Table 1.
Simulation 1 –Cell Means for Proportion of Suboptimal Walktrap SSE’s, ARIs, Proportion of Test Problems for Which Each Method Yielded a Better ARI, and ARI.
Proportion |
Proportion with better ARI
|
Mean ARI |
||||||
---|---|---|---|---|---|---|---|---|
Dist | K | Cohesion | Overlap | Ward’s SSE > K-means SSEs | Ward’s | K-means | Ward’s | K-means |
| ||||||||
Equal | 2 | 0.9 | 0.1 | 0.00 | 0.00 | 0.00 | 0.9900 | 0.9900 |
Equal | 2 | 0.9 | 0.2 | 0.00 | 0.00 | 0.00 | 0.9900 | 0.9900 |
Equal | 2 | 0.9 | 0.3 | 0.00 | 0.00 | 0.00 | 0.9900 | 0.9900 |
Equal | 2 | 0.8 | 0.1 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 2 | 0.8 | 0.2 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 2 | 0.8 | 0.3 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 2 | 0.7 | 0.1 | 0.00 | 0.00 | 0.00 | 0.9983 | 0.9983 |
Equal | 2 | 0.7 | 0.2 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 2 | 0.7 | 0.3 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 3 | 0.9 | 0.1 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 3 | 0.9 | 0.2 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 3 | 0.9 | 0.3 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 3 | 0.8 | 0.1 | 0.00 | 0.00 | 0.00 | 1.0000 | 1.0000 |
Equal | 3 | 0.8 | 0.2 | 0.01 | 0.00 | 0.01 | 1.0000 | 0.9987 |
Equal | 3 | 0.8 | 0.3 | 0.05 | 0.04 | 0.01 | 0.9863 | 0.9910 |
Equal | 3 | 0.7 | 0.1 | 0.03 | 0.01 | 0.02 | 0.9974 | 0.9962 |
Equal | 3 | 0.7 | 0.2 | 0.07 | 0.06 | 0.01 | 0.9768 | 0.9852 |
Equal | 3 | 0.7 | 0.3 | 0.18 | 0.12 | 0.04 | 0.9493 | 0.9590 |
Equal | 4 | 0.9 | 0.1 | 0.00 | 0.00 | 0.00 | 0.9988 | 0.9988 |
Equal | 4 | 0.9 | 0.2 | 0.01 | 0.01 | 0.00 | 0.9977 | 0.9988 |
Equal | 4 | 0.9 | 0.3 | 0.04 | 0.03 | 0.01 | 0.9865 | 0.9896 |
Equal | 4 | 0.8 | 0.1 | 0.01 | 0.01 | 0.00 | 0.9956 | 0.9968 |
Equal | 4 | 0.8 | 0.2 | 0.10 | 0.08 | 0.02 | 0.9663 | 0.9748 |
Equal | 4 | 0.8 | 0.3 | 0.22 | 0.13 | 0.06 | 0.9346 | 0.9481 |
Equal | 4 | 0.7 | 0.1 | 0.11 | 0.06 | 0.05 | 0.9730 | 0.9730 |
Equal | 4 | 0.7 | 0.2 | 0.33 | 0.19 | 0.13 | 0.8830 | 0.8912 |
Equal | 4 | 0.7 | 0.3 | 0.58 | 0.36 | 0.19 | 0.7864 | 0.8166 |
Equal | 5 | 0.9 | 0.1 | 0.03 | 0.02 | 0.01 | 0.9905 | 0.9916 |
Equal | 5 | 0.9 | 0.2 | 0.11 | 0.08 | 0.03 | 0.9756 | 0.9808 |
