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Abstract

Aim: We tested the hypothesis that visual field (VF) progression can be predicted with a deep 

learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier 

time points during follow-up.

Methods: 3,919 eyes (2,259 patients) with ≥2 ODPs at least 2 years apart, and ≥5 24–2 visual 

field exams spanning ≥3 years of follow-up were included. Serial VF mean deviation (MD) rates 

of change were estimated starting at the 5th visit and subsequently by adding visits until final visit. 

VF progression was defined as a statistically significant negative slope at two consecutive visits 

and final visit. We built a twin-neural network with ResNet50-backbone. A pair of ODPs acquired 

up to a year before the VF progression date or the last VF in non-progressing eyes were included 

as input. Primary outcome measures were area under the ROC curve (AUC) and model accuracy.
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Results: The average (SD) follow-up time and baseline VF MD were 8.1 (4.8) years and −3.3 

(4.9) dB, respectively. VF progression was identified in 761 eyes (19%). The median (IQR) time 

to progression in progressing eyes was 7.3 (4.5–11.1) years. The AUC and accuracy for predicting 

VF progression were 0.862 (0.812–0.913) and 80.0% (73.9%–84.6%). When only fast-progressing 

eyes were considered (MD rate <–1.0 dB/year), AUC increased to 0.926 (0.857–0.994).

Conclusions: A deep-learning model can predict subsequent glaucoma progression from 

longitudinal ODPs with clinically relevant accuracy. This model may be implemented, after 

validation, for predicting glaucoma progression in the clinical setting.
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Introduction

Timely detection of disease progression is an unmet need for the management of glaucoma 

so that appropriate remedial action can be taken, and further visual loss is prevented. Various 

functional and structural modalities have been utilized for this task including visual field 

(VF) examination, optic disc photography (ODP), and optical coherence tomography. [1–3] 

Visual field testing remains the standard of care for functional evaluation in glaucoma. [4] 

Estimating VF rates of change is a practical and commonly used approach for identifying 

the speed of disease deterioration in glaucoma eyes and for detecting eyes with rapid 

progression. [5,6]

Optic disc photography is still commonly used for monitoring structural damage 

in glaucoma. It is widely available and does not require sophisticated software for 

visualization. Serial ODP is an established method to detect progressive glaucomatous 

damage especially in early to moderately severe stages of the disease. [7,8] Review and 

comparison of serial ODPs is laborious and specialized. Also, detection of change over time 

is subjective and there is high inter-rater variability even among glaucoma specialists. [9,10] 

Hence, ODP remains underutilized in the care of glaucoma patients.

Artificial intelligence (AI) methods are increasingly used in ophthalmology, especially in 

glaucoma. [11–13] A few studies have explored the performance of deep learning (DL) 

models for detection of glaucoma progression. [14–16] Medeiros and collaborators showed 

that circumpapillary retinal nerve fiber layer rates of change could be predicted with serial 

ODP. [17] Since functional visual deterioration is ultimately what matters to the patient 

when the disease progresses,[18,19] it is crucial to be able to design and implement DL 

models to predict future functional loss. The purpose of this study was to design a DL 

model to forecast future VF worsening relying on prior longitudinal ODPs available a year 

or longer before VF progression is detected.
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Methods

Patients from Stein Eye Institute’s clinical database were included in this study. The study 

was approved by the University of California Los Angeles’s Institutional Review Board 

(IRB#19-000953), which waived the requirement for informed consent and adhered to 

the Declaration of Helsinki and the Health Insurance Portability and Accountability Act 

policies. The findings were reported according to the Strengthening of The Reporting of 

Observational Studies in Epidemiology (STROBE) statement checklist.

Participants were required to have 2 or more ODPs on separate visits at least 2 years apart 

and ≥5 visual field tests with ≥3 years of follow-up. We included all the VF tests that 

were acquired between one year before the baseline ODP date and one year after the final 

ODP date. The study participants had a diagnosis of primary open-angle glaucoma (POAG), 

normal tension glaucoma, pigmentary glaucoma, pseudoexfoliative glaucoma, or primary 

angle closure glaucoma (PACG).

