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SUMMARY

Individual cell sensing of external cues has evolved through the temporal patterns in signaling. 

Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, 

RelA, it remains unclear whether more information might be transmitted via other subunits. 

Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, 

RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We 

show that signaling features of RelA and c-Rel convey more information about the stimuli 

than those of either subunit alone. Machine learning is used to predict the ligand identity 

accurately based on RelA and c-Rel signaling features without considering the co-activated 

factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel 

signaling dynamics, as well as their temporal coordination. These results suggest a potential role 

of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate 

the mechanisms regulating NF-κB subunit specificity.
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In brief

Rahman et al. perform quantitative livecell imaging of macrophages from NF-κB double-knockin 

reporter mice and show that both RelA and c-Rel subunits contribute to accurate discrimination 

of pathogen-derived ligands. Signaling features of the two NF-κB subunits are temporally 

coordinated and non-redundant in individual cells.

INTRODUCTION

Individual cells make irreversible fate decisions based on information received through 

the milieu of hormones, cytokines, metabolites, and biochemical input from direct cell-

cell contacts. The information content and the accuracy of single cells interpreting the 

input have been a topic of fundamental importance.1 While early studies of snapshot 

measurements reported the limited information capacity of individual single cells,2 recent 

studies have shown various mechanisms of augmented information processing capacity, 

including combined signaling of two pathways,3 time integration of signaling,4 and dynamic 

response patterns.5–8 For a ubiquitous immune transcriptional regulator such as nuclear 

factor κB (NF-κB), it is especially important to understand the information coding capacity, 

because of its wide-ranging involvement in numerous cell decision-making processes, and 

the broad implications.9–14

NF-κB proteins mediate much of the canonical signaling directly downstream of a wide 

range of microenvironmental cues in immune cell communications.13,15–17 Foundational 
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studies have shown how NF-κB signaling dynamics can regulate gene expression in 

response to extracellular signals, mainly using engineered cell lines expressing a transgene 

that encodes a fluorescent fusion of the RelA (also known as p65) subunit of NF-κB.18–29 

Recent advances in experimental approaches have provided a more functionally relevant 

characterization of NF-κB dynamics in primary cells in terms of “signaling codons,” 

i.e., dynamical features of signaling that convey information about ligand identity, using 

fluorescent knockin (KI) reporter mouse macrophages.7

However, existing data are limited to the RelA subunit of the NF-κB/Rel family, whereas 

both RelA and another transcriptionally active subunit, c-Rel, produce heterodimers 

and homodimers that mediate the canonical pathway activities. Although both NF-κB 

subunits share upstream signaling cascades and have similar domains and structures,30 

their biological functions have diverged significantly. The most striking difference is that 

the RelA knockout (KO) is embryonic lethal due to massive tumor necrosis factor alpha 

(TNF-α)-induced liver apoptosis,31,32 whereas c-Rel deficiency leads to limited defects in 

T and B cells.33–35 On the other hand, the induction of inflammatory gene expression was 

largely preserved in fibroblasts and macrophages from Rel (encoding c-Rel) KO mice.36,37 

Nonetheless, the results of conventional KO experiments are subject to compensation by 

family members such as RelA and are limited to the chosen assays, time points, cell types, 

and technical challenges. Therefore, we sought to understand if and how RelA and c-Rel 

signaling activities are coordinated in individual cells using quantitative live-cell analyses.

Macrophages are innate immune cells that respond to environmental signals such as foreign 

agents or in vivo damage products, thereby serving as a model cell context where NF-κB 

signaling can convey biological information for functional responses.38 While much has 

been learned about chromatin regulatory mechanisms and the impact of tissue-specific 

niches in macrophage biology, predictive quantitative models are necessary to understand 

how they mount proper functional responses to a wide variety of pathogen-associated 

molecular patterns (PAMPs).

Here, we used the recently developed double-KI (DKI) reporter mice39 and assessed how 

primary macrophages interpret diverse pathogenic and host signals through quantitative 

features of RelA and c-Rel. We found that c-Rel augments the ligand discrimination 

capability of macrophages beyond what is possible through RelA alone. Mathematical 

modeling suggested that the biochemical characteristics of RelA and c-Rel interactions 

account for their distinct dynamics and their coordination in individual macrophage 

responses. Our quantitative approaches provide an unprecedented insight about how 

macrophages exploit coordinated or independent actions of RelA and c-Rel signaling 

features to discriminate ligand identity.

RESULTS

Simultaneous quantitative imaging of NF-κB RelA and c-Rel in live primary macrophages 
captures the subunit-specific signaling features

To monitor the endogenous activity of both subunits of NF-κB in primary macrophages, 

we isolated bone-marrow-derived macrophages (BMDMs) from our NF-κB DKI reporter 
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mice, homozygous for mEGFP-RelA and for mScarlet-c-Rel.39 The DKI mice allow 

simultaneous visualization of endogenous RelA and c-Rel in the same cell. For a systematic 

profiling of the ligand-specific NF-κB activation dynamics, BMDMs were stimulated with 

six different Toll-like receptor (TLR) ligands (representing various PAMPs) along with 

a pro-inflammatory cytokine, TNF-α. Cells were stained with a far-red, live-cell dye, 

SPY650-DNA, for nuclear segmentation, which allows us to perform long-term live imaging 

without phototoxicity. We then carried out quantitative long-term livecell imaging of DKI 

mouse BMDMs using our custom time-lapse microscopy and automated image analysis 

workflow (Figures 1 and S1), and single-cell RelA and c-Rel signaling was assessed by the 

nuclear:total ratio of their mean fluorescence intensities.

The single-cell trajectories for ligand-activated RelA and c-Rel responses in primary 

BMDMs showed noticeable ligand-specific patterns for both subunits, with c-Rel often 

reaching higher nuclear translocation peaks (Figure 2). These patterns contrast with 

the previously published data from immortalized macrophages (RAW267.4 cells stably 

expressing the fluorescent fusion RelA or c-Rel proteins).40 The primary macrophage 

cells showed generally stronger and more sustained responses with clearly ligand-specific 

response times (Figure 2A), compared to the immortalized macrophages stimulated with the 

same ligand doses.40 For example, the immortalized macrophages had little or no NF-κB 

activation after flagellin, CpG, or TNF-α treatment, whereas the primary BMDMs show 

activation of both RelA and c-Rel in response to the same concentrations of stimulating 

ligands. Overall, NF-κB signaling responses in BMDMs were robust, with temporal patterns 

that appear to reflect ligand specificity.

