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Stimulus encoding by specific inactivation
of cortical neurons

Jesús Pérez-Ortega 1 , Alejandro Akrouh 1 & Rafael Yuste 1

Neuronal ensembles are groups of neurons with correlated activity associated
with sensory, motor, and behavioral functions. To explore how ensembles
encode information, we investigated responses of visual cortical neurons in
awake mice using volumetric two-photon calcium imaging during visual sti-
mulation. We identified neuronal ensembles employing an unsupervised
model-free algorithm and, besides neurons activated by the visual stimulus
(termed “onsemble”), we also find neurons that are specifically inactivated
(termed “offsemble”). Offsemble neurons showed faster calcium decay during
stimuli, suggesting selective inhibition. In response to visual stimuli, each
ensemble (onsemble+offsemble) exhibited small trial-to-trial variability, high
orientation selectivity, and superior predictive accuracy for visual stimulus
orientation, surpassing the sum of individual neuron activity. Thus, the com-
bined selective activation and inactivation of cortical neurons enhances visual
encoding as an emergent and distributed neural code.

Neuronal ensembles have been defined as coactive neurons that
repeatedly fire together1, and are thought to be the functional unit of
neural circuits underlying sensory perception, motor behavior, and
memory2–11. In mouse visual cortex, neuronal ensembles encode visual
stimuli12,13 and are stable for many weeks14. However, the accuracy of
neuronal ensemble representation of visual stimuli is still unclear. Hubel
and Wiesel15 showed that individual cortical neurons are tuned to spe-
cific features of visual stimuli, but trial-to-trial variability in neuronal
responses during the same visual stimulus generate an unreliable esti-
mation of visual features from single-neuron activity16–19. Using two-
photon calcium imaging, recent studies have compared single-neuron
to neuronal population encoding and found that populations better
predict visual stimuli20,21. These studies were largely based on estimating
prediction reliability from trained decoders using machine-learning
algorithms, but did not explore the coding properties of neuronal
ensembles. Here, we investigated how ensembles respond to drifting
gratings using volumetric two-photon calcium imaging in primary visual
cortex of awake mice. To analyze population neuronal activity, we used
an algorithm22 that identifies significant activity patterns, but without
stimulus information. Such patterns were defined as neuronal ensem-
bles. Interestingly, during each ensemble occurrence, not only was a
group of neurons coactivated but also a distinct subset of neurons
was also inactivated. We therefore redefined neuronal ensembles to

include both coactive and inactivated neurons. We termed “onsemble”
to the group of coactive neurons and “offsemble” to the group of
inactivated neurons. Offsemble neurons were selectively inactivated
during their preferred stimulus, as evidenced by a faster decay of their
calcium signals. We quantified the orientation selectivity and tuning
curves of neuronal ensembles as has been done for individual
neurons15–19,23,24. We observed that ensembles exhibited lower trial-to-
trial variability in response to visual stimuli, along with higher orienta-
tion selectivity and narrower bandwidth, as compared to tuned single
neurons. These differenceswere not simply due to averaging the activity
of coactive neurons (onsemble neurons). Even using an optimal activity
threshold to predict the visual stimulus orientation, onsemble and off-
semble neurons, as independent groups, were not as accurate as the
ensemble. Our results indicate that cortical circuits can use a distributed
neural code, where distinct neurons, selectively active and inac-
tive — forming onsembles and offsembles, respectively — contribute to
the encoding of visual information.

Results
Patterns of neuronal activation and inactivation during stimulus
presentation
To investigate the neuronal dynamics underlying visual stimulus
encoding, we performed in vivo volumetric two-photon calcium
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imaging in layer 2/3 of mouse primary visual cortex (V1). Animals were
head-fixed and free to run on a wheel in front of a computer screen
showing high-contrast drifting gratings along four different orienta-
tions in both directions (Fig. 1a). Mouse running speed and facial
behaviors, recorded with an infrared camera, were tracked tomeasure
wakefulness. Whisking behavior, reflecting mouse wakefulness or
engagement, accounted for 61 ± 3% of the experiment duration. In
contrast, whenmice exhibited signs of disengagement or fatigue, they
only whisked for 34 ± 4% of the time (Supplementary Fig. 1). We only
analyzed mice that remained wakeful throughout the experiment
(n = 12 mice). We recorded an average of 538 ± 44 active neurons per

mouse (mean± SEM; Fig. 1b, c). The location of V1 was confirmed with
wide-field GCaMP imaging, and, on average, 371 ± 31 (69%) neurons
were responsive to visual stimuli (mean± SEM; Supplementary Fig. 2).
To identify patterns of activity, we clustered all neuronal activity vec-
tors — columns from raster plots — solely based on their similarity,
without incorporating any information about visual stimuli, running
speed, or whisking (Fig. 1d, e). A z-test was used to evaluate whether
the similarity within a cluster of vectors was significantly larger than a
random sample of vectors. If the similarity was significantly greater,
the cluster was labeled as an ensemble, i.e., a pattern composed of
neurons whose activity significantly changes, either because they
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Fig. 1 | Volumetric imaging of neuronal activity during visual stimulation and
identification of activity patterns. a Mice are head-fixed and GCaMP6s signals
frompyramidal neurons are recorded through a cranialwindowvia volumetric two-
photonmicroscopywhile visual stimuli are displayed on amonitor.Mouse running
speed on a wheel and mouse whisking captured through an infrared camera are
also recorded. Drawing of the experimental preparation adapted from Jesús Pérez-
Ortega, Tzitzitlini Alejandre-García & Rafael Yuste (2021) Long-term stability of
cortical ensembles eLife 10:e64449. https://doi.org/10.7554/eLife.64449. b Three
sequentially recorded planes of layer 2/3 visual cortex at ~37 fps (i.e., a period of
~81ms for 3 planes). Scale bar: 100 µm. c Neuronal regions of interest (ROIs) above
10 dB of peak signal-to-noise ratio (PSNR). Colored ROIs indicate neurons tuned to
oriented drifting gratings (see Supplementary Fig. 1). Scale bar: 100 µm. d Raster