Data collection

Disc photographs were acquired with two different devices: the Zeiss 450 Fundus Camera 

and the Zeiss FF 450 plus Fundus Camera with VISUPAC™ Digital Imaging System 

(both from Carl Zeiss Meditec, Dublin, CA). Conventional ODPs in 36mm slide format 

acquired before 2013 were digitized at a resolution of 2800×4200 pixels. Image quality was 

reviewed manually and low-quality blurred images or those with inadequate illumination 

were excluded (156 images, 2%).

The 24–2 VFs were acquired with Humphrey Field Analyzer II (Carl Zeiss Meditec, Dublin, 

CA) with the standard Swedish Interactive Thresholding Algorithm. Visual fields with 

false positive rates ≥15% were excluded. Data were exported as XML files to a personal 

computer.

Definition of visual field progression

We defined functional glaucoma progression based on rates of change of VF mean deviation 

(MD) with univariate linear regression of MD against time. For each study participant, 

multiple regressions were carried out starting with the first 5 visits; MD rates of change 

were re-estimated after sequentially adding additional visits until the last available VF. 

Hence each eye had a series of n – 4 estimates of MD rates of change (n = total number 

of VFs available during follow-up for each eye). For each iteration of MD regression 

analysis against time, a negative MD slope (i.e., slope <0 dB/year) with a p-value <0.05 

was considered significant. The entire series of VFs in each eye was considered to be 

deteriorating if there were two consecutive statistically significant negative MD slopes 

within the series on the condition that the MD slope for the entire follow-up was also 

significantly negative. The time to glaucoma progression (time to event) was considered as 

the time interval between the baseline VF and the first detected significantly negative MD 

slope. The same approach was used for the definition of moderate and fast progression; eyes 

with significant MD rates <–0.5 dB/year and < −1.0 dB/year, respectively, were considered 

as moderate and fast progressors.
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Deep learning model input

The DL model was trained from pairs of ODP images used as input and associated with 

an output representing the functional glaucoma progression. The first input image was the 

baseline and the second was the ODP acquired a year or more before VF progression in 

the progressing group and before the final VF exam in the stable group. Each ODP was 

randomly selected from the stereoscopic pair available. The cohort was split to create the 

training, validation, and testing datasets with an 80%/10%/10% proportion.

The deep learning approach

A twin-structured convolutional neural network (CNN) was used for predicting glaucoma 

progression utilizing pairs of baseline and final ODPs. The model consists of two copies 

of the same ResNet50 backbone, with shared weights between them, and a classification 

head. First, both inputs are passed through the backbone generating intermediate features 

that are subsequently concatenated and processed by the classification head to generate a 

final output.

The twin CNN ResNet50 backbone is pre-trained on ImageNet. This approach is known 

as transfer learning; it has been shown to be an efficient approach for evaluating images. 

Because ResNet50 is pre-trained on images sized 224×224×3 pixels, we also resized 

our input images to 224×224×3 pixels with bilinear interpolation. Our model accepts 

baseline and final images and passes each individually through the ResNet50 backbone. 

The extracted features are then globally pooled to reduce the channel dimensionality to 1 

and then passed through a batch normalization layer before they are concatenated together 

(Supplemental Figure 1). We used a two-phase transfer learning approach by only training 

the final layer in the first phase to prevent weight destruction. The convolutional ResNet 

weights were fine-tuned once performance was stabilized. In order to determine the optimal 

hyperparameters for our model, we manually performed a random search over 20 different 

combinations of phase one and phase two learning rates, dropout rates, layers for model 

freezing, and the hidden dimension for the final connected layer.