Since co-imaging of RelA and c-Rel in live cells has no precedent, immediate attention was 

given to a careful comparison of the single-cell signaling trajectories for RelA and c-Rel. 

Despite the different phenotypes of genetic KOs, the two subunits are both mediators of 

canonical NF-κB responses. We asked whether c-Rel follows similar signaling dynamics 

to RelA after activation by the ligands in terms of the following quantitative features 

extracted from the single-cell trajectories: the peak amplitude, the time to first peak, the area 

under the curve (AUC), the duration of signaling, the slope of the first rise, the post-peak 

attenuation rate, and, for oscillatory trajectories, the number of periodic cycles and the 

period of oscillation (Figure 2B).

For all the TLR ligands, the amplitude of c-Rel was higher than that of RelA (in the nuclear/

total ratio scale, which allows comparison of the two imaging channels), consistent with 

data that a substantial portion of RelA is trapped by the IkBsome complex and does not 

respond to canonical inhibitor of kappaB kinase (IKK) activation.41 However, in response 

to the host cytokine TNF-α, RelA showed a higher amplitude than c-Rel. This may reflect 

an insufficient response by the c-Rel-binding inhibitor of kappaB (IκB)ε to the transient 

kinase activity of IKK that is induced by TNF-α.27,42 For all the ligands, the time to 

peak of c-Rel was longer in comparison to RelA, which is related to the slope of the first 

rise of RelA being always greater than that of c-Rel. The other quantitative features (e.g., 

AUC, attenuation rate) showed ligand-specific differences between the two subunits, which 

suggests that these signaling features can encode some ligand-specific information (Figure 

2B). A correlation analysis showed that some signaling features of RelA and c-Rel were 
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correlated in spite of non-negligible outliers (e.g., in peak amplitude and duration), which is 

expected from the shared upstream activation via IKK.43 However, other signaling features 

had low correlations (e.g., slope of first rise and attenuation rate) (Figure S2), raising the 

possibility of additional information content in c-Rel signaling that macrophages could 

exploit.

The correlation of signaling features between RelA and c-Rel depends on the activating 
ligand

Having found that non-redundant c-Rel signaling dynamics may transmit additional 

information for encoding the identity of the activating ligands, we wondered what features 

of c-Rel signaling might be relevant. To address this question, we dissected the quantitative 

relationships of RelA and c-Rel signaling in more depth. Taking advantage of the co-

signaling data from the same single cells, we calculated the correlation coefficients between 

RelA and c-Rel signaling features for each ligand time series dataset. The correlations 

observed within each ligand time series dataset differed from their general correlations 

found across all the ligand stimulation datasets, termed “pan-ligand” correlations (Figures 

2C and S2). For example, the time to peak and duration of the lipopolysaccharide (LPS) 

time series dataset no longer showed a strong correlation between RelA and c-Rel. The 

duration of RelA and c-Rel also had a much lower correlation for R848 and CpG compared 

to the overall pan-ligand correlation across all the ligands.

Cross-correlations of signaling features reveal the sources of RelA and c-Rel divergence 
in encoding the ligand specificity

The previous result led us to expand and calculate the correlation coefficients for all 

possible pairs of individual RelA and c-Rel signaling features, which can be displayed in a 

“correlation matrix” for each dataset. The correlation matrix is thus an exhaustive overview 

of inter-relationships between signaling features, computed from interrogating the single-cell 

time series dataset, for a quick identification of signaling features that tend to be linked to 

each other and those which appear to behave independently. Using the total dataset for all 

seven ligands, we constructed a pan-ligand correlation matrix (Figure 3A). The panligand 

correlation matrix represents the generic behavior of RelA and c-Rel signaling features 

that is not specific to any ligands. This was to serve as a baseline for the ligand-selective 

correlation matrices that were computed separately using the dataset for each ligand (Figure 

3B).

In the pan-ligand correlation matrix, the peak amplitudes of RelA and c-Rel were highly 

correlated (0.78; Figure 3A), which means that high RelA peaks were followed by high 

c-Rel peaks in individual cells (RelA nuclear translocation was always faster than c-Rel; 

Figures 2B and S2). Moreover, within the cross-correlation rectangle of the pan-ligand 

matrix, several diagonal values (relating the same quantitative features for the two subunits) 

were generally high. This probably reflects the extent of a shared upstream IKK signaling 

cascade affecting both NF-κB subunits.38,44 Some values off the diagonal were interesting, 

including the strong correlation (0.68) between the peak amplitude of c-Rel and the AUC 

of RelA. Along this vein, the attenuation rate of RelA was lower (which promotes a 
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more sustained RelA signaling) when the c-Rel amplitude or AUC was higher (negative 

correlations −0.36 and −0.35; Figure 3A).

The correlation matrices generated from individual ligand datasets showed interesting 

deviations from the pan-ligand matrix. We found that the ligand-specific correlation 

coefficients (diverging by at least 0.45 in absolute values from the pan-ligand counterparts) 

have remarkably distinct occurrence patterns across the ligands (Figure 3B, marked with 

green boxes). For example, the time to peak and the duration of RelA and c-Rel signaling 

are strongly correlated in general (Figure 3A) but much less so in LPS-induced dynamics 

(Figure 3B, LPS matrix, green boxes). The durations of RelA and c-Rel signaling were 

even less correlated in the CpG single-cell co-imaging data. For Pam3CSK4, the c-Rel 

duration was no longer negatively correlated to the number of RelA cycles, in contrast 

to the panligand. Unlike PAMPs, TNF-α data produced a correlation matrix with only 

weak cross-correlations between RelA and c-Rel features (Figure 3B, TNF-α matrix). The 

amplitude of the first c-Rel peak had no effect on the AUC of RelA signaling for TNF-α, 

whereas they were correlated for most PAMPs (Figure 3B, TNF-α matrix, green boxes, 

compared to their counterparts in other matrices).

Interestingly, these analyses identified two outlier ligands with opposite properties among 

the PAMPs. Flagellin, a bacterial PAMP sensed by the TLR5/Myd88 on the cell surface, 

had the largest number of deviations in the correlation matrix from the pan-ligand (Figure 

3B, flagellin matrix, green boxes). On the other hand, poly(I:C), a viral PAMP sensed by 

TLR3/TRIF in the endosome, is the only ligand with no large deviations in its correlation 

matrix from the pan-ligand matrix, which suggests that NF-κB signaling dynamics induced 

by this ligand embody the generic pan-ligand pattern of RelA and c-Rel relations.

