Table 5.
SSE Comparisons for Weighted Networks
SSE Results |
Modularity |
||||||
---|---|---|---|---|---|---|---|
Network | K | Ward | K-means | Difference | % Difference | Ward | K-means |
| |||||||
Obama | 2 | 0.00063952 | 0.00063952 | 0.00000000 | 0.00% | 0.0887 | 0.0887 |
3 | 0.00025376 | 0.00025376 | 0.00000000 | 0.00% | 0.1475 | 0.1475 | |
4 | 0.00005760 | 0.00005760 | 0.00000000 | 0.00% | 0.1342 | 0.1342 | |
5 | 0.00003550 | 0.00003550 | 0.00000000 | 0.00% | 0.0768 | 0.0768 | |
Han | 2 | 0.01897008 | 0.01897008 | 0.00000000 | 0.00% | 0.2738 | 0.2738 |
3 | 0.00788391 | 0.00788391 | 0.00000000 | 0.00% | 0.3019 | 0.3019 | |
4 | 0.00621154 | 0.00598555 | 0.00022599 | 3.78% | 0.2457 | 0.2667 | |
5 | 0.00471093 | 0.00448496 | 0.00022597 | 5.04% | 0.2022 | 0.2231 | |
Empathy | 2 | 0.12560777 | 0.12560777 | 0.00000000 | 0.00% | 0.2390 | 0.2390 |
3 | 0.07100972 | 0.07100972 | 0.00000000 | 0.00% | 0.3833 | 0.3833 | |
4 | 0.04466778 | 0.03951395 | 0.00515383 | 13.04% | 0.4163 | 0.4005 | |
5 | 0.03497292 | 0.02981909 | 0.00515383 | 17.28% | 0.4092 | 0.3933 | |
6 | 0.02585761 | 0.02271613 | 0.00314148 | 13.83% | 0.3762 | 0.3558 | |
Emotion | 2 | 0.08683991 | 0.08229943 | 0.00454048 | 5.52% | 0.0866 | 0.1873 |
3 | 0.05786092 | 0.05521453 | 0.00264639 | 4.79% | 0.2216 | 0.2616 | |
4 | 0.04044612 | 0.03838701 | 0.00205911 | 5.36% | 0.2735 | 0.2907 | |
5 | 0.03339145 | 0.03147526 | 0.00191619 | 6.09% | 0.2855 | 0.2985 | |
6 | 0.02689232 | 0.02622428 | 0.00066804 | 2.55% | 0.3035 | 0.2934 | |
7 | 0.02304063 | 0.02152170 | 0.00151893 | 7.06% | 0.3240 | 0.3105 | |
8 | 0.01996470 | 0.01844577 | 0.00151893 | 8.23% | 0.3022 | 0.2887 |
Note. The SSE results obtained using the walktrap algorithm with both Ward’s method and a multistart K-means clustering are reported, as is the difference in the SSE values (Ward minus K-means) and the percentage difference. Modularity scores associated with the Ward’s method and K-means clustering are also reported. For the Obama, Han, and Empathy networks, branch-and-bound was used to obtain globally-optimal K-means partitions. For the Emotion network, the multistart K-means heuristic was used.