Skip to main content
. 2024 Feb 15;59(2):342–370. doi: 10.1080/00273171.2023.2283634

Table A1.

Pearson’s correlations between the model variables in one of the simulated datasets, showing some of the time points used for model-fitting.

  IVx IVy X100 X101 X125 X150 Y100 Y101 Y125 Y150
IVx 1                  
IVy 0.2500 1                
X100 0.2834 0.2227 1              
X101 0.2834 0.2227 0.8490 1            
X125 0.2834 0.2227 0.1581 0.1640 1          
X150 0.2834 0.2227 0.1087 0.1092 0.1581 1        
Y100 0.2227 0.2834 0.6877 0.6904 0.1532 0.1038 1      
Y101 0.2227 0.2834 0.6904 0.6877 0.1591 0.1042 0.8490 1    
Y125 0.2227 0.2834 0.1532 0.1591 0.6877 0.1532 0.1581 0.1640 1  
Y150 0.2227 0.2834 0.1038 0.1042 0.1532 0.6877 0.1087 0.1092 0.1581 1

Note. The simulated time-series was stationary over the time points used for model-fitting (i.e., from T=100 to T=150), as indicated by the correlations and between the instrumental variable (IVx) and Xi (r=0.2834), IVx and Yi (r=0.2227), and the cross-sectional correlations between Xi and Yi (r=0.6877). The shown correlations are based on a time-series with the direct effect on IVx on X, bX=0.08; the direct effect on IVy on Y, bY=0.08; the first-order autoregressive coefficient (AR1) for X, bX2X1=0.7; the AR1 for Y, bY2Y1=0.7; the first-order causal effect of X on Y, bYX=0.2; the first-order causal effect of Y on X, bXY=0.2; the cross-sectional correlation between the residuals of X and Y, rexy=0.2; and the correlation of IVx and IVy, rIV=0.25.