plot of all neurons recorded simultaneously during a five-minute session of visual
stimulation (left) accompanied by timestamps for random repetitions of drifting
gratings along eight directions. Neurons are sorted by ensemble activity patterns,
identified through clustering analysis applied to all frames (right). Stimulus pre-
sentation times are organized based on the clustering of activity patterns (bottom-
right). Significance of each activity pattern’s similarity within a cluster is tested
using a one-sided z-test (p <0.5). Significant activity patterns are identified as
ensembles. Ensemble p values from left to right p = 3 × 10–5, p = 1 × 10–4, p = 5 × 10–10,
p = 3 × 10–5, p =0.04. *p <0.05, ***p <0.001. e Mouse running speed and whisking
motion energy (left), and they are sorted according to the activity pattern clus-
tering detected in d on the right. f Ensembles timestamps (left) are extracted from
the activity pattern clustering (right).
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become selectively activated or inactivated by stimulus presentations.
Finally, we identified the timestamps of ensemble occurrences and
created a binary signal to indicate the active periods of each ensemble
(Fig. 1f). This experimental setup and methodology allowed us to
capture the activity of hundreds of neurons in V1 of awakemice during
visual stimulation and extract ensembles along with their corre-
sponding timestamps of occurrence.

In order to categorize the extent to which individual neurons
participated in each ensemble, we defined an Ensemble Participation
Index (EPI) as follows:

EPI = 2 � FiringRateensemble

FiringRatetotal
� 1 ð1Þ

where FiringRateensemble is the fraction of time a neuron was active
during all ensemble occurrences, and FiringRatetotal is the fraction of
time a neuron was active during the entire experimental session. An
EPI value of 1 means that the neuron was exclusively active during
ensemble events. Conversely, an EPI value of –1 denotes that the
neuron was active solely in the absence of ensemble events (i.e., the
neuron was inactivated during ensemble events). An EPI of 0 implies
that the neuron’s activity remained similar both during ensemble
activity and at other times. Using this index, we proceeded to assess
whether a neuron exhibited significant activation or inactivation
during ensemble events (SeeMethods, Fig. 2a, b). We defined the set
of neurons displaying significant coactivation as onsemble neurons,
the significantly inactive neurons as offsemble neurons, and those
neurons that did not fall within the onsemble or offsemble group as
nonparticipant neurons (Fig. 2b). The spatial distribution of onsem-
ble and offsemble neurons exhibited heterogeneity (Fig. 2c). Neu-
rons thus possess an EPI value for each ensemble, whichmeans that a
specific neuron might exhibit a positive EPI for one ensemble while
simultaneously a negative EPI for another (Supplementary Fig. 3).
Note that neurons can participate in multiple onsembles and off-
sembles, and nonparticipant neurons in one ensemble can be parti-
cipants in another ensemble (Supplementary Fig. 3b). Next, we
quantified the number of onsemble, offsemble, and nonparticipant
neurons. Offsembles comprised a larger proportion of neurons
compared to onsembles, with an average of 139 ± 11 offsemble neu-
rons versus 108 ± 9 onsemble neurons for each ensemble (20 ± 1%
and 26 ± 2% of the total neurons, respectively). Additionally, 291 ± 24
neurons did not participate in the ensemble (counts represent
means ± SEMs across 12 mice; Fig. 2d, e). The EPI is then used to
distinguish whether neurons are activated or inactivated during
ensemble events. Correspondingly, during ensemble events, sig-
nificantly activated or inactivated neurons comprise the onsemble
and offsemble, respectively. The remaining neuronal population was
categorized as nonparticipant.

We subsequently analyzed the temporal evolution of neuronal
activity during the onset of an ensemble (Fig. 2f) and quantified the
average fraction of firing neurons within the onsembles, offsembles,
and nonparticipant populations (Fig. 2g). The percentage of all active
neurons prior to ensemble onset was 20 ± 1%. At the onset of an
ensemble event, we observed a gradual accumulation of active
onsemble neurons, reaching a cumulative percentage of 95 ± 1% in two
seconds. However, the peak fraction of simultaneously active onsem-
ble neurons reached 58± 2% at 446 ± 36ms after the ensemble onset.
In contrast, the fraction of active offsemble neurons decreased to
8 ± 1% at 403 ± 33ms after the ensemble onset, and the fraction of
active nonparticipant neurons remained at 24 ± 0.03% (these values
represent the means ± SEMs across 12 mice; Fig. 2e). Thus, during an
ensemble event, its onsemble is activated while its offsemble is
simultaneously inactivated, both reaching their maximum effect
(activation and inactivation, respectively) between 400 and 450ms
after the ensemble onset.

Offsemble neurons are specifically inactivated
We next examined the calcium signals of offsemble neurons to gain
insight to the mechanisms of their suppression. We compared off-
semble neuron decay time constants during spontaneous activity,
interstimulus periods, and presentation of drifting gratings in its pre-
ferred orientation, which specifically inactivate offsemble neurons
(θpref; Fig. 3a, b). The preferred orientation of an offsemble is the same
as that of the ensemble to which it belongs. Offsemble neurons
showed no difference in decay time constants between spontaneous
and interstimulus calcium transients (5.8 ± 0.3 s and 5.9 ± 0.2 s,
respectively). However, these decay time constants decreased to
2.5 ± 0.1 s during the offsemble’s preferred stimulus orientation (θpref;
means ± SEMs across 7 mice; Fig. 3c). This suggests that individual
offsemble neurons not only are silent during their preferred stimulus
orientation but their calcium transients also decrease faster, indicating
the possibility of an active inhibitory mechanism.

Furthermore, we evaluated the impact of locomotion on neuronal
inactivation. We compared neuronal participation in ensembles
betweenperiodswhere themicewere still andwhen theywere running
(Fig. 4a–d). We observed no significant difference in the proportion of
active neurons in ensembles during of quiescence or running (24 ± 1%
and 25 ± 1%, respectively; means ± SEMs across 11 mice; Fig. 4e). While
onsemble neurons didbecomemore active duringmouse locomotion,
offsemble neuron inactivation appeared more pronounced, thus a
consistent overall fraction of active neurons was maintained. To fur-
ther quantify these differences, wemeasured the EPIs of onsemble and
offsemble neurons during quiescence and locomotion. Onsembles
participated equally between these two states (0.41 ± 0.02 and
0.41 ± 0.03, respectively), whereas offsemble inactivation was sig-
nificantly intensified when the mice were running (from –0.46 ± 0.03
to –0.52 ± 0.04;means ± SEMs acrossn = 11mice; Fig. 4f). Although the
peak fraction of simultaneously activated onsemble neurons can
increase during running periods, their activity did not persist long
enough to increase their EPI. In contrast, offsemble neuron inactiva-
tion persisted for longer periods (Fig. 4d), resulting in a significant
change of EPI. We could depicted this subtle difference using EPI
values. This observation suggests that during running periods, off-
semble neurons exhibited accentuated inactivation rather than acti-
vation in onsemble neurons.

