosserat model,
the geometric model does not consider the material proper-
ties of the robot and assumes that the deformation of the
robot is a specific geometric shape. Therefore, the configura-
tion of the continuum robot can be represented by a curve
and a vector defining the direction of the robot tip. By far,
the most widely used geometric model in the soft robot field
adopts the piecewise constant curvature assumption [24].
The soft robot is expressed as a finite set of arc and described
by circle parameters (radius of curvature, arc angle, and
bending plane). By this method, the dimension of the state
vector of continuum robot is simplified, and it is widely used
in all kinds of real-time control algorithms and other occa-
sions requiring high-speed computation [84-86].

As shown in Figure 2, the kinematics of the robot is
decomposed into two mappings: One mapping is f . from
the joint or actuator space g to a configuration space parame-
ter (x, ¢, 1) describing a constant curvature section; it is robotic
specific because each actuator in a unique continuum robot

would affect circle parameters in different ways. The other
Mapping fi qependent 18 from the configuration space to the task

space; it is robot independent and used to represent the char-
acteristics of piecewise constant curvature deformation.

As is shown in Figure 3(a), the continuum robot can be
described by a spatial curve, which describes the position
and direction of any point on the body. Kinematic models
of robots can be derived in a variety of ways, including
Denavit-Hartenberg (D-H) parameters [87], Frenet-Serret
(F-S) framework [88], and exponential coordinates [89]. At
present, the kinematic characterization method using the
DH parameter and exponential coordinate is widely used.
In the section, we mainly introduce the two-representation
method.

As shown in Figure 3(b), the continuum robot can be
represented as the relative rotation and translation motion
between multiple rigid links, and the corresponding DH
parameters are given. According to the assumption of con-
stant curvature deformation, the transformation matrix T,
between the tip coordinate system and the base coordinate
system can be represented as

i cos ¢(1 — cos ks) ]
cos’p(cos ks — 1) + 1 sin ¢ cos ¢(cos ks — 1)  cos ¢ sin ks cos (1~ cos ks)
K
. 2 . . sin ¢(1 — cos ks)
sin ¢ cos ¢(cos ks — 1) cos“p(1l —cos ks) +cos ks sin @ sin ks ———————=
T, = K . (5)
. . . sin xs
—Cos ¢ sin ks —sin ¢ sin s COS kS .
L 0 0 0 1 i

Similar results can be obtained using exponential coordi-
nates based on the Lie group theory [90, 91]. The homoge-
neous transformation of the constant curvature curve can
be decomposed into rotation transformation ¢ and in-
plane transformation €, and we can write the twist vector
associated with each transformation using the notations
and conventions outlined by Murray [92] as follows.

vl’
X = { °‘} =[000001]",

Wrot
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FIGURE 2: Mapping relationship of geometric model.

It can be written as follows.

0 -1 0 O
N Weor  Vior 1 0 0 0
rot = = >
0 0 0O 0 0 O
0O 0 0 O )
7
0o 0 x 01"
~ zbmp Vinp 0O 0 0 O
1np = =
0 0 -« 0 0 1
0 0 0 O

Using the exponential product formula, the transforma-
tion matrix T could be solved by the following equation.

T = e(§r0t¢)e(§inp ) (8)
Similarly, if a set of twist vector is denoted by

x=[0 0 1 -ksing kcosg 0] )

Its exponential coordinate has the same form with (5).

3.3. Data-Driven Model. Because of the significant nonline-
arities in the motion process of continuum robots, successful
modeling of robots necessitates a significant amount of work
and experience in continuum mechanics. To tackle these
challenges, data-driven techniques, in which systems are
modeled by learning from vast volumes of data (inputs and
outputs) from external sources, have gotten a lot of attention
recently [93-96]. At present, the neural network (NN) is the
most commonly used approximate mapping regression
model. By weighting the hidden layer, information always
flows from the input to the output [97]. Furthermore, vari-
ous regression approaches have shown to be effective in
the field of continuum robotics, and the representative
method can be locally weighted projection regression
(LWPR) and (local) Gaussian process regression (GPR)
[98]. One of the main benefits of these solutions is that they
do not require physical models, but they rely on large
amounts of representative data, which is sometimes difficult
to collect. It is worth noting that for both data-driven and
model-based approaches, each has a unique strength and is
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preferred over the other in certain scenarios. Due to the pos-
sibility of hybrid approaches, combining both of them
should also be explored in the future. Neural network
models, on the other hand, are often pretrained and difficult
to adapt to dynamic contexts. As a result, online learning is
likely to become a new research topic.

4. Control Method

Robot control is the study of how to determine the right
amount of drive to achieve the required state to perform a
given task. The state of the continuum robot includes the
position and orientation of the end-effector, the configura-
tion of the robot, the stiffness of the robot, and its related
motion performance. Current control methods of contin-
uum robots mainly focus on achieving accurate position
and posture control of end-effector and impedance control
of the end-effector [16, 28, 99-101], which are mainly solved
at the level of actuation and design optimization. There are
few studies on control methods of overall configuration
and distributed stiffness. On the other hand, the continuum
robot has a redundant degree of freedoms, and the optimal
control method can be used to achieve the optimal configu-
ration of its configuration while performing the required
tasks [102, 103].