A close look at the matrices also indicated that the duration of c-Rel is often involved in the 

ligand-specific divergence from the pan-ligand correlation matrix (Figure 3B, green boxes 

in the matrices of LPS, flagellin, CpG, R848, and Pam3CSK). These relations of c-Rel with 

RelA signaling features are gained, lost, or even switched between positive and negative 

correlations for different ligands. For example, flagellin had three correlations involving the 

duration of c-Rel reversed from the pan-ligand (Figure 3B, flagellin matrix, green boxes in a 

horizontal row from “c-Rel duration” on the y axis, compared to their counterparts in Figure 

3A). Altogether, the duration of c-Rel had a great impact on shaping the ligand-specific 

cross-correlation of RelA and c-Rel signaling features, which will be important later in 

ligand prediction accuracy of machine learning (ML) models (Table S1).

Ligand discrimination is more precise with signaling features of RelA and c-Rel in 
comparison to either subunit alone

It was recently shown that distinct signaling codons (similar to the eight quantitative 

features introduced above) of RelA carry the relevant information to help macrophages 

distinguish the stimulating ligands.7 Following the observation that some features of c-

Rel signaling dynamics are different from those of RelA, we asked whether c-Rel may 

relay additional stimulus information to the nucleus. To evaluate the degree of ligand 

discrimination systematically, we developed supervised ML models by training them with 

signaling features of RelA, with those of c-Rel, or with those of both RelA and c-Rel, from 
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the 7-ligand dataset (Figure 4A). Despite some mild correlations between these features, 

they capture largely independent aspects of signaling dynamics unfolding from early to late 

phases, like the previously defined signaling codons (Figure S3).7

We used two different classification algorithms, K-nearest neighbor (KNN) and linear 

discriminant analysis (LDA), for learning the ligand-discriminating features. KNN and LDA 

were chosen to harness their widely complementary advantages and limitations. KNN can 

handle flexible data distributions with no parametric assumptions (Figure S4), whereas LDA 

is less prone to overfitting the training data. Their performances in predicting the identity of 

the activating ligand were assessed in a repeated 10-fold cross-validation: the ML models 

were trained on randomly sampled 70% of the total dataset and tested on the remaining 30% 

for model performance in ten independent sampling rounds. To visualize the performance 

outcome of the multi-class ML predictions, we computed the F1 score, a harmonic mean 

of the precision and recall, which is an ML performance measure for both balanced and 

imbalanced datasets (Figure 4B). We also generated the confusion matrix for each ML 

algorithm that summarizes the predictions made on the test datasets (Figures 4C and S5).

KNN models were more accurate in identifying most ligands (5 out of 7) if the signaling 

features of both subunits were used for ligand identification (Figures 4 and S5). For 

example, ML with RelA features alone produced the highest confusion in identifying 

CpG (only 59% correct on average), with 24% and 13% misclassified as poly(I:C) and 

Pam3CSK4, respectively. By including c-Rel features, the KNN ML improved the CpG 

prediction accuracy to 62% by reducing the confusion with Pam3CSK4 to 7%. Notably, 

signaling features of c-Rel alone were more error prone, but their inclusion resulted in 

modest improvements of prediction accuracy over ML predictions based on RelA features 

alone (Figure 4C). Both the c-Rel features that were correlated with RelA and those 

that were divergent from RelA contributed to the modest improvements (Figure S6). The 

improvements of prediction accuracy were also observed when the trained ML models were 

tested on an independent dataset (Figure S7). While the performances of the LDA models 

were slightly lower than the KNN models (for all ligands except for LPS and TNF-α), 

the use of both RelA and c-Rel signaling features again improved ligand prediction for 

most ligands (6 out of 7) (Figure S5). The top two features contributing to the enhanced 

LDA prediction were the attenuation rate of RelA and the duration of c-Rel (Table 

S1). Calculation of additional performance measures indicated that the ligand prediction 

improved mainly through gains in precision and sensitivity for the ML models (Figure S5). 

These results demonstrate that the signaling dynamics of both NF-κB subunits encode more 

ligand-discriminating information in comparison to RelA or c-Rel alone.

Signaling features of c-Rel help maintain ligand discrimination at high doses

Since the above data were obtained from ligand stimulations at fixed concentrations, we 

asked whether different doses affect ligand discrimination. For example, it is conceivable 

to suspect that some ligands may be hard to distinguish at saturating concentrations 

when they converge on shared downstream components. To address this, we focused on 

varying the doses of LPS and TNF-α. First, the time series data indicate that the reference 

concentrations used above (10 ng/mL for both ligands) are not saturating, as higher doses 
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produced distinct, often stronger responses in some cells (Figure S8). Moreover, the ML 

analysis with 10-fold cross-validation within a given dose dataset showed that signaling 

features of both subunits help maintain the discrimination between the two ligands at high 

ligand doses better than those of RelA alone (Figure 5A).

Another interesting question that could be addressed with the dose titration data was whether 

the signaling features learned from a particular dose can predict the ligand identity of time 

series from unseen doses. To assess cross-dose predictability, ML models were trained on 

each dataset for a given dose, and then models were tested against the remaining dataset 

for all the other doses (e.g., training on 1 ng/mL and testing against 10, 100, and 500 

ng/mL, and so on). Due to the mismatch of the doses in model training and testing, the 

prediction accuracy was reduced from the same-dose predictions (Figure 5B). However, 

ML models performed better if signaling features of both RelA and c-Rel were used, 

especially for KNN, where the cross-dose prediction accuracy was nearly as high as the 

same-dose accuracy. These results suggest that macrophages achieve a more robust ligand 

discrimination over a wide dose range through the signaling features of both RelA and 

c-Rel.

Mathematical modeling suggests key roles of IκBε in c-Rel-specific encoding of ligand 
information

Next, we sought to understand the observed single-cell signaling time series data with a 

mechanistic dynamical systems model. Our rationale for mathematical modeling was 2-fold: 

first, the RelA and c-Rel co-imaging data for the multiple ligands allowed an opportunity 

to construct and test a model that merges a previous model of receptor-proximal signaling 

events7 with another model of RelA, c-Rel, and their interactions with IκBα and IκBε.45 

The receptor-proximal signaling model7 included receptor modules for five of the ligands 

considered here but not for flagellin and R848.