Ensembles have higher orientation predicting precision than
individual neurons
To compare the encoding capabilities of individual neurons and
ensembles, we measured trial-to-trial variability, orientation selec-
tivity, tuning curves, and prediction accuracy for visual stimulus
orientation. First, binary signals were used for both neurons and
ensembles, with each neuronal signal representing its spiking activity
and each ensemble signal indicating its occurrences (Fig. 5a). We
compared neurons and ensembles that were significantly tuned to a
stimulus orientation. Ensemble responses showed minimal trial-to-
trial variability to the preferred stimulus orientation (θpref) occurring
91 ± 3% of the time at 490 ± 51ms after the θpref onset. In contrast,
individual neurons exhibited a response rate of 62 ± 2% at
379 ± 39ms after the θpref onset (means ± SEMs across 12 mice;
Fig. 5b). Additionally, while individual neuronal responses last
0.78 ± 0.02 s, ensemble responses persisted 1.61 ± 0.04 s (means ±
SEMs across 12 mice; Fig. 5c). Thus, ensembles are more reliable and
exhibit slower adaptation during a two-second period of visual sti-
mulus compared to single neurons. Note that the precise timing of
activation at the stimulus onset and the duration of activity may
experience slight shifts or smoothing due to the filtering applied
during calcium signal preprocessing for spike inference, potentially
leading to minor inaccuracies.

Ensembles could havemore information and a coding advantage
simply because they are composed of many neurons. To investigate
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this, we measured the proportion of active neurons in onsembles
(fraction of active onsemble neurons), offsembles (fraction of active
offsemble neurons), ensembles (fraction of activated onsemble
and inactivated offsemble neurons from onsemble and offsemble,
respectively) and nonparticipant-tuned neurons (fraction of
active neurons not part of the ensemble but tuned to visual stimuli;
Fig. 5d). We compared the orientation selectivity and tuning curves
between all of these groups. Ensembles, both as binary categories
or as the fraction of participating ensemble neurons, exhibited
a higher orientation selectivity of 0.98 ± 0.01 and 0.61 ± 0.05,
respectively, than individual neurons (0.46 ± 0.01). Interestingly,
the orientation selectivity of onsembles (0.23 ± 0.02) and offsembles

(0.20 ± 0.01) was lower than that of individual neurons. The
nonparticipant-tuned neurons displayed the lowest selective
(0.11 ± 0.01; means ± SEMs across 12 mice; Fig. 5e). Similarly, when
fitting a Gaussian tuning curve to each group, ensembles showed a
narrower bandwidth (binary: 8° ± 1°; fraction of participating
ensemble neurons: 29° ± 3°) than individual neurons (37° ± 1°).
Onsembles, offsembles, and nonparticipant-tuned group displayed
broader tuning (52° ± 2°, 55° ± 1°, and 80° ± 2°, respectively;
means ± SEMs across 12 mice; Fig. 5f, g).

To test if thebinary spike detection biased thehigher selectivity of
ensembles, we repeated the analysis by measuring orientation selec-
tivity and tuning width using spike inference data and obtained similar

Fig. 2 | Inactivation of neurons defines an offsemble. aRepresentative raster plot
with frames sorted according to ensemble identification as in Fig. 1b. A highlighted
cluster represents the activity pattern of an ensemble, and neurons are sorted
based on their specific participation in the ensemble activity pattern (b). This
cluster contains all ensemble occurrences found in the recording. b Ensemble
participation index (EPI) of each neuron for the highlighted ensemble in a. Colors
indicate if neurons were significantly activated (red) or inactivated (blue) based on
a two-sided t test (p <0.05) while gray represents neurons without significant
participation. c Spatial location of onsemble, offsemble, and nonparticipant neu-
rons from raster in a. Scale bar: 100 µm. d Pie plot of the proportion of neurons
belonging to an onsemble, offsemble, or nonparticipant population of ensembles

found in n = 12 mice. Percentages are presented as mean ± SEM. e Average fraction
of neurons that comprise an onsemble, offsemble, and nonparticipant population
of all ensembles in a single mouse (n = 12 mice). The center of boxplots represents
themedian, the boundsof the boxes correspond to the first and thirdquartiles, and
the whiskers extend to the minimum and maximum datapoint values. Two-sided
Wilcoxon test: **p =0.005; ***p = 9 × 10–4. f Average population activity of the
ensemble onset activations highlighted in a. gAverage fraction of active neurons in
an onsemble, offsemble, and nonparticipant population during ensemble onset.
Lines and their shades represent themean± SEMacrossn = 12mice. Sourcedata are
provided as a Source Data file.
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results (Supplementary Fig. 4). Additionally, during the preferred sti-
mulus orientation, the proportion of responding ensemble neurons
was higher (78 ± 2%) than the proportion of tuned neurons (49 ± 2%)
and the proportion of responding onsemble neurons (47 ± 2%;
means ± SEMs across 12 mice; Supplementary Fig. 5). Therefore, the
simultaneous activation and inactivation of neurons enhance ensem-
ble orientation selectivity and tuning width.

Ensembles have higher orientation predicting precision than
onsembles
We further evaluated the accuracy of predicting visual stimulus
orientation using confusionmatrices, based on a set of four ensembles
for each mouse, where each is associated to a specific orientation. In
this analysis, we only compared data from mice containing the four
necessary ensembles (11 out of 12 mice; Supplementary Fig. 6a).