The metric optimized during the random search was area under the receiver operating 

characteristic curve (AUC) in the validation set. All models were trained using Adam 

optimizer, a batch size of 32, and binary cross entropy loss for 1 epoch in phase one and 60 

epochs in phase two. To account for the uneven distribution of progressing and stable eyes in 

the dataset, the loss weight for the progressing eyes was increased.

In the final step, we applied augmentations to the ODPs during training in order to reduce 

the likelihood of overfitting. Augmentations applied included random rotations of up to 

273 degrees [20] clockwise or counterclockwise, a random vertical or horizontal shift of 

up to 15%, a random contrast change ≤20%, and a random zoom ≤15%. To enhance 

the generalizability of our model on external data regardless of the position and rotation, 

individual augmentations were applied to each image including those from the same eye.

The model was trained for glaucoma progression criteria as detailed above and for moderate 

and fast-progressing eyes. The model was developed with Python 3.9.7 libraries including 

TensorFlow 2.9.0, Keras Tuner 1.04, NumPy 1.19.5, SciPy 1.7.1, and scikit-learn 0.24.2.
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Assessing model performance

We estimated AUCs to assess performance of the model for predicting functional glaucoma 

progression in the testing dataset. We also calculated partial AUCs (pAUC) at specificities 

higher than 90%. Sensitivity, specificity, and accuracy were calculated from confusion 

matrices with a threshold of 0.5. Bootstrapping was carried out 5000 times was performed to 

provide the 95% confidence interval (CI). In order to determine whether the model is relying 

on clinically expected features for predicting glaucoma progression, we generated saliency 

maps with eXplanation with Ranked Area Integrals (XRAI). [21] We considered the baseline 

image constant for generating the XRAI saliency maps and the XRAI map highlighted the 

most important features corresponding to the final image. Finally, we overlaid the top 30% 

of the features onto the final ODP (the second of the pair) to visualize regions on the final 

ODP where those features were mapped.

Results

A total of 3,919 eyes (2,259 patients) were included in this study. Seven hundred and sixty-

one eyes (19.0%) demonstrated VF progression when a significant MD rate was described 

as MD slope <0 dB/year. Based on the more stringent stricter criteria, i.e., MD slopes <−0.5 

and <−1.0 dB/year, 347 (9%) and 93 (2%) of eyes showed progression. The mean (SD) 

timeline between the final ODP and the time to detect progression for the progressing eyes 

was 1.7 (1.8) years. The mean (SD) follow-up time and baseline VF MD for the stable and 

progressing eyes were 7.6 (4.7) and 10.3 (4.9) years (p <.001) and −3.3 (4.9) and −3.6 (4.8) 

dB (p =.19), respectively (Table 1).

Performance of the DL model for predicting glaucoma progression is displayed in 

Table 2. For the least stringent criteria, the AUC (95% CI) for predicting functional 

glaucoma progression was 0.862 (0.812–0.913). The corresponding sensitivity, specificity, 

and accuracy (95% CI) were 83.0% (73.4%–91.4%), 78.5% (68.8%–86.6%), and 80.0% 

(73.9%–84.6%), respectively. We further stratified the eyes in the testing dataset as mild-

stage glaucoma (baseline MD >−6 dB) and moderate to advanced-stage glaucoma (baseline 

MD ≤−6 dB). The AUC for predicting future glaucoma progression for the two subgroups 

was 0.856 (0.797–0.915) and 0.860 (0.751–0.968), respectively.

For the moderate-progressing eyes, the corresponding AUC (95% CI) for predicting 

subsequent VF progression was 0.890 (0.845–0.935) with corresponding sensitivity, 

specificity, and accuracy of 93% (77%–100%), 77% (65%–88%), and 79% (68%–88%) 

(Table 2). In addition, for the fast-progressing eyes, the corresponding AUC, sensitivity, 

specificity, and accuracy (95% CI) were 0.926 (0.857–0.994), 100% (77.7%–100%), 80% 

(67.9%–97.8%) and 80.4% (68.6%–97.4%), respectively (Table 2). However, the AUC 

difference between the three criteria was not statistically significant (p >0.141). Figure 1 

demonstrates the receiver operating characteristics curves for the model’s performance for 