Currently, control methods for the continuum robots
can be divided into model-free, model-based, and hybrid
model controls [29]. The accuracy of the robot model is crit-
ical for model-based control approaches. In order to obtain
satisfactory control effects, complex models are usually
derived to explain the numerous physical phenomena expe-
rienced by the robot. It is challenging to implement high-
performance control algorithms in real time when using
sophisticated nonlinear models, such as the variable curva-
ture model. Control accuracy can be improved by using elec-
tromagnetic sensors [104, 105] or analytical calculation
[106], visual feedback [107, 108], and other feedback tech-
niques. The measured data is used to compensate the model
error in the control process and achieve higher control accu-
racy. A typical closed-loop control strategy for a magnetic
continuum robot is proposed by Campisano et al. based on
the real-time Cosserat rod theory [109]. It utilized the actu-
ation feedback to compensate for nonlinearities that can
result in a kinematic model error. Pose feedback is utilized
to maintain accurate path following. Experimental results
demonstrate that the closed-loop control scheme has a sig-
nificant performance.

Several studies have shown that using a closed-loop con-
trol strategy with feedback information can significantly
increase control accuracy, stability, and robustness in low-
frequency environments [110-113]. However, for extremely
miniaturized continuous robotics, feedback control poses
significant technical problems in sensor integration. It incor-
porates compatibility with anatomy, preoperative imaging
technologies, and surgical equipment, especially in medical
applications [105, 114]. Contact constraints in the environ-
ment also bring uncertainty to the control of the continuum
robots [26, 37]. In order to overcome the inaccuracy of the
model, some advanced control methods, such as adaptive
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(b)

FIGURE 3: Parameter description of the configuration space continuum robot. (a) Arc parameter description of one section of continuum
robots. (b) Denavit-Hartenberg (D-H) parameter description of one section of continuum robots.

control, have emerged in the field of continuous robots. The
earliest application of this method was to compensate the
kinematic inaccuracy of concentric robots [115] and to real-
ize the automatic adjustment of model parameters by using
model parameter estimation, so as to achieve high-
performance control [116].

Due to the high complexity and high computation time of
continuum robot kinematics, the model-free method (see
Figure 4(a)) is used as an alternative method in recent studies.
Direct strategy learning for robot control is an effective
method, which is suitable for situations where dynamic
modeling is difficult or the environment is unstructured. This
method can be applied to high-dimensional systems and has a
higher speed than traditional model-based controllers [93,
120, 121]. Strategy learning can be divided into model-free
reinforcement learning and model-based reinforcement learn-
ing; we focus on model-based reinforcement learning because
it can generate more effective strategy learning samples. In
[122], the model-based strategy search uses a learning control
algorithm called probabilistic reasoning, which takes into
account the model uncertainty of the learned dynamic model
(provided by a nonparametric Gaussian process) in long-term
planning. Recently, there has been a strong interest in using
traditional trajectory optimization methods to generate sam-
ples for strategy learning [123]. In addition, it can also com-
bine the function approximation ability of the neural
network to learn and represent these strategies [124, 125].
The most advanced methods of using this variant of the idea
involve the use of local models of learning [126], composite
multistep controllers [127], and deep representations of con-
trol strategies [128]. A model-based policy learning algorithm
is proposed for closed-loop predictive control of a continuum
robot. The closed loop control is obtained by trajectory opti-
mization and supervised learning strategy, which shows good
performance on control accuracy.

However, high computational time, low compatible rate
of change in environment/interference, and complexity of
learning methods (due to the nonlinearity and redundancy
of continuum robots) seriously hinder the use of model-
free methods in complex scenarios. The adaptability of dif-
ferent continuum robot structures presents additional chal-

lenges to the learning approach due to the particularity of
each structure and inconsistencies in actuation and model
descriptions. Therefore, a hybrid model control method
(see Figure 4(b)) is proposed, which takes into account both
model control reliability and data-driven robustness. One
representative work is the hybrid adaptive control frame-
work proposed by Wang et al. [116]; it combined offline
trained robot inverse kinematics with neural network and
online adaptive PID controller to compensate the position-
ing error caused by external disturbance. The experiment
results validated that the proposed hybrid adaptive control
framework has great performance to compensate for uncer-
tain factors such as friction, driving tendon relaxation and
external load during robot movement. Another representa-
tive work is the control method based on the Koopman
operator theory [119, 129], which can not only avoid the
physical simplification hypothesis but also produce a clear
control-oriented model. This method uses the linear struc-
ture of the Koopman operator to construct a linear model
of a nonlinear controlled dynamical system from input-
output data and uses an established linear control method
[130, 131] to control it. Koopman modeling and control
methods are well suited to soft robots because they pose less
physical threat to themselves or their surroundings, which
allows the model to safely collect input-output data under
a variety of operating conditions and do so in an automated
manner. In addition, because the Koopman program is
entirely data-driven, it inherently captures input-output
behavior, avoiding the ambiguity involved in selecting dis-
crete sets of states for structures with infinite degrees of free-
dom [119]. The Table 2 summarizes some different control
methods for continuum robots.