Initially, to build the confusion matrix for individual neurons, we ran-
domly selected four neurons, each tuned to a different orientation. For
each neuron, we selected the optimal response threshold to obtain a
binary signal representing the best prediction of its tuned orientation,
and thenwe built a confusionmatrix with the four tuned neurons. This
process was repeated for the remaining groups of four tuned neurons,
and the resulting confusion matrices were then averaged (neuron
group, Fig. 6a). To build the confusion matrices for ensembles,
onsembles, offsembles, and nonparticipant-tuned populations, with
only four elements in each group, we selected the optimal response
threshold to obtain a binary signal representing the best prediction
and then we built the corresponding confusion matrices (Fig. 6a).
Finally, we evaluated the accuracy of these confusion matrices for
each mouse (Fig. 6b). Ensembles demonstrated superior accuracy
(1 ± 0.002) compared to individual sets of neurons (0.61 ± 0.02).
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Onsembles and, surprisingly, offsembles also showed higher accuracy
than individual sets of neurons (0.89 ± 0.03 and 0.92 ±0.03, respec-
tively). In contrast, the nonparticipant-tuned populations displayed
the lowest accuracy (0.07 ±0.01; means ± SEMs across 11 mice;
Fig. 6b). This quantity may represent the fairest comparison between
groups (neuron, ensemble, onsemble, offsemble, and nonparticipant-
tuned population), given that all responses have been binarized to
achieve the most accurate prediction possible. Consequently, ensem-
bles exhibit greater accuracy than onsembles, indicating that they are
not solely responsible for the precise predictions.

Offsembles enhance orientation encoding of ensembles
Finally, to test if offsemble neurons are responsible for the difference
in precision between ensembles and onsembles, we reanalyzed the
population activity removing offsemble neurons. Using the same
algorithm to identify neuronal activity patterns, we found fewer
ensembles encoding orientations, a significant reduction in their
orientation selectivity and a broader tuning width (Supplementary
Fig. 7). This effect did not happened when we removed the same
number of nonparticipant neurons, even when the average of neurons
removedwas 60 ± 3% (mean ± SEM across 12mice). Thus, the inclusion
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of offsembles neurons enhanced the precision of the ensemble. In
summary, ensembles are highly accurate in predicting drifting grating
orientations. While it might have been tempting to attribute this pre-
cision solely to the active neurons during ensemble activation
(onsembles), our findings showed that such high ensemble precision
was due to the emergent combination of both onsembles and
offsembles.

Ensembles neurons have diverse tuning properties
To examine the tuning properties of the neurons that comprise
visually evoked ensembles, we categorized individual neuronal into
five response classes andmeasured their respective proportionswithin
onsembles, offsembles, and the nonparticipant population (Fig. 7a;
Supplementary Fig. 8). These five classes are neurons with: preference
for the same stimulus orientation (pref), preference for a different
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inactivated offsembleneurons).eOrientation selectivity. Ensembles showedhigher
orientation selectivity than other groups (pairwise two-sided Wilcoxon test,
p =0.007 or p = 5 × 10–4). f Orientation tuning curves fitted for individual neurons,
ensembles, onsembles, offsembles, ensembles†, and the nonparticipant-tuned
population. Tuning curves are centered on θpref. g Tuning widths, extracted from f.
Ensembles showed lower tuning width than the other groups (pairwise two-sided
Wilcoxon test, p =0.007 or p = 5 × 10–4). Lines and shaded regions represent the
mean ± SEM across n = 12 mice. Each datapoint represents the average within each
mouse across n = 12 mice. The center of boxplots represents the median, the
bounds of the boxes correspond to the first and third quartiles, and the whiskers
extend to the minimum and maximum datapoint values. NS not significant,
**p <0.01, and ***p <0.001. Source data are provided as a Source Data file.
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stimulus orientation (nonpref), response to multiple stimuli (unspe-
cific), preference for interstimulus periods (interstim), or no significant
response to visual stimuli (untuned). In terms of onsemble composi-
tion, on average there were 44 ± 3 neurons tuned to the same stimulus
orientation, 23 ± 1 neurons tuned to a different orientation, 26 ± 4
neurons with unspecific responses to multiple stimuli, and 14 ± 2
neurons thatwere not significantly tuned (41 ± 3%, 22 ± 1%, 24 ± 4%, and
13 ± 2% of onsemble neurons, respectively; means ± SEMs across 12
mice; onsemble on Fig. 7b). Thus, onsembles consist not only of
coactive neurons tuned to the same orientation, but also of coactive
neurons tuned to different or multiple orientations.

Offsembles were also composed of neurons with diverse tuning
properties. On average, 63 ± 6 neurons were tuned to a different sti-
mulus orientation, 51 ± 8 neurons were tuned to interstimulus periods,
and 21 ± 3 neurons were not significantly tuned (47 ± 4%, 38 ± 5%, and
15 ± 2% of offsemble neurons, respectively; means ± SEMs across 12
mice; offsemble on Fig. 7b). Thus, offsembles are comprised of sup-
pressed neurons that are also tuned to a distinct orientation or to the
interstimulus period. Conversely, nonparticipant population was
composed of 128 ± 11 neurons that were not significantly tuned, 69 ± 6
neurons tuned to a different stimulus orientation, 45 ± 3 neurons
tuned to interstimulus periods, 42 ± 5 neurons firing to multiple sti-
muli, and 6 ± 1 neurons tuned to the same stimulus orientation
(44 ± 4%, 24 ± 2%, 16 ± 1%, 14 ± 2%, and 2 ±0.4% of nonparticipant
neurons, respectively; means ± SEMs across 12 mice; nonparticipant
population on Fig. 7b). Note that, per ensemble, a considerableportion
of nonparticipant population is responsive to visual stimuli, so these
neurons may be part of other ensembles.

Next, we analyzed the extent to which onsemble and offsemble
neurons participate across multiple tuned ensembles. In a single
ensemble, 58 ± 5 onsemble neurons (54 ± 4% of the onsemble neurons)
are shared with other onsembles, while 90 ± 5 offsemble neurons are
shared with other offsembles (65 ± 3% of the offsemble neurons;

means ± SEMs across 12 mice, thin circles in Fig. 7b). The tuning
properties of ensemble and offsemble neurons, along with the exten-
sive sharing of neurons, illustrate how diverse neuronal responses are
integrated in response to visual stimuli. In conclusion, our study
reveals that cortical circuits respond to visual stimuli through a
simultaneous activation and inactivation of multiple neurons with
diverse individual tuning properties. Thus, ensemble coding repre-
sents an emergent property, activating onsemble neurons and inacti-
vating offsemble neurons, that provides reliable and highly precise
representation of visual information.