MD rates <0 dB/year, <−0.5 dB/year, and <−1.0 dB/year criteria. The partial AUC at 90% 

specificity for models using MD rates <0 dB/year, <−0.5 dB/year, and <−1 dB/year criteria 

were 0.040 (0.027–0.054), 0.036 (0.021–0.052) and 0.058 (0.030–0.085), respectively 

(Figure 2). The pairwise pAUC differences for the 3 models were not statistically significant 

(p >.18 for all).
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Figure 3 provides the saliency maps based on the XRAI approach for two eyes that were 

correctly labeled as progressing and one eye that was correctly labeled as stable with our 

DL model. The first progressing eye (Figure 3A) demonstrated generalized rim loss on the 

final disc photograph compared to the baseline ODP; the highest attention was concentrated 

on the entire rim on the XRAI map (third column). In the second progressing eye (Figure 

3B), the development of inferior (and superior) notching on the final photographs can be 

observed; the XRAI map mostly focused on the inferior rim area for making the prediction. 

However, in the stable eye (Figure 3C), the overall attention intensity is low across the 

region of interest on the XRAI map.

Discussion

We designed a deep learning model for predicting subsequent functional glaucoma 

progression one or more years after the last available optic disc photograph in eyes with 

longitudinal series of ODPs in a retrospective cohort with an average 8-year follow-up 

period. The AUC for predicting glaucoma progression was 0.862 (95% CI: 0.812, 0.913). 

When we considered more stringent criteria for defining functional glaucoma progression, 

the DL model demonstrated a higher AUC (0.890 and 0.926) although the differences were 

not statistically significant. The overall accuracy was about 80% (79.0–80.4%) regardless of 

the criteria used to define progression. While the accuracy may seem suboptimal, a review 

of the literature shows that no major available prognostic algorithm proposed for forecasting 

the development or progression of glaucoma has achieved this level of accuracy. [22, 23] 

The proposed model could be used in the clinical setting to provide clinicians managing 

glaucoma with a progression probability index and could help preserve functional status in 

glaucoma patients.

Assessing visual field deterioration over time is crucial and remains the standard of care 

for detecting glaucoma progression as it is associated with decreased quality of life. [24] A 

substantial amount of structural loss may take place before VF changes can be identified. 

[25,26] Therefore if a DL model is able to predict future VF progression, it could help 

prevent further functional deterioration and maintain patients’ quality of life. We trained the 

DL model merely with baseline and follow-up pairs of ODPs acquired one or more years 

before the first identifiable evidence of VF progression or the final VF in stable patients. 

There is evidence indicating that progressive retinal nerve fiber layer and neuroretinal rim 

thinning could occur up to several years before VF deterioration can be detected. [27] 

Therefore, we hypothesized that a DL model trained with a large dataset of longitudinal 

ODPs could be beneficial in predicting future functional deterioration, addressing the high 

inter-observer variability among clinicians when grading serial ODPs. [10,28] Our findings 

suggest that the performance of the twin CNN model used in the current study was clinically 

relevant for detection of future functional deterioration.

In the current dataset, most of the baseline ODPs were digitized scans whereas the 

second ODP pair was mainly acquired digitally. Therefore, there might have been potential 

differences in image quality between the baseline and final images. Our model was able 

to handle this difference in quality, identify important landmarks between the baseline and 

final images and determine their areas of similarity or differences. It is plausible that if 
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the baseline and final ODPs are acquired in the exact same manner, model performance 

might improve. The high values of AUC and other performance metrics along with the 

observed characteristics of the saliency maps strongly suggest that the DL model is focusing 

its ‘attention’ on the relevant areas of the optic disc region. The saliency maps (developed 

by XRAI) showed that the model had mostly considered changes in the optic nerve rim 

(generalized or focal) in order to learn whether a specific eye was progressing or not (Figure 

3).