5. Prospects and Challenges

In this paper, we have reviewed the state of the art of contin-
uum robots, focusing particularly on the design, actuation,
modeling, and control. The design and actuation of contin-
uum robots is evolved from single actuation to hybrid actu-
ation combining the advantages of different actuation
methods. On the other hand, some new type of continuum
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TaBLE 2: Summary of different control methods.

Literature D.eSI.gn Actuation Model based or free Control method Accuracy
principle

[116] Backbone Tendon driven Model based Hybrid control based on the adaptive PID and NN model <2.14mm
[26] Backbone Tendon driven Model free Optimal control considering contacts —
[110] Backbone Tendon driven Model based Closed control based on the mechanics model <1.07 mm
[111] Backbone Nilar%‘rll:;lc Model based Closed control based on the mechanics model 0.42 mm
[117] Backbone Tendon driven Model based Open control based on the FEM model <2.14 mm
[112] Backbone Fluid driven Model based Closed control based on the inverse kinematics 12.3mm
[113] Concentric tube  Motor driven Model based Closed control based on the Cosserat rod model <1.67 mm
[118] Backbone Nfigigee:c Model based Closed control based on the inverse kinematics <5.41 mm
[93] Backbone Tendon driven Model based Closed control based on the reinforcement learning ~ <0.029 mm
[119] Backbone Fluid driven Model based Closed control based on the Koopman operator theory = <0.43 mm
[120] Backbone Fluid driven Model based Closed control based on the online learning kinematic  16.8 pixels

robot including soft pneumatic growing robot or origami-
inspired continuum robot shows excellent abilities in motion
flexibility or expansibility. On the field of modeling, the most
widely used method includes Cosserat model and geometric
model. The former is geometric exact but has low computa-
tion efficiency. The latter simplifies the modeling complexity
and has very high computation efficiency but has lower
accuracy if there is large deformation. However, considering
the requirements of many applications, the geometric model
is still popular. Recently, the data-driven method has been
studied and applied into the modeling of continuum robots
due to its ability of nonlinear fitting and generalization.
However, the generalization ability of dynamic scenarios is
still a problem worth studying. On the field of control, the
closed control strategy with feedback information shows
great improvement on the control accuracy, stability, and
robustness under low frequency environment; however, it
depends mostly on the sensor accuracy. Recently, the
model-free control method which is used as an alternative
method has been studied. Direct strategy learning for robot
control is an effective method and shows good control accu-
racy and robustness. However, these methods have low
adaptability to the change in environment/interference.

The hybrid model control method attracts the attention of
researchers. The Koopman algorithm uses the linear struc-
ture of the Koopman operator to construct a linear model
from input-output data to describe the dynamics of a com-
plex system. Thus, many linear model controllers could be
applied to the motion control of some complex continuum
robot.

However, there are some serious significant challenges
for the development of continuum robots, and there is no
good solution so far.

(1) The first is the miniaturization of continuum robots. At
present, only magnetic-driven, optical-driven, or
thermal-driven methods are most likely to achieve the
miniaturization of continuum robots, but they often
have highly nonlinear complex mechanical models,
which makes it difficult to achieve robust control

(2) The second is to enhance continuum robot percep-
tion. Ideally, the optimal awareness should be able
to reconstruct the configurations of the robot with
infinite degrees of freedom; however, only expensive
FBG optical fibers can currently realize a high degree
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of freedom reconstruction. In the future, it is
expected to combine with optical, mechanical, and
electrical technologies to develop sensors that are
cheaper and more suitable for continuum robots

(3) The third is to develop the physics simulation engine
of the continuum robots. The traditional rigid robot
has a number of relatively mature simulation frame-
works; however, they are not suitable to the contin-
uum robots with infinite degrees of freedom.
Nowadays, the validation of control algorithms must
depend on the real robot platform which increases
the costs. It is urgent for academia and industry to
develop a real-time physics simulation engine for
soft continuum robots

6. Conclusion

In summary, the development of continuum robots is rapid
in recent years, and there have been many representative
achievements on the design, actuation, modeling, and con-
trol of continuum robots. These great improvements pro-
mote the application of continuum robots in many fields
such as surgical robot, nursing robot, continuum-limbed
vehicles, ship-to-ship refueling, and exploration of extrater-
restrial surfaces. It is expected that the continuum robot
would play a more and more important role in social pro-
duction and human life.
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