Discussion
Here we report a neural coding strategy that combines the specific
activation and suppression of neuronal responses.We investigated the
population coding properties of cortical circuits in response to visual
stimuli using volumetric calcium imaging of layer 2/3 from primary
visual cortex in awake mice. Neuronal ensembles were previously
described as a repetitive coactive group of neurons, but here we show
that another selective group of neurons is simultaneously inactivated.
Thus, we redefined neuronal ensembles as the combined activity pat-
tern created by the activation and inactivation of two sets of neurons,
termed onsembles and offsembles, respectively. Ensembles exhibit
higher orientation selectivity and narrower bandwidth than individual
neurons, along with a higher accuracy in predicting visual stimulus
orientation. Furthermore, ensembles, by combining information about
both activated and inactivated neurons, may integrate information
more robustly andover longer periods for perception.While individual
neurons are unreliable and adapt rapidly, which could lead to shifts in
perception, the reliability and prolonged activity of ensembles may
help stabilize representations of visual features25–27. Thus, neural
responses to visual stimuli appear to be an emergent circuit property,
where the activation and inactivation of groups of neurons enhance
the precision and reliability of information processing.
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Fig. 6 | Ensembles encode orientation better than onsembles or offsembles.
a Example of a mouse’s confusionmatrices used to predict the four orientations of
visual stimuli for individual neurons, ensembles, onsembles, offsembles, and the
nonparticipant-tuned population. b Accuracy in predicting the true orientation of
visual stimuli using confusion matrices from individual mice. Each datapoint
represents the accuracy of a single mouse using individual neurons, ensembles,
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showing four ensembles associated with the four orientations were included (n = 11
mice). Pairwise two-sided Wilcoxon tests were performed between groups.
Ensemble accuracy was higher than any other group (p =0.008 or p = 9 × 10–4). The
center of boxplots represents the median, the bounds of the boxes correspond to
thefirst and thirdquartiles, and thewhiskers extend to theminimumandmaximum
datapoint values. NS not significant, **p >0.01, and ***p <0.001). Source data are
provided as a Source Data file.
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Identifying neuronal ensembles is a challenging problem and
multiple methods have been developed to describe neural population
activity, including thresholded correlations, template matching, prin-
cipal component analysis, and graph theoretical approaches4,12,14,24,28–32.
Here we introduce an unsupervised approach to detect neuronal
ensembles, which not only identifies coactive neurons (onsembles),
but also identifies inactivated neurons (offsembles). We developed a
model-free algorithm22 that, unlike previous methods20,21,24, does not
require training, additional external information, or optimization to
maximize the prediction of stimuli. In contrast, our method
(Figs. 1 and 2) identifies statistically significant repeated activity pat-
terns in population vectors (ensembles), where each pattern includes
an onsemble (active neurons) and an offsemble (inactivated neurons).
As expected, due to biological variability between animals and
experiments, the number of identified visual ensembles varied. In
some instances, the number of cortical ensembles did not capture all
visual orientations, while in others, there were also ensembles asso-
ciated with stimulus directions (Supplementary Fig. 6c). Generally
though, ensembles captured all 4 orientations presented (11 out of 12
experiments). Factors that may contribute to the variability in the
number of visual ensembles include differences in neuronal count,
signal-to-noise in the imaged field of view, and differences across

regions of primary visual cortex. Yet, even in datasets with less than
200 neurons, our method was able to detect ensembles encoding all
presented orientations (Supplementary Fig. 6a).

We expected that ensembles tuned to a specific stimulus orienta-
tion would be comprised exclusively of neurons tuned to that orienta-
tion. However, many active (onsemble) neurons were either tuned to a
different, or multiple, orientations and a small fraction was even
untuned (Fig. 7). This diverse tuning properties of onsemble neurons
explain why the orientation selectivity is lower than that of the neurons
tuned to the ensemble orientation preference (Fig. 5e, g). In line with
this finding, both nonspecific and untuned neurons have indeed been
found to play a role in increasing a decoder’s performance at predicting
visual stimuli using machine-learning algorithms33,34. Moreover, the
utility of heterogeneous tuning in neurons has been described before,
such as in the motor cortex, where individual neurons make differen-
tially weighted contributions to encode movement35. Thus, ensembles
can be regarded as the emergent outcomeof information processing of
neurons with distinct roles, in agreement with the hypothesis that
neuronal ensembles, rather than individual neurons, are the functional
units of sensory encoding in cortex.

On the other hand, while specific subsets of neurons were acti-
vated to form onsembles, a complementary subset of neurons
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neuronal activity is represented in red shading, while offsemble neuronal activity is
indicated in blue. Neurons are sorted and subdivided based on their individual
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90°, and 135°). b Left, Drawing of a mouse visually stimulated adapted from Jesús
Pérez-Ortega, Tzitzitlini Alejandre-García & Rafael Yuste (2021) Long-term stability
of cortical ensembles eLife 10:e64449. https://doi.org/10.7554/eLife.64449. Right,