Some previous studies explored prediction of glaucoma development or progression with 

clinical and demographic factors. [22,23,29] The Ocular Hypertension Treatment Study 

(OHTS) predictive model was used to assess progression to glaucoma in the European 

Glaucoma Progression Study (EGPS) cohort. Using age, intraocular pressure, vertical cup-

to-disc ratio, VF pattern standard deviation at baseline, and central corneal thickness, the 

resulting C-statistic, a performance metric similar to AUC, was 0.74. [22] In a subsequent 

study, adding long-term intraocular pressure variability to the baseline predictors did not 

enhance the performance of the predictive model. [30] Another study validated the OHTS-

EGPS predictive model on four different cohorts (the highest sample size was 393). [31] 

The C-index for the four different cohorts ranged between 0.69 and 0.83. In our study, 

despite using only a pair of longitudinal ODPs for predicting future glaucoma progression, 

the resulting AUC was clinically relevant (AUC =0.862). We did not put any demographic 

data into the DL model; one would expect that the performance of the would likely increase 

with additional demographic and clinical information. When performance of the model 

was compared in mild vs. moderate to advanced stage glaucoma eyes, the DL model 

demonstrated equal performance for predicting future functional glaucoma progression. One 

important finding was the trend toward a better performance of the model for predicting 

glaucoma progression in moderate or fast-progressing eyes. The AUC for predicting 

glaucoma progression for MD rates <0 dB/year was 0.862, whereas it was 0.890 for MD 

rates <−0.5 dB/year and 0.926 for MD rates <−1.0 dB/year. When we considered the most 

clinically relevant parts of the ROC curves where the specificity is greater than 90%, the 

partial-AUCs were higher for the fast and moderately-progressing eyes. Fast-progressing 

glaucoma eyes require more aggressive management since they are at higher functional 

deterioration risk and worsening quality of life. [32] The current model would be helpful 

in the clinical setting for detecting fast-progressing eyes and could assist clinicians with 

intensifying treatment of glaucoma when indicated. This could be especially of value in low-

tech environments where a fundus camera might be the only imaging modality available. 

It would be interesting to investigate if the performance of these models differs depending 

on the patient’s ethnicity, particularly for those of African or Hispanic descent, who are at 

higher risk of glaucoma progression. [33,34]

A limitation of our study is that we used global VF rates of change (MD rates) for 

detecting glaucoma progression. It is possible that DL models incorporating pointwise 

linear regression or other models could perform better for detection of functional glaucoma 

progression. A recent study by Medeiros et al., however, showed that MD rates were strong 

predictors of glaucoma progression and could be used as valid endpoints in clinical research. 

[35] In the ODP dataset, both right and left stereo images were available. Although there are 
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slight differences between these images, we randomly selected one out of the two. There is 

no a priori reason that this might have affected the results.

In conclusion, we demonstrate that a proposed deep-learning model with longitudinal pairs 

of optic disc photographs is able to predict future functional glaucoma progression at least 

one year ahead of the event with relevant clinical accuracy. The performance of the model 

might be better for fast-progressing glaucoma patients. This model could be used in clinical 

and research settings to identify glaucoma patients at higher risk of disease deterioration 

once proper validations have been carried out.
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Acknowledgment

Funding:

This work was supported by an NIH R01 grant (R01-EY029792, KNM) and an unrestricted Departmental Grant 
from Research to Prevent Blindness.

Data availability statement:

The datasets generated and/or analyzed during the current study are available from the 

corresponding author upon reasonable request.

References

1. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve 
fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 
1992;99(1):19–28. [PubMed: 1741133] 

2. Rabiolo A, Morales E, Mohamed L, et al. Comparison of Methods to Detect and Measure 
Glaucomatous Visual Field Progression. Transl Vis Sci Technol 2019;8(5):2.

3. Mohammadzadeh V, Fatehi N, Yarmohammadi A, et al. Macular Imaging with Optical Coherence 
Tomography in Glaucoma. Surv Ophthalmol 2020.