Equal | 5 | 0.9 | 0.3 | 0.19 | 0.12 | 0.07 | 0.9445 | 0.9530 |
Equal | 5 | 0.8 | 0.1 | 0.11 | 0.06 | 0.05 | 0.9653 | 0.9714 |
Equal | 5 | 0.8 | 0.2 | 0.18 | 0.09 | 0.09 | 0.9194 | 0.9173 |
Equal | 5 | 0.8 | 0.3 | 0.37 | 0.19 | 0.14 | 0.8227 | 0.8354 |
Equal | 5 | 0.7 | 0.1 | 0.26 | 0.12 | 0.14 | 0.8982 | 0.8947 |
Equal | 5 | 0.7 | 0.2 | 0.42 | 0.18 | 0.20 | 0.8037 | 0.8004 |
Equal | 5 | 0.7 | 0.3 | 0.55 | 0.33 | 0.19 | 0.6738 | 0.6878 |
Equal | 6 | 0.9 | 0.1 | 0.08 | 0.03 | 0.03 | 0.9777 | 0.9794 |
Equal | 6 | 0.9 | 0.2 | 0.17 | 0.05 | 0.10 | 0.9454 | 0.9392 |
Equal | 6 | 0.9 | 0.3 | 0.31 | 0.22 | 0.09 | 0.8585 | 0.8800 |
Equal | 6 | 0.8 | 0.1 | 0.09 | 0.05 | 0.03 | 0.9226 | 0.9217 |
Equal | 6 | 0.8 | 0.2 | 0.43 | 0.19 | 0.23 | 0.8168 | 0.8150 |
Equal | 6 | 0.8 | 0.3 | 0.51 | 0.28 | 0.20 | 0.7242 | 0.7306 |
Equal | 6 | 0.7 | 0.1 | 0.37 | 0.18 | 0.17 | 0.8280 | 0.8285 |
Equal | 6 | 0.7 | 0.2 | 0.68 | 0.37 | 0.29 | 0.6769 | 0.6942 |
Equal | 6 | 0.7 | 0.3 | 0.69 | 0.43 | 0.25 | 0.5830 | 0.6032 |
Unequal | 2 | 0.9 | 0.1 | 0.01 | 0.00 | 0.01 | 0.9900 | 0.9865 |
Unequal | 2 | 0.9 | 0.2 | 0.01 | 0.00 | 0.01 | 0.9900 | 0.9882 |
Unequal | 2 | 0.9 | 0.3 | 0.02 | 0.00 | 0.02 | 0.9846 | 0.9811 |
Unequal | 2 | 0.8 | 0.1 | 0.00 | 0.00 | 0.00 | 0.9982 | 0.9982 |
Unequal | 2 | 0.8 | 0.2 | 0.00 | 0.00 | 0.00 | 0.9930 | 0.9930 |
Unequal | 2 | 0.8 | 0.3 | 0.02 | 0.01 | 0.01 | 0.9822 | 0.9821 |
Unequal | 2 | 0.7 | 0.1 | 0.01 | 0.00 | 0.01 | 0.9928 | 0.9911 |
Unequal | 2 | 0.7 | 0.2 | 0.08 | 0.01 | 0.07 | 0.9876 | 0.9734 |
Unequal | 2 | 0.7 | 0.3 | 0.12 | 0.03 | 0.09 | 0.9529 | 0.9454 |
Unequal | 3 | 0.9 | 0.1 | 0.00 | 0.00 | 0.00 | 0.9967 | 0.9967 |
Unequal | 3 | 0.9 | 0.2 | 0.02 | 0.00 | 0.02 | 0.9947 | 0.9927 |
Unequal | 3 | 0.9 | 0.3 | 0.04 | 0.02 | 0.02 | 0.9891 | 0.9896 |
Unequal | 3 | 0.8 | 0.1 | 0.01 | 0.01 | 0.00 | 0.9926 | 0.9936 |
Unequal | 3 | 0.8 | 0.2 | 0.05 | 0.00 | 0.05 | 0.9950 | 0.9897 |
Unequal | 3 | 0.8 | 0.3 | 0.10 | 0.03 | 0.07 | 0.9687 | 0.9649 |
Unequal | 3 | 0.7 | 0.1 | 0.05 | 0.03 | 0.02 | 0.9804 | 0.9804 |
Unequal | 3 | 0.7 | 0.2 | 0.12 | 0.07 | 0.05 | 0.9609 | 0.9613 |
Unequal | 3 | 0.7 | 0.3 | 0.28 | 0.15 | 0.13 | 0.9359 | 0.9355 |
Unequal | 4 | 0.9 | 0.1 | 0.03 | 0.01 | 0.02 | 0.9962 | 0.9954 |