Venn diagram representing 100 pyramidal neurons in layer 2/3 of visual cortex
during the onset of a visual stimulus presentation. Proportions were computed
using data averaged fromn = 12mice. A group of neurons is activated (onsemble, in
red), another group is inactivated (offsemble, in blue), and the third group remains
uninvolved (nonparticipant population, in gray). Single-neuron analysis categorizes
neurons as being tuned to the preferred orientation (pref), to a different orienta-
tion (nonpref), broadly tuned tomultiple orientations (unspecific), associated with
interstimulus periods (interstim), or untuned. Thick edges indicate neurons
exclusive to the onsemble or offsemble of the preferred orientation while thin
edges represent neurons shared within onsembles and within offsembles. Source
data are provided as a Source Data file.
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(offsembles) were inactivated, further enhancing the cortical repre-
sentation of visual inputs. Our results suggest that the inactivation is
due to selective inhibition. Although commonly excluded from ana-
lysis, calcium decay signals can reveal synaptic inhibition36–38, and,
accordingly, we showed that calcium transients decay faster during
the onset of their preferred inactivating stimulus (Fig. 3). Hyperpo-
larization during in vivo calcium imaging is known to reduce GCaMP
fluorescence levels due to the correlation between intracellular cal-
cium concentration and membrane polarization36,39,40. Previous stu-
dies have explored lateral inhibition and cross-orientation
suppression during visual stimulation41,42, but the role of inhibition in
shaping single-cell activity has not been fully established43–45.
Although inhibitory suppression may not be essential for single-cell
tuning, it likely plays an important role for a population level coding,
as has been proposed in models of orientation selectivity46. We
hypothesize that multiple modes of inhibition shape offsemble neu-
ron inactivation. For instance, a specific subset of offsemble neurons
are tuned to the nonpreferred orientation, which may be due to
mechanisms of cross-orientation suppression (Fig. 7a). Additionally,
the subset of offsemble neurons tuned to interstimulus periods
(interstim ensemble; ensemble 5 in Fig. 1f) may be the result of inhi-
bition induced by grating stimuli, given that most neurons tuned to
interstimulus periods were shared across all offsembles (interstim
offsemble neurons in Supplementary Figs. 3 and 7). In summary,
offsembles could be shaped by lateral inhibition, relief of excitatory
drive, or neuronal intrinsic properties, all of which coordinate the
inhibition that enhances visual coding in cortex41,42,44,47.

Cortical inhibition is largely mediated by GABAergic neuro-
transmission and likely plays a central role in the specific inactivation
of offsemble neurons. GABAergic interneurons shape the activity of
pyramidal neurons and have been shown to enhance single-neuron
orientation tuning. Conversely, optogenetic or pharmacological sup-
pression of inhibition deteriorates tuning48. Local interneurons have
been shown to be coherently active with excitatory ensembles49 and
suppression of parvalbumin-expressing (PV) interneurons reduces
ensemble reliability during visual stimulation50. Furthermore, activa-
tion of vasoactive intestinal peptide-expressing (VIP) interneurons,
which are highly correlated to locomotion, enhances weak responses
to visual stimuli51, perhaps also by augmenting offsemble suppression
(as we show occurs during locomotion; Fig. 4). Thus, converging stu-
dies that support the role of inhibition in improving visual coding lead
us to propose that GABAergic interneurons selectively target off-
semble neurons. Disentangling the precise role of interneurons in
shaping ensembles, specifically offsemble activity, presents exciting
new avenues of inquiry.

Finally, recent studies have shown that animal locomotion alters
neural activity in visual cortex. Locomotion can increase overall cor-
tical activity52, can be predicted from neuronal activity10, and may
enhance visual encoding53,54. In our experiments, locomotion had both
effects: activation and inactivation of neurons. The total number of
active neurons showed no significant global change when mice were
running (Fig. 4e). However, running during the presentation of
an ensemble’s preferred orientation yielded an increase in offsemble
neuron inactivation rather than an increase in the activation of
ensemble neurons (Fig. 4f). Thus, locomotion may enhance stimuli
encoding in cortex by further inactivating offsemble neurons.

In conclusion, our results show that mouse primary visual cortex
exhibits precise encoding of visual stimuli by ensembles, which are
sets of coordinated activity of both activated and inactivated neurons.
We find evidence of potential selective inhibition of ensemble neu-
rons, and demonstrate that their inactivation enhances encoding
precision. Ensembles thus reflect an intricate partnership between the
activation and inactivation of neurons, collectively enhancing the
precision of information processing in visual cortex, as an emergent
functional code.

Methods
Animals and surgery
All experimental procedures were conducted in accordance with the
US National Institutes of Health and Columbia University Institutional
Animal Care and Use Committee and were similar to our previous
study14. Mice were housed in a controlled environment under a 12 h
dark-light cycle at room temperature of ~23 °C and ~50% of humidity.
Mice had ad libitum access to food and water. Experiments were per-
formed in 12 adult transgenic mice (Slc17a7-IRES2-Cre, JAX stock #
023527) crossed with TIGRE2.0 Ai162 (TIT2L-GC6s-ICL-tTA2, JAX stock
# 031562) maintained in C57BL/6 J congenic background. Mice were
anesthetized with isoflurane (1.5–2%) while maintaining body tem-
perature at 37 °C. Dexamethasone sodium phosphate (0.6mg/kg) and
Enrofloxacin (5mg/kg) were administered subcutaneously and Car-
profen (5mg/kg) intraperitoneally. A titaniumhead-plate was attached
to the skull, a 4mm diameter craniotomy opened (center at 2.1mm
lateral and 3.4mmposterior from bregma), and a round coverslip was
implanted and sealed. Animals received postoperative Carprofen for
two days. Mice were allowed to recover for five days with food and
water ad libitum, and their health was checked daily.

Visual stimulation
A custom-made MATLAB application55 was used to display visual
drifting gratings on an LCD monitor positioned 15 cm from the right
eye at 45° to the long axis of the animal. In 10 out of 12 mice, only the
blue channel of the monitor was used (red and green channels were
disabled) to avoid light contamination in the photomultiplier56 (PMT).
No discernible difference was observed between blue and black/white
drifting gratings across experiments when the imaging objective was
shielded. Visual stimulation startedwith a blue screen (meanof grating
luminescence) followed by full sinusoidal gratings (100% contrast, 0.13
cycles/deg, 2 cycles/s) drifting in 8 directions selected randomly (0°,
45°, 90°, 135°, 180°, 225°, 270°, and 315°) presented for 2 s, and a blue
screen inter-gratings lasting between 1 and 5 s. Drifting gratings were
presented at least 6 times for each direction during a 5-min session (at
least 48 trials per experiment).

Mouse facial recording
Mouse face was recorded using an infrared monochrome camera
(DMK 21BU04.H, The Imaging Source) with a zoom lens (MVL7000,
Navitar) and an infrared illuminator (AI4, Tendelux). Images were
acquired at 15 frames per second and stored using ICCapture software
(The Imaging Source). Whisking, blinking, and sniffing behaviors were
measured using a custom-made MATLAB code57.