4. Caprioli J The importance of rates in glaucoma. American Journal of Ophthalmology 
2008;145(2):191–192. [PubMed: 18222187] 

5. Caprioli J, Mock D, Bitrian E, et al. A method to measure and predict rates of regional visual field 
decay in glaucoma. Invest Ophthalmol Vis Sci 2011;52(7):4765–4773. [PubMed: 21467178] 

6. Heijl A, Leske MC, Bengtsson B, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G. 
Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 
2003;81(3):286–293. [PubMed: 12780410] 

7. Ohnell H, Heijl A, Anderson H, Bengtsson B. Detection of glaucoma progression by perimetry and 
optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma 
Trial. Acta Ophthalmol 2017;95(3):281–287. [PubMed: 27778463] 

8. Amini N, Alizadeh R, Parivisutt N, Kim E, Nouri-Mahdavi K, Caprioli J. Optic Disc Image 
Subtraction as an Aid to Detect Glaucoma Progression. Translational Vision Science & Technology 
2017;6(5):14.

9. Breusegem C, Fieuws S, Stalmans I, Zeyen T. Agreement and accuracy of non-expert 
ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs. 
Ophthalmology 2011;118(4):742–746. [PubMed: 21055815] 

Mohammadzadeh et al. Page 8

Br J Ophthalmol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Jampel HD, Friedman D, Quigley H, et al. Agreement among glaucoma specialists in assessing 
progressive disc changes from photographs in open-angle glaucoma patients. American Journal of 
Ophthalmology 2009;147(1):39–44.e31. [PubMed: 18790472] 

11. Asaoka R, Murata H, Hirasawa K, et al. Using Deep Learning and Transfer Learning to Accurately 
Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images. Am J 
Ophthalmol 2019;198:136–145. [PubMed: 30316669] 

12. Thompson AC, Jammal AA, Berchuck SI, Mariottoni EB, Medeiros FA. Assessment of a 
Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence 
Tomography Scans. JAMA Ophthalmology 2020.

13. Christopher M, Nakahara K, Bowd C, et al. Effects of study population, labeling and training on 
glaucoma detection using deep learning algorithms. Translational Vision Science & Technology 
2020;9(2):27–27.

14. Dixit A, Yohannan J, Boland MV. Assessing Glaucoma Progression Using Machine Learning 
Trained on Longitudinal Visual Field and Clinical Data. Ophthalmology 2021;128(7):1016–1026. 
[PubMed: 33359887] 

15. Medeiros FA, Jammal AA, Mariottoni EB. Detection of Progressive Glaucomatous Optic Nerve 
Damage on Fundus Photographs with Deep Learning. Ophthalmology 2020.

16. Hassan ON, SS, Mohammadzadeh V, et al.. Conditional GAN for Prediction of Glaucoma 
Progression with Macular Optical Coherence Tomography. In International Symposium on Visual 
Computing Springer, Cham. 2020 Oct 5.:761–772.

17. Medeiros FA, Jammal AA, Mariottoni EB. Detection of progressive glaucomatous optic nerve 
damage on fundus photographs with deep learning. Ophthalmology 2021;128(3):383–392. 
[PubMed: 32735906] 

18. Ramulu PY, Hochberg C, Maul EA, Chan ES, Ferrucci L, Friedman DS. Glaucomatous visual field 
loss associated with less travel from home. Optometry and Vision Science: official publication of 
the American Academy of Optometry 2014;91(2):187. [PubMed: 24374635] 

19. Medeiros FA, Gracitelli CP, Boer ER, Weinreb RN, Zangwill LM, Rosen PN. Longitudinal 
changes in quality of life and rates of progressive visual field loss in glaucoma patients. 
Ophthalmology 2015;122(2):293–301. [PubMed: 25444345] 

20. Liu J, Chao F, Lin CM. Task augmentation by rotating for meta-learning arXiv 2020. arXiv 
preprint arXiv:2003.00804. 2003.