Second, the dual NF-κB dimer macrophage model may then be used to gain further insight 

into which biochemical reactions are important for the observed relationship between RelA 

and c-Rel signaling dynamics. We combined the two mathematical models (Figure 6A) by 

adopting the reaction rates involving RelA and IκBα interactions from the core module 

of Adelaja et al.7 and setting the reaction rates involving c-Rel and IκBε to maintain 

the relative difference between RelA vs. c-Rel and IκBα vs. IκBε as determined by 

Alves et al.45 We then tuned a minimum set of parameters from the upstream receptor 

modules (CD14-LPS association; TLR4 recycling; CpG internalization rate; degradation 

of TLR1/2, TLR3, and TLR9; synthesis of TLR1/2; TNF-α degradation; and complexed 

TNF receptor activation) that were not defined by prior biochemical studies, such that fits 

to the DKI macrophage imaging data could be optimized. As a result, the simulated time 

courses recapitulated key features of the experimental data (Figure 6B). Quantitative features 

like peak amplitude and AUC (total activity) demonstrate a reasonable match between 

experimental and model trajectories (Figure 6C). The cross-correlation analysis highlighted 

the duration of c-Rel as a recurrent signaling feature whose relationship with RelA features 

(e.g., AUC or duration) exhibits ligand specificity. Since it is experimentally intractable to 
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modulate dynamic features of c-Rel precisely, we opted for a theoretical exposition with our 

data-constrained mathematical model and performed in silico manipulations.

To interrogate the role of parameters that regulate the dynamical characteristics of RelA and 

c-Rel response trajectories, we devised a computational workflow focusing on interactions 

that contained significant differences between the NF-κB and IκB isoforms (Figure 6D; 

STAR Methods). This workflow begins with sampling parameters for the association and 

dissociation rate constants between NF-κBs and IκBs and between IKK and IκBs within 

ranges that encompassed the values of each isoform and would explore their sensitivity. 

The effective IκB-NF-κB Kd values were varied between 3.2 × 10−7 and 2.9 × 10−3 μM 

and IKK-IκB Kd values were varied between 0.1 and 1.6 μM. The resulting activation 

trajectories of RelA and c-Rel in response to TNF-α and LPS were simulated for each 

sampled parameter set. The trajectories were then decomposed into the signaling codons, 

which were then used as the basis for clustering and dimensionality reduction (Figure 

6D). We identified 6 clusters in the high dimensional space and projected it onto a two-

dimensional principal-component analysis graph, which captured just over 50% of the 

variance in the data (Figure 6E). Cluster means showed distinct paired RelA and c-Rel 

trajectories, revealing differences not only in the degree of activation and oscillations but 

also in the differences between RelA and c-Rel dynamics (Figure 6E). We then painted 

the values of specific parameters on this landscape of RelA and c-Rel signaling dynamics 

(Figure 6F). For example, we observed a region (around clusters 2 and 3) where c-Rel 

activation in response to TNF-α exceeds that of RelA because of abnormally high values 

(poor affinity) in the IκBα-c-Rel Kd and IKK-IκBα Kd. In contrast, we observe a region 

(around clusters 1 and 5, containing the wild-type [WT] parameter set) where RelA 

activation in response to TNF-α exceeds that of c-Rel, where the values of IκBε-RelA 

Kd and IKK-IκBε Kd are high. Importantly, many alternative parameter sets resulted in less 

distinction between RelA and c-Rel signaling dynamics, supporting the hypothesis that the 

differences in interaction affinities of RelA and c-Rel for IκBα and IκBε, and differences in 

stimulus-responsive degradation rates of IκBα and IκBε mediated by IKK, are critical for 

the observed differential dynamics of these two NF-κB family members.

RelA and c-Rel dynamics from IκBα and IκBε mutant macrophages agree with model 
predictions

To further interrogate the mathematical model, we developed simulations for RelA and 

c-Rel response dynamics in virtual genetic mutants that could be tested experimentally. 

The first, IκBε KO, is a complete KO of IκBε, as described previously.27 The second, 

the IκBα mutant, harbors mutated κB sites in the IκBα promoter, making it defective in 

NF-κB-induced expression of IκBα.46 The translation rate of the IκBε transcript was set 

to zero to model the IκBε KO, and the maximum RelA-induced transcription rate of IκBα 
was reduced 4-fold to model the IκBα mutant to match the published IκBα expression time 

course. Model simulations predicted significant changes to NF-κB dynamics in response to 

TNF-α in these mutants, while changes in response to LPS were more subtle (Figure 7A). 

In the IκBε KO, loss of IκBε results in increased TNF-α-response activity of c-Rel, as 

exemplified by peak amplitude. Furthermore, the response was more oscillatory. However, 
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in the IκBα mutant model, the simulated TNF-α responses were less oscillatory, with little 

change in the amplitude.

To test these predictions, we took advantage of IκBε−/−27 and IκBαm/m46 mouse strains and 

bred them into another fluorescence fusion-protein reporter strain for RelA and c-Rel as well 

as the nuclear reporter mCherry-H2B strain. These NF-κB reporter mouse strains contained 

different fluorescent proteins, the mice were maintained at a different institution, and the 

experimental data were produced using different instrumentation and slightly different 

protocols. Focusing on the comparison between mutants and the matching WT reporter, 

we found that RelA and c-Rel trajectories in response to TNF-α were elevated in the 

IκBε KO, while responses to LPS were much less affected (Figures 7B and S9), matching 

model predictions. For example, the peak amplitude of RelA and c-Rel trajectories for 

TNF-α was slightly higher in the IκBε KO (Figure 7C). Furthermore, oscillatory features 

were persistent and clearly identifiable in RelA trajectories from the IκBε KO, consistent 

with prior studies.27,47,48 In the IκBα mutant, oscillatory power was reduced in RelA 

trajectories in response to TNF-α, as seen previously.7 Finally, responses were faster when 

cells rely on IκBα in the absence of IκBε, as evidenced by the shorter time to first 

peak in the IκBε KO. These findings confirm the mathematical model’s prediction that 

the biochemical characteristics of IκBε reduce the NF-κB response to TNF-α, thereby 

providing an explanation for why c-Rel, with its higher affinity for IκBε, is relatively 

unresponsive to TNF-α.