Volumetric two-photon calcium imaging
Imaging experiments were performed five days after head-plate
implantation. Each mouse was head-fixed on a wheel under a two-
photon microscope (a custom-modified Ultima IV, Bruker). Animals
were acclimated to the head restraint for periods of 5–15minutes for at
least 2 days and exposed to visual stimulation sessions before
recordings. The imaging setup was enclosed with a blackout screen to
avoid light contamination into the PMT. An imaging laser (Ti:sapphire,
λ = 920nm, Chameleon Ultra II, Coherent) was used to excite
GCaMP6s. The laser beam at the sample (30–60mW) was controlled
by a high-speed resonant galvanometer scanning an XY plane
(256× 256 pixels) at 17.7ms (frame period) covering a field of view of
452× 452μm using a ×25 objective (NA 1.05, XLPlan N, Olympus). An
electrically tunable lens (ETL) was used to change focus (z axis) during
the recording. Imaging was performed using Prairie View Imaging
(Bruker) in three planes (30–50μm apart) recorded consecutively at a
depth of 150μm to 250μm from the pia, pausing ~10ms between
planes for ETL focus to stabilize. Thus, we collected three frames, one
per depth, every ~80ms for 5min. Imaging and ETLwere controlled by
Prairie View software.
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Neuronal activity extraction
Neural activity was analyzed entirely using custom-made MATLAB
code22 based on our previous work14. First, rigid translation motion
correction from raw videos was performed, regions of interest (ROIs)
were identified based on Suite2p58, and a filtered calcium signal
(Ffiltered) from each ROI was extracted using the ROI raw signal (FROI)
and its local neuropil raw signal (Fneuropil):

F filtered =
FROI�Fneuropil

Fneuropil
ð2Þ

Then, to evaluate these signals, peak signal-to-noise ratio (PSNR)
was computed in decibels for each ROI as following:

PSNR=20 � log10

max FROI � Fneuropil

� �

std Fneuropil

� �
0
@

1
A ð3Þ

where max function is the maximum value and std function is the
standard deviation. Subsequently, calcium signals above 10 dB of
PSNR were selected and filtered sequentially by a median, minimum,
and maximum moving filter of 500ms window, which worked better
for preserving timing. Then, we performed spike inference using the
foopsi algorithm59, followed by its binarization using a threshold pro-
portional to the calcium signal’s PSNR:

threshold =0:04� 0:002 � PSNR ð4Þ

The resulting binarized signal represents the presence or absence
of spikes. All neuronal binarized signals were used to build a matrix of
size N × F, where N is the number of active neurons, and F the number
of frames recorded. Thismatrix is visualized as a raster plot, where the
ones in the matrix are the dots representing the spiking activity of the
neurons (Fig. 1d).

Ensemble activity detection
To identify ensembles, we used a custom MATLAB program22, built
upon our previous work14. First, we extracted the functional neuronal
network from the raster matrix14. Subsequently, we filtered the raster
by removing spikes from neurons that were nonfunctionally con-
nected in each column vector. Following this preprocessing step,
hierarchical clustering was applied to all column vectors using Jaccard
similarity and Ward linkage (as illustrated in Fig. 1d). The optimal
number of clusters was determined by identifying the maximum local
contrast index60. Each cluster was considered an ensemble if the
similarity between their vectors was statistically significant (p <0.05),
determined through a z-test. This significance was assessed by com-
paring the average similarity within the cluster vectors being tested to
the mean and standard deviation average similarity among the same
number of the cluster vectors selected randomly over 1000 iterations.
Once significant ensembles were identified, their timestamps were
located (ensemble activity, Fig. 1f). Note that, as our algorithm is an
event-basedmethod for ensemble identification, ensemble activity is a
binary signal representing its occurrences, and the occurrences
between ensembles are mutually exclusive.

Identification of onsemble and offsemble neurons
We introduced the EPI to measure each neuron’s involvement during
ensemble activity, ranging from −1 to 1. A positive EPI indicates
increased activity during ensemble activity, while a negative EPI indi-
cates reduced activity.We determined EPI significance (p <0.05) using
a two-sample t-test, comparing the fractionof time that theneuronwas
active during ensemble activity vs ensemble inactivity. Neurons with
significant positive EPIs were classified as onsemble neurons, and
those with significant negative EPIs as offsemble neurons.

Decay time constant
To assess potential inhibition in the calcium signals, we fitted a simple
exponential function to single transient decays using the following
equation:

decay tð Þ=a � e�t
τ ð5Þ

wherea is the amplitude of the signal, and τ is the decay time constant.
Then, we compared the decay time constants during spontaneous and
evoked activity, specifically, right before and right after the onset of a
particular visual stimulus.

Onsemble, offsemble, and nonparticipant-tuned population
activity
For each ensemble, we computed the activity of its own onsemble and
offsemble, and the subset of tuned neurons within the nonparticipant
population (nonparticipant-tuned population). The activity was com-
puted by averaging the binary signals of all individual neurons within
each group (onsemble, offsemble, and nonparticipant-tuned popula-
tion), i.e., the fraction of active neurons at every time point.

Orientation selectivity and tuning width
The response for each neuron, ensemble, onsemble, offsemble, and
nonparticipant-tuned population was computed by averaging their
activity during each visual stimulation trial. Each response ranges
continuously between 0 and 1, regardless of whether it is a neuron,
ensemble, onsemble, offsemble, or nonparticipant-tuned population.
The signals of neurons and ensembles are binary, individual neuronal
activity represents spiking activity (0 = inactive; 1 = active), and
ensemble activity represents ensemble occurrences (0 = no occur-
rence; 1 = occurrence). Thus, the average of neuronal and ensemble
activity represents the fraction of time theywere active during the two-
second visual stimulation. The signals of onsembles, offsembles, and
nonparticipant-tuned populations are nonbinary with values ranging
between 0 and 1, each group represents the fraction of their active
neurons at any sample (0= no neurons of the group were active;
1 = 100% neurons of the group were active). Thus, the average of
onsemble, offsemble, and nonparticipant-tuned population activity
represents the average fraction of active neurons within the group
during the two-second visual stimulation. Orientation circular variance
(1–CirVar) was used to quantify orientation selectivity and the Hotell-
ing’s t2-test was used to assess significance23. Significant orientation
selectivity was used to assign tuning to neurons and ensembles, with
each being assigned to one of the four presented stimulus orienta-
tions. Once identified tuned ensembles, we proceeded to extract the
activity of their own onsemble, offsemble, and nonparticipant popu-
lation and measure the orientation selectivity for each group. To
compute the tuning width, responses to orientations were fit by non-
linear least squares optimization to the following Gaussian curve:

response θð Þ=a � e�
ðθ�θpref Þ2

2�σ2 ð6Þ

where a is the maximum response amplitude of the preferred orien-
tation, θpref is the preferred orientation, and σ is the tuning width.
Coefficients were restricted to the following intervals: a to the interval
[0 1], θpref to the interval [−45° 180°], and σ to the interval [1° 90°].
Additionally, we performed orientation selectivity and tuning width
using the spike inference signals, i.e., before thresholding (Supple-
mentary Fig. 4).