21. Kapishnikov A, Bolukbasi T, Viégas F, Terry M. Xrai: Better attributions through regions. Paper 
presented at: Proceedings of the IEEE/CVF International Conference on Computer Vision2019

22. Gordon MO, Torri V, Miglior S, et al. Validated prediction model for the development of primary 
open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007;114(1):10–19. 
[PubMed: 17095090] 

23. Medeiros FA, Weinreb RN, Sample PA, et al. Validation of a predictive model to estimate 
the risk of conversion from ocular hypertension to glaucoma. Archives of Ophthalmology 
2005;123(10):1351–1360. [PubMed: 16219726] 

24. Rulli E, Quaranta L, Riva I, et al. Visual field loss and vision-related quality of life in the Italian 
Primary Open Angle Glaucoma Study. Scientific Reports 2018;8(1):1–12. [PubMed: 29311619] 

25. Hood DC, Kardon RH. A framework for comparing structural and functional measures of 
glaucomatous damage. Prog Retin Eye Res 2007;26(6):688–710. [PubMed: 17889587] 

26. Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function 
relationship in glaucoma: implications for detection of progression and measurement of rates of 
change. Invest Ophthalmol Vis Sci 2012;53(11):6939–6946. [PubMed: 22893677] 

27. Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and 
glaucoma. Archives of Ophthalmology 1980;98(3):490–495. [PubMed: 7362506] 

28. Varma R, Steinmann WC, Scott IU. Expert Agreement in Evaluating the Optic Disc for Glaucoma. 
Ophthalmology 1992;99(2):215–221. [PubMed: 1553210] 

29. De Moraes CGV, Juthani VJ, Liebmann JM, et al. Risk factors for visual field progression in 
treated glaucoma. Archives of Ophthalmology 2011;129(5):562–568. [PubMed: 21555607] 

Mohammadzadeh et al. Page 9

Br J Ophthalmol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Gordon MO, Gao F, Huecker JB, et al. Evaluation of a Primary Open-Angle Glaucoma Prediction 
Model Using Long-term Intraocular Pressure Variability Data: A Secondary Analysis of 2 
Randomized Clinical Trials. JAMA Ophthalmology 2020;138(7):780–788. [PubMed: 32496526] 

31. Takwoingi Y, Botello AP, Burr JM, et al. External validation of the OHTS-EGPS model for 
predicting the 5-year risk of open-angle glaucoma in ocular hypertensives. British Journal of 
Ophthalmology 2014;98(3):309–314. [PubMed: 24357494] 

32. Anderson AJ, Chaurasia AK, Sharma A, et al. Comparison of rates of fast and catastrophic visual 
field loss in three glaucoma subtypes. Invest Ophthalmol Vis Sci 2019;60(1):161–167. [PubMed: 
30640968] 

33. Leske MC, Connell AM, Schachat AP, Hyman L. The Barbados Eye Study. Prevalence of open 
angle glaucoma. Arch Ophthalmol 1994;112(6):821–829. [PubMed: 8002842] 

34. Buhrmann RR, Quigley HA, Barron Y, West SK, Oliva MS, Mmbaga BB. Prevalence of glaucoma 
in a rural East African population. Invest Ophthalmol Vis Sci 2000;41(1):40–48. [PubMed: 
10634599] 

35. Medeiros FA, Jammal AA. Validation of Rates of Mean Deviation Change as Clinically Relevant 
Endpoints for Glaucoma Progression. Ophthalmology 2022 Dec 24.

Mohammadzadeh et al. Page 10

Br J Ophthalmol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



What is already known on this topic:

Optic disc photography is widely available and remains an important tool for the 

detection of glaucoma progression.

What this study adds:

An artificial intelligence algorithm can be leveraged to identify future glaucoma 

progression based on longitudinal series of optic disc photographs.

How this study might affect research, practice or policy:

The newly designed algorithm could help detect patients at high risk of functional 

glaucoma progression in the clinical setting once validated.

Synopsis:

We designed a deep-learning model to predict future functional glaucoma progression 

from longitudinal disc photographs. The model demonstrates high performance for 

predicting subsequent visual field progression and performed better in fast-progressing 

eyes.
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Figure 1. 
The receiver operating characteristic (ROC) curves for the prediction of functional glaucoma 

progression from a series of optic disc photographs with a deep learning model. The three 

curves represent the three sets of criteria used to define visual field progression during 

followup. The most stringent criterion for glaucoma progression (mean deviation (MD) rates 

of change <−1 dB/year) led to the highest area under the ROC curve (AUC) followed by MD 

rates <−0.5 dB/year and MD rates <0 dB/year criteria. None of the pairwise differences in 

AUCs was statistically significant.
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Figure 2. 
The partial area under receiver operating characteristic curves (pAUC) for prediction of 

functional glaucoma progression. The curves are presented for the model using criteria of 

mean deviation (MD) rates<0 dB/year, <−0.5 dB/year and <−1 dB/year. The pAUCs were 

generated for a specificity of greater than 90%.
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Figure 3. 
eXplanation with Ranked Area Integrals (XRAI) saliency plots for progressing and stable 

glaucoma eyes based on visual field findings. (A) An example of an eye with progressive 

generalised rim loss; (B) an example of an eye with progressive focal notching most 

prominent inferiorly; and (C) an example of a stable eye. The XRAI heat map (third column 

from left) demonstrates which regions of the final image have the most predictive power, 

that is, provide the most information. The most salient portion of the final image (the 

unmasked area) at an area threshold of 30% (fourth column from left) shows that in all the 

examples, the optic disc and the surrounding region correspond to the area with the most 

predictive power.
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Table 1.

Demographic characteristics of the study participants.

Eyes = 3919, Patients = 2259

Stable
(Eyes = 3158, N = 1842)

Progressing
(Eyes = 761, N = 417) p value

Age at baseline (years)
Mean (SD) 59.5 (12.9) 61.0 (11.4) .001

Gender, number (percentage)
Female
Male
Unknown

1015 (55%)
760 (41%)
62 (4%)

246 (59%)
162 (39%)

9 (2%)

.31

.23

.15

Race, number (percentage)
White
African American
Asian
Hispanic
Unknown

1067 (58%)
142 (8%)
225 (12%)
94 (5%)

309 (17%)

250 (60%)
30 (7%)

53 (13%)
23 (6%)
61 (14%)

.62

.67

.66

.63

.78

Follow-up time (years)
Mean (SD) 7.6 (4.7) 10.3 (4.9) < .001

Baseline mean deviation (dB)
Mean (SD) −3.3 (4.9) −3.6 (4.8) .19

Number of visual field exams
Median (IQR) 8 (6–12) 13 (9–19) < .001

SD = standard deviation; IQR = inter-quantile range
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Table 2.

Performance of the deep learning model for prediction of subsequent visual field progression one or more year 

later using longitudinal pairs of optic disc photographs. The results are provided for the three criteria used for 

defining glaucoma progression (confirmed and significant MD rates <0 dB/year, <−0.5 dB/year and < −1.0 

dB/year). Numbers in parentheses represent the 95% confidence intervals.

Criteria AUC Sensitivity Specificity Accuracy

MD rates <0 dB/year 0.862
(0.812–0.913)

83.0%
(73.4%–91.4%)

78.5%
(68.8%–86.6%)

80.0%
(73.9%–84.6%)

MD rates <−.5 dB/year 0.890
(0.845–0.935)

93.5%
(77.4%–100%)

77.5%
(65.9%–88.4%)

79.0%
(68.5%–88.3%)

MD rates <−1.0 dB/year 0.926
(0.857–0.994)

100%
(77.7%–100%)

80.0%
(67.9%–97.8%)

80.4%
(68.6%–97.4%)

MD = mean deviation; AUC = area under ROC curve
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