Although it is experimentally intractable to modulate biochemical interaction constants 

directly to test this plausible explanation further, we opted for a theoretical exposition 

with our data-constrained mathematical model and performed in silico manipulations. 

Specifically, we modified two key reactions involving IκBε, given their roles in shaping 

c-Rel dynamics in B cells.45 First, we changed the higher affinity of IκBε for c-Rel to the 

same as that for RelA by setting the dissociation rate constant for IκBε and RelA binding to 

be the same as that for IκBε and c-Rel. Next, since IκBε is set to have a lower sensitivity 

to IKK-induced degradation in the model,45,49 we also examined the effect of making 

the IKK-mediated IκBε degradation rate equal to the corresponding rate for IκBα. The 

model simulations for both scenarios confirmed that these reactions are control points for 

c-Rel duration, but they also affected other features such as peak amplitude and the extent 

of oscillations (Figure 7D). Importantly, the altered parameters resulted in less distinction 

between RelA and c-Rel dynamics than observed in the WT data, supporting the hypothesis 

that the differences in interaction affinities of RelA and c-Rel for IκBα and IκBε and 

the differences in stimulus-induced degradation rates of IKK-mediated IκBα and IκBε are 

critical for the observed differential dynamics of these two NF-κB family members.

DISCUSSION

Here, we examined dynamic characteristics of the NF-κB subunit c-Rel simultaneously with 

the widely considered subunit RelA in the same cells by live imaging, with unprecedented 

quantitative detail using an endogenous DKI mouse line. Co-imaging RelA and c-Rel was 

possible through the availability of the fluorescent c-Rel endogenous KI mice39 that put 

c-Rel on par with the other transactivating subunits, RelA and RelB, of NF-κB.50,51 Our 
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results reveal the dynamic features, or signaling codons, of c-Rel that are linked to the nature 

of the activating PAMP and distinct from those of RelA. This supports previous studies that 

suggest distinct functions of c-Rel36,52 and further challenges the idea that c-Rel is another 

canonical subunit with redundant patterns of signaling dynamics as RelA (Figure 8). We 

focused on macrophages, an immune sentinel cell type, but a similar approach may shed 

light on the impact of c-Rel in other immune cell types as well.

The two subunits differed from the earliest signaling event following NF-κB activation, the 

nuclear translocation. Our co-imaging of DKI macrophages allowed an accurate, controlled 

comparison of the nuclear translocation rates for RelA and c-Rel. The accumulation of 

RelA in the nucleus reached a peak faster than c-Rel, for all the activating ligands without 

exception, as quantified by two signaling features (shorter time to peak and higher slope of 

the first rise for RelA vs. c-Rel). This likely reflects its control by IκBα, which is more 

responsive to IKK, in comparison to IκBε. This pattern has a noteworthy consequence at 

NF-κB target chromatin, giving RelA a competitive advantage over c-Rel for interacting 

with the regulatory sites in the epigenome. Depending on the genomic context and the nature 

of RelA interactions, the κB-motif-containing locus may be unavailable for regulatory 

actions of c-Rel if RelA occupancy is long lived. In other sites where RelA binding may be 

short lived, early occupancy of RelA may potentially prime the sites for subsequent c-Rel 

action. These possibilities indicate how previous data on c-Rel effects may be re-interpreted 

and also raise new questions about how RelA and c-Rel might regulate the induction of 

immediate-early genes through potential competition or coordination at target chromatin 

sites.

Although it is thought that both combinatorial and dynamic signaling may underlie the 

specificity of macrophage responses to various PAMPs,53 it remains difficult to quantify 

their relative contributions in individual primary immune cells. In this regard, it is quite 

remarkable that ML models trained on NF-κB dynamics alone have rather high ligand 

prediction accuracies (62%–95% with KNN models using RelA and c-Rel features), given 

the other factors such as AP-1 and IRFs that are also activated downstream of TLRs. It is 

possible that the other factors may further improve the ligand discrimination capability to 

even higher precision, or they may reinforce the information encoding of NF-κB against 

noisy single-cell behaviors. Here, we focused on how much of the ligand information is 

encoded by RelA and c-Rel dynamics. Future studies should also examine the functional 

consequence of the information content and the gain enabled by c-Rel in terms of gene 

regulation since RelA and c-Rel have different promoter binding specificities36,54 and 

can interact with co-activators differently.55–57 Immunologically relevant cell types and 

endogenous target genes within a well-characterized genomic regulatory landscape would 

be particularly interesting to examine with an approach combining quantitative live-cell 

imaging and genomic assays, where the relationship between NF-κB signaling and gene 

regulation can be discerned.13,18,58

Our in-depth analysis uncovered that the ligand-discriminating information is engrained 

partly in the way in which c-Rel signaling duration is related to the signaling features 

of RelA in macrophage responses to the activating ligands. The analysis also revealed 

poly(I:C) as a generic PAMP exemplifying the consensus macrophage NF-κB signaling, 
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while flagellin emerged as a “specialty” ligand with a unique signaling pattern. We noted 

that poly(I:C) is likely the most evolutionarily ancient signal since its receptor TLR3 is the 

most conserved TLR subfamily of genes among vertebrates.59 On the other hand, flagellin 

may be a relatively recent PAMP that the host has evolved to deal with, as evidenced 

by the positive selection for its receptor TLR5 in vertebrate evolution.59 The coordinated 

vs. independent aspects of RelA and c-Rel signaling that support macrophage ligand 

discrimination may have emerged from the host immune responses against the changing 

pathogen landscape during evolution.

Limitations of the study

The functional relevance of the additional information encoded by c-Rel signaling features 

needs further investigation. It is technically challenging to address this since such studies 

require a perturbation that alters specific features of c-Rel signaling or macrophage-specific 

inducible KO of c-Rel, which is out of scope of this study.

Mathematical modeling was focused on the roles of IκBα and IκBε in the IKK-NF-κB 

signaling network based on previous studies. However, we cannot rule out other mechanisms 

that may underlie the distinct features of RelA and c-Rel signaling dynamics.

The IκBα mutant and IkBe KO experiments (along with WT controls) were performed on a 

different reporter mouse strain at different technical settings (institution, vivarium, BMDM 

differentiation protocol, microscope, optical properties of fluorescent reporter proteins such 

as photobleaching and spectral overlaps, image acquisition parameters, image quantification 

and analysis). While a direct comparison of NF-κB dynamic patterns in the WT BMDMs 

from the two reporter systems is complicated by the different experimental setups, it is 

significant that the key conclusions about the differential dynamics of RelA vs. c-Rel in 

response to TNF-α and LPS are reproduced.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to the Lead Contact, Myong-Hee Sung (sungm@nih.gov).

Materials availability—The NF-κB double knock-in reporter mice were previously 

described39 and are available upon completion of a Material Transfer Agreement according 

to the NIH guidelines. mTFP1-cRel, mVenus-RelA, IκBα-mut mice are available from the 

Jackson Laboratory. mCherry-H2B mice are available from the RIKEN BioResource Center. 

Nfkbie KO mice are available upon completion of an MTA with UCLA. No unique reagents 

were generated in this study.

Data and code availability

• All the time series replicate data have been deposited and are 

available at https://github.com/Toufiq54/Ligand-Discrimination-from-RelA-and-

c-Rel-signaling-dynamics-in-primary-macrophages.
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• All the original code for image quantification and analysis have been deposited 

and are available at https://github.com/Toufiq54/Ligand-Discrimination-from-

RelA-and-c-Rel-signaling-dynamics-in-primary-macrophages. All code for NF-

κB mathematical modeling and simulations is available at https://github.com/

apekshasingh/Rela_cRel_Model.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice—The mEGFP-RelA mScarlet-c-Rel double knock-in (DKI) mice were described 

previously.39 These mice have mEGFP and mScarlet knocked into the transcription start 

sites of Rela and Rel, respectively, producing N-terminal fusion proteins of each from 

the endogenous loci. All animals were bred and maintained under specific pathogen-free 

conditions at the animal facility of National Institute on Aging. All the animal care 

and procedures in this study were carried out in accordance with the guidelines of NIH 

and approved by the NIA Animal Care and Use Committee. 9–11 week old male mice 

homozygous for both knock-in reporters were used for experiments.

Triple reporter mVenus-RelA, mTFP-cRel, mCherry-H2B mice60(Narayanan et al., in 

revision) were crossed into an IκBε−/− line27 and a strain harboring mutated κB sites in the 

IκBα promoter.46 The experimental mice were 6–12 weeks of age with the genotype cRel 
mTFP1/mTFP1, RelAmVenus/mVenus, and H2BmCherry/+, and either WT, IκBε−/−, or IκBεmut/mut. 

Mice were housed and handled according to guidelines established by the UCLA Animal 

Research Committee under an approved protocol.

Primary BMDM culture—Bone marrow-derived macrophages (BMDMs) were obtained 

by culturing the bone marrow cells from femurs and tibia of homozygous green-red DKI 

mice (9–12 weeks age) in M-CSF containing media for 6 days. BMDMs were re-plated 

in a fibronectin-coated glass-bottom μ-Slide 8-well high (ibidi) on day 6. The coated glass-

bottom surface was prepared by incubating 5 μg/cm2 plasma fibronectin (Fisher Scientific, 

cat# FC010) for 1 h at 37°C. The next day, BMDMs were stimulated with one of the 

following ligands: 10 ng/mL lipopolysaccharide (LPS, Enzo Life Science, #ALX-581-008-

L001), 250 ng/mL Flagellin (ThermoFisher Scientific, #C905R23), 25 μg/mL of CpG 

(InvivoGen, #tlrl-2395), 20 μg/mL of Poly(I:C) (InvivoGen, # tlrl-picw), 350 ng/mL of 

R848 (InvivoGen, #tlrl-r848), 40 ng/mL of Pam3CSK4 (InvivoGen, # tlrl-pms), 10 ng/mL of 

murine TNF-α (R&D Systems, Cat#410-MT-010).

For the IκBα mutant and IkBe knockout experiments (with wild-type controls), BMDMs 

were obtained by culturing bone marrow cells from the femurs and tibia of reporter mice 

(6–12 weeks age) in L929 supplemented media. On day 4, BMDMs were re-plated into 

8-well μ-slides (Ibidi, #80826) at 25000–30000 cells/cm2. Cells were stimulated on Day 7 

or 8 with 10 ng/ml LPS (Sigma-Aldrich, #L6529-1MG) or 10 ng/ml TNF (R&D Systems, 

#410-MT-0101).
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METHOD DETAILS

Live-cell microscopy—Primary cells from NF-κB green-red double knock-in reporter 

mice were plated in a fibronectin-coated glass-bottom μ-Slide 8-well high imaging chamber 

(ibidi, Cat# 80806) and cultured for 24 h in phenol red free DMEM (Gibco, Cat# 21063029) 

supplemented with 10% FBS, 1% penicillin, streptomycin, and glutamine. Cells were 

stained with SPY650-DNA dye (1x or 1.5x of recommended dilution, molarity not indicated 

by manufacturer) 1 h before the live-cell imaging experiment. The high-throughput, high-

resolution, and multi-channel live-cell imaging of lowly abundant endogenous proteins was 

carried out in Zeiss LSM 880 with Airyscan detector system and with 40× oil objective. 

The glass surface of 8-well imaging slide was pre-wetted with the immersion oil for long-

term fluorescent microscopy with oil objective without drying out the contact between the 

bottom glass-surface and oil-objective. Cells were then placed in a Zeiss LSM880 Airyscan 

AxioObserver confocal microscope system with incubation, and were maintained at 37°C in 

a humidified environment containing 5% CO2. Cells were incubated about 1~2 h before the 

live-cell imaging experiment started. Time-lapse images were acquired at 7-min intervals for 

a time-course of ~12.5 h (150 frames). Excitation laser wavelengths were 488 for EGFP, 561 

nm for mScarlet, and 633 nm for SPY650-DNA dye. Fluorescence signals were detected 

using the Airyscan detector. Imaging parameters were: a 40x/1.4 NA Plan-Apochromat 

oil objective, pinhole size 5.16 AU, 4.60 AU, and 4.07 AU for mEGFP, mScarlet, and 

SPY650-DNA, respectively. Frame scan mode, 0.6 scan zoom, 2.06 μs pixel time, line time 

30.00 μs, frame time 1.90 s, unidirectional scan direction, 12 bit, 512 × 512 image size. The 

detector and digital gains are 960.5, 850.0, 760.0 and 1.0, 1.4, 1.2 for mEGFP, mScarlet, 

and SPY650-DNA, respectively. Images were saved in .czi file and later converted to .tiff for 

further analysis.

For the IκBα mutant and IκBε knockout experiment, cells were placed on a Zeiss Axio 

Observer.Z1 inverted microscope with live-cell incubation and maintained in the 37°C 

humidified environment containing 5% CO2 for at least 60 min to equilibrate. Time-lapse 

images were acquired at 5-min intervals using a Plan-Apochromat 20x/0.8NA M27 air 

objective for a time course of 12 h. Images were collected sequentially in four channels, 

mCherry (filter set Semrock mCherry, excitation 542-582nm, beam splitter: 593nm, 

emission 604-678nm, Colibri.2 30%, exposure 200ms), mVenus (filter set Zeiss 46 HE, 

excitation 488-512nm, beam splitter 515nm, emission 520-550nm, Colibri.2 80%, exposure 

160ms), mTFP (filter set Zeiss 47 HE, excitation 424-448nm, beam splitter: 455nm, 

emission 460-500nm, Colibri.2 80%, exposure 950ms), and for differential interference 

contrast (DIC) (HAL 100 lamp, 2.5V, exposure: 20ms). Images were recorded on a 

Hamahatsu Orca Flash4.0 CMOS camera with 2x2 binning. After collection of baseline 

images for 1 h, the indicated stimulus diluted in conditioned media was applied using 

syringe injection into the chamber in situ and images were acquired for an additional 12 h.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative analysis of time lapse imaging data—The live-cell microscopy images 

were analyzed to obtain the single-cell signaling measurements using custom-written 

MATLAB script (MATLAB 2020b). In brief, acquired.czi files were first converted to.tif 

files for all positions and channels. The nuclear area of individual cells was segmented 
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using the SPY650-DNA nuclear dye channel images. The cellular area was segmented 

using either the mEGFP or the mScarlet channel. Segmented cells were tracked across 

successive images using the lineage mapper tracking tool.61 Then, nuclear, cytosolic, and 

total fluorescence intensities were calculated from the background-subtracted images for 

both mEGFP and mScarlet channels. The cells coming in or going out from the field of 

view, along with apoptotic or dividing cells, were excluded from the analysis. The analysis 

codes are available upon request.

For the IκBα mutant and IκBε knockout experiments, the single cells were segmented 

into cytoplasm and nucleus using the mCherry nuclear signal and tracked across the 12-h 

time course. The basal nuclear presence was determined from 12 time points prior to 

stimulation. Basal nuclear activity was subtracted from subsequent measurements. When 

measurements fall below the basal level, negative values were reported. A ratio of nuclear 

over total fluorescence was quantified using mean nuclear fluorescence and cytosolic mean 

fluorescence. The cytoplasm was represented by an annulus around the nucleus using a 

nuclear to cytoplasmic ratio of 1:3.5. The fluorescence was quantified using MACKtrack 

in MATLAB 2015a (Adelaja et al., 2021 available at github.com/signalingsystemslab/

MACKtrack).

Machine learning (ML) analysis—Based on the recently introduced signaling codons7 

and other related dynamic features,24,39,40 we had selected eight features to encompass 

all possible signaling dynamics of RelA and c-Rel. We had also refined the definitions 

to minimize artifactual values called by the analysis algorithm. We reasoned that the data-

driven relationships will emerge from the more accurate quantification of dynamic features. 

The eight signaling features of single-cell RelA and c-Rel trajectories were extracted 

using custom-written MATLAB scripts. The signaling features were imported into the 

R-programming language environment for ML analysis. 70% of each ligand dataset were 

randomly sampled for training purposes and the rest 30% were used for testing the model. 

The random sampling was repeated for a 10-fold cross-validation of each trained model in 

all the analyses. Two different ML algorithms were used to train the models: a. k-nearest 

neighbors (KNN), and b. linear discriminant analysis (LDA). The models were trained with 

either the RelA signaling features, the c-Rel signaling features, or the signaling features of 

both RelA and c-Rel. We utilized the R-packages MASS and caret for LDA analysis and 

KernelKnn for generating the KNN models. For KernelKnn, the Canberra distance metric 

and K = 7 were used in all the KNN analyses, because these options produced the best 

performance in an extensive comparison of all the available metrics and K values. The 

performance measures depended more on the distance metric than on the choice of K. While 

the F1 score and sensitivity showed K = 5 being equally good, we chose K = 7 because 

of the slight increase in accuracy and precision (Figure S4). The stepLDA function of the 

caret package was used to select the important features of LDA models. The ML analysis 

plots were generated using MATLAB scripts. The codes for ML analysis and plotting are 

available upon request.
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Mathematical modeling

Model topology: A model for simulating the dynamics of NF-κB dimers RelA:p50 and 

c-Rel:p50 (below referred to as RelA and c-Rel for brevity) in response to the seven 

ligands used in the described experiments was constructed by combining and extending two 

previously published models. A model that recapitulates RelA NF-κB dynamics of BMDMs 

in response to TNFR1, TLR1/2, TLR3, TLR4, TLR97 was extended by formulating models 

for the TLR5 and TLR7/8 signaling modules to account for Flagellin and R848 stimulation 

datasets, respectively. Flagellin binds to TLR5 at the cell surface and the ligand-receptor 

complex activates MyD88. R848 is first internalized into endosomes where it binds TLR7/8, 

and the ligand-receptor complex also activates MyD88.

The core IKK-NF-κB signaling module7 was extended with interactions involving IκBε 
and c-Rel as described (Alves et al., 2014). Accordingly, IκBα and IκBε were set to bind 

and inhibit RelA and c-Rel with different affinities. Terms for IκBα and IκBε synthesis 

and induced transcription by RelA- and c-Rel-containing NF-κB dimers were based on.47 

Accordingly, nuclear RelA was set to induce the synthesis of IκBα and IκBε, while nuclear 

c-Rel induced only IκBε synthesis.

The concentrations of all the species containing c-Rel or RelA in the nucleus and cytoplasm 

obtained from model simulations were used to calculate the ratio of nuclear NF-κB to total 

NF-κB, to match the ratio of nuclear to total cell intensity of RelA or c-Rel from the 

experimental data. The experimental ratio was subtracted using the baseline ratio at zero 

hours, as the model assumed that the cell starts with no nuclear NF-κB at t = 0. The NF-κB 

ratio was scaled by adding a constant concentration of RelA (0.13 μM) and c-Rel (0.035 

μM) to the total NF-κB concentration that is untranslocatable, as it is sequestered by IκB 

complexes.

Model parameters: For new TLR modules, ligand-receptor dissociation constants were 

obtained from the literature.62–64 Other parameters were based on other TLR modules 

and tuned to recapitulate the experimental data as described below. Parameters for IκBε 
and c-Rel reactions in the core IKK-NF-κB module were based on previously determined 

ratios to IκBα and RelA reactions.45 Basal synthesis of IκBε was adjusted to reflect lower 

expression in macrophages compared to B-cells.

Model parameters in the TLR/TNFR modules were tuned to improve the visual fit. 

The model was run for 12 h for all ligands, with a priority for fitting early activity. 

PAM3CSK4 signaling was delayed by 90 min to fit the initial peak of the single-cell 

data. Subsequent fitting of NF-κB dynamics for each of the seven ligands was achieved 

through tuning upstream TLR/TNFR module parameters within a 10-fold range, while 

minimizing the number of varied parameters (“multi-stimulus NFkB.xlsx” in Github 

repository: Rela_cRel_Model/Model_Script). As a result, parameters for the following 

reactions were altered: TNF degradation and activation of complexed TNFR, CD14-LPS 

association and TLR4 recycling, the CpG internalization rate and the degradation of bound 

TLR9, degradation of free and bound TLR3, TLR1/2 synthesis and the degradation of bound 

receptor.
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Parameter variation: To interrogate parameter value sensitivity to model interpretation, 

the IκB-NF-κB Kd values were varied between 3.2e-7 and 2.9e-3 μM and IKK-IκB 

Kd parameter values were varied between 0.1 and 1.6 μM. The Kd parameter ranges 

were chosen to encompass the values of the isoforms, including the dissociation rate 

constants of IκBα-RelA, IκBα-c-Rel, IκBε-RelA, IκBε-c-Rel, and the association rate 

constants of IKK-IκBα and IKK-IκBε. Parameter values were sampled 100,000 times 

and model simulations in response to TNF-α and LPS stimulation were collected. The 

100,000 simulated trajectories were decomposed into four signaling codons, including peak 

amplitude, time to peak, total integral (AUC), and number of peaks. Hence each parameter 

set was associated with 16 feature values (TNF-α or LPS (2) x RelA or c-Rel (2) x trajectory 

features (4)). The difference between RelA and c-Rel features were used for K-means 

clustering into 6 groups and dimensionality reduction via Principal Component Analysis 

(PCA) (MATLAB version R2019b).

To model the IκBε KO,27,47 the IκBε translation rate constant was set to zero. To model the 

IκBα mutant in which several κB sites in the IκBα promoter are mutated,46 the Vmax of 

RelA-induced transcription of IκBα was reduced by 4-fold. Additional parameter variations 

were explored with the model to assess differences between c-Rel and RelA dynamics not 

accessible through experimental perturbations: 1) setting the Kd of IκBε-RelA interaction to 

that of IκBε-c-Rel and 2) setting the Kd of IKK-IκBε binding to that of IKK-IκBα.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Co-imaging of NF-κB RelA and c-Rel captures subunit-specific immune 

signaling

• The correlation of signaling between the two subunits depends on the ligand

• Ligand discrimination is more precise through signaling features of both 

subunits

• Mathematical modeling suggests roles of IκBs in subunit-specific ligand 

encoding
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Figure 1. Schematic workflow for simultaneous live-cell imaging and analysis of both RelA and 
c-Rel NF-κB subunits in primary BMDM cells following stimulation with TLR ligands and 
TNF-α
(A) A simplified schematic of ligand recognition by different TLRs and TNF receptors 

(TNFRs), initiating downstream responses where NF-κB is a primary signalencoding 

effector. RelA and c-Rel are the two canonical subunits of the NF-κB family that mediate 

TLR and TNF responses.

(B) Primary BMDM cells were prepared using a standardized isolation and differentiation 

protocol from double-knockin endogenous NF-κB reporter mice. Both RelA and c-Rel are 

fluorescently labeled at their respective endogenous loci in the mice. In addition, double 

homozygotes are used to ensure complete labeling of the endogenous proteins. A panel 

of TLR ligands and a pro-inflammatory cytokine, TNF-α, were used to stimulate primary 

BMDMs in this study. Time lapse live-cell microscopy data were obtained and subject to 
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quantification and analysis workflow for the characterization of signaling dynamics of the 

two NF-κB subunits.
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Figure 2. Quantitative imaging of RelA and c-Rel in live macrophages captures the subunit-
specific signaling features for different ligands
(A) Primary BMDM cells (n = 131 for LPS, n = 112 for Flagellin, n = 118 for CpG, n = 

140 for poly(I:C),n = 96 for R848, n = 109 for Pam3CSK4, and n = 109 for TNF-α) from 

the young green-red double-knockin reporter mice (9 weeks of age, male) were plated in a 

fibronectin-coated, glass-bottom 8-well imaging slide. Cells were stained with the nuclear 

dye SPY650-DNA 1 h before the start of imaging and treated with optimum stimulatory 

concentrations of six TLR ligands along with TNF-α at t = 0. Three fluorescent channels 

were acquired at 7 min intervals for more than 12 h. The images were processed using 
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custom-written MATLAB scripts. The individual rows in the heatmap show single-cell 

trajectories of the nuclear-to-total mean intensity ratio of RelA (left) and c-Rel (right) 

foreach ligand indicated on the right. The data are representative of three individual 

biological replicates (using independent BMDM batches from different mice on different 

days).

(B) Comparison of six signaling features between RelA and c-Rel signal for the data in (A). 

*p < 0.05, **p < 0.01, and ***p < 0.001 from Mann-Whitney U-test.

(C) The correlation of signaling features between RelA and c-Rel depends on the activating 

ligand. The heatmap displays the Pearson correlation coefficients between RelA and c-Rel 

signaling features extracted from time series data for each ligand. Each column is from the 

indicated ligand. The individual correlation coefficient values are shown within each cell, 

and the asterisk (*) denotes the statistical significance, where *p < 0.05, **p < 0.001, and 

***p < 0.0001. Data are representative of three independent biological replicates (using 

independent BMDM