Accuracy of prediction using multiclass confusion matrices
To evaluate the accuracy of predicting all four visual stimulus orienta-
tions, we usedmulticlass confusionmatrices. We analyzed data from 11
out of 12 mice, each of which contained the four necessary ensembles,
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each associated to a distinct orientation. Confusion matrices were
constructed for individual neurons, ensembles, onsembles, offsembles,
and the nonparticipant-tuned populations. Each confusion matrix
involved four elements, corresponding to the four grating orientations,
to predict all four orientations. In the case of neurons, we randomly
assembled sets of four neurons, each neuron tuned to a different sti-
mulus orientation. For each neuron, we averaged its response during
each trial and built a receiver operator characteristic (ROC) curve by
varying the threshold to its responses. This allowed us to evaluate its
performance in predicting its tuned orientation. We selected the
threshold that optimized performance on the ROC curve, maximizing
the informedness (hit rateminus false alarmrate).Onceweobtained the
predicted orientation using the four neurons for every trial, we built the
confusion matrix. This process was repeated for the remaining sets of
neurons, and the confusionmatrices were then averaged. Similar to the
process of neurons, we built confusion matrices for ensembles,
onsembles, offsembles, and the nonparticipant-tuned populations. In
this process, we selected the optimal response threshold to maximize
the informedness of the ROC curve for assigning predictions, and then
generated the corresponding confusion matrices. Using the threshold
to maximize informedness, we obtained binary signals that better pre-
dicted orientation tuning, regardless of the group analyzed (neuron,
ensemble, onsemble, offsemble, andnonparticipant-tunedpopulation).
With these multiclass confusion matrices, we measured prediction
accuracy by calculating it as the division of the total true positives
(diagonal values) by the total number of trials.

Removal of offsemble and nonparticipant neurons
To test whether offsemble neurons contribute to the high orientation
selectivity and narrow bandwidth of ensembles, we reanalyzed the
population activity by excluding offsemble neurons. To do so, we
identified offsemble neurons for each orientation-encoding ensemble,
and then subsequently eliminated them from the population activity.
As control, we identified nonparticipant neurons for each orientation-
encoding ensemble. Given that the total number of nonparticipant
neurons exceeds that of offsemble neurons, we selected an equivalent
number of offsemble neurons by choosing the least participant neu-
rons. After removing offsemble (or nonparticipant) neurons from the
population activity, we analyzed the remaining population activity to
identify the same original number of neuronal activity patterns found
(Supplementary Fig. 7a, b). It is worth noting that any offsemble neu-
ron from one ensemble can be an onsemble or a nonparticipant neu-
ronof a different ensemble. Thus,manyoffsemble neurons also served
as onsemble or nonparticipant neurons in different ensembles. The
same occurred for nonparticipant neurons, as any nonparticipant
neuron fromone ensemble canbe anonsemble or offsemble neuron in
a different ensemble.

Single-cell tuning to multiple orientations, interstimulus peri-
ods, or untuned
In addition to orientation selectivity, neurons not tuned to any specific
orientation were evaluated to see whether they were tuned tomultiple
orientations (unspecific) or tuned to interstimulus periods (interstim).
Subsequently, samples were obtainedmeasuring the average neuronal
activity during two different periods: stimulation periods (indepen-
dently of the orientation) and interstimulus periods. These samples
were evaluated using a two-sample t-test, where significant neurons
were labeled as unspecific if they were more active during stimulation
periods and were labeled as interstim if they were more active during
interstimulus periods. Nonsignificant neurons were label as untuned
neurons. Using this test, we identified significantly active neurons
during visual stimulation (unspecific), significantly active neurons
during interstimulus periods (interstim), and neurons that did not
exhibit significant changes in their activity between visual stimulation
and interstimulus periods (untuned).

Neuronal activity during locomotion
To measure the effect of running on neuronal activity, sessions were
separated between still and running periods. Running periods were
consideredwhen the running speedwas greater than 1 cm/s, otherwise
they were considered still periods. Only 11 out of 12mice had sufficient
running periods for analysis (>5% frames). Then, the count of active
neurons in the entire population was measured to compare between
still and running periods, during visual stimuli or during no visual
stimulation. The EPIs were also measured during still and running
periods for all ensemble and offsemble neurons.

Statistics and reproducibility
All statistical tests were performed using animal-wide summary sta-
tistics to assure independent observations and avoid nesting data61–63.
Every single datapoint in boxplots represents the average within a
mouse and is paired in different comparisons (Figs. 2e, 3c, 4e, f, 5c, e, g,
and 6b). Traces and shaded regions represent the mean and SEM
across mice (Figs. 2g and. 5b, f). We averaged single-neuron measures
per stimulus orientation tuned, and then averaged again to get a single
datapoint per mouse. For ensembles, we averaged the values of all
tuned ensembles to get a single datapoint per mouse. Similarly, for
onsembles, offsembles, and nonparticipant populations, we averaged
the values to get a single datapoint per mouse. The representative
images depicted in Fig. 1b from the recorded calcium imaging videos
were reproduced multiple times. However, it is important to note that
when replicating the experiment in the same mouse, the signal-to-
noise ratio diminishes over weeks14.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2–7 and Supplementary Figs. 1, 4–7
are provided as a Source Data file. The experimental preprocessed
dataset and results generated in this study have been deposited in the
Dryad repository (https://doi.org/10.5061/dryad.w3r2280w7).

Code availability
The source codes used in this research are available at the following
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