Unequal | 4 | 0.9 | 0.2 | 0.02 | 0.02 | 0.00 | 0.9889 | 0.9905 |
Unequal | 4 | 0.9 | 0.3 | 0.08 | 0.04 | 0.04 | 0.9739 | 0.9762 |
Unequal | 4 | 0.8 | 0.1 | 0.05 | 0.03 | 0.02 | 0.9824 | 0.9839 |
Unequal | 4 | 0.8 | 0.2 | 0.06 | 0.02 | 0.04 | 0.9658 | 0.9632 |
Unequal | 4 | 0.8 | 0.3 | 0.17 | 0.12 | 0.05 | 0.9436 | 0.9508 |
Unequal | 4 | 0.7 | 0.1 | 0.08 | 0.03 | 0.04 | 0.9789 | 0.9775 |
Unequal | 4 | 0.7 | 0.2 | 0.31 | 0.17 | 0.13 | 0.9256 | 0.9287 |
Unequal | 4 | 0.7 | 0.3 | 0.41 | 0.18 | 0.23 | 0.8468 | 0.8485 |
Unequal | 5 | 0.9 | 0.1 | 0.02 | 0.01 | 0.01 | 0.9917 | 0.9916 |
Unequal | 5 | 0.9 | 0.2 | 0.15 | 0.06 | 0.09 | 0.9569 | 0.9540 |
Unequal | 5 | 0.9 | 0.3 | 0.19 | 0.11 | 0.07 | 0.9307 | 0.9336 |
Unequal | 5 | 0.8 | 0.1 | 0.11 | 0.05 | 0.06 | 0.9657 | 0.9645 |
Unequal | 5 | 0.8 | 0.2 | 0.20 | 0.14 | 0.06 | 0.9173 | 0.9245 |
Unequal | 5 | 0.8 | 0.3 | 0.36 | 0.22 | 0.13 | 0.8527 | 0.8609 |
Unequal | 5 | 0.7 | 0.1 | 0.27 | 0.12 | 0.15 | 0.9217 | 0.9202 |
Unequal | 5 | 0.7 | 0.2 | 0.45 | 0.21 | 0.23 | 0.8582 | 0.8597 |
Unequal | 5 | 0.7 | 0.3 | 0.50 | 0.26 | 0.23 | 0.7510 | 0.7578 |
Unequal | 6 | 0.9 | 0.1 | 0.09 | 0.04 | 0.04 | 0.9732 | 0.9717 |
Unequal | 6 | 0.9 | 0.2 | 0.24 | 0.15 | 0.07 | 0.9267 | 0.9331 |
Unequal | 6 | 0.9 | 0.3 | 0.22 | 0.15 | 0.05 | 0.8832 | 0.8916 |
Unequal | 6 | 0.8 | 0.1 | 0.12 | 0.02 | 0.09 | 0.9460 | 0.9387 |
Unequal | 6 | 0.8 | 0.2 | 0.32 | 0.13 | 0.17 | 0.8808 | 0.8780 |
Unequal | 6 | 0.8 | 0.3 | 0.46 | 0.23 | 0.23 | 0.8090 | 0.8122 |
Unequal | 6 | 0.7 | 0.1 | 0.21 | 0.11 | 0.10 | 0.9280 | 0.9291 |
Unequal | 6 | 0.7 | 0.2 | 0.40 | 0.24 | 0.15 | 0.8376 | 0.8450 |
Unequal | 6 | 0.7 | 0.3 | 0.49 | 0.22 | 0.27 | 0.7300 | 0.7317 |
Note. The first four columns correspond to the cells of the experimental design: the distribution of vertices across communities, the number of communities, cohesion, and overlap, respectively. The fifth column is the proportion of cell replicates for which the Ward’s method SSE exceeded the K-means SSE. The sixth and seventh columns for which Ward’s method and K-means partitions, respectively, yielded better agreement with the true partition. The eighth and ninth columns correspond to the cell average ARI values for the Ward’s and K-means implementations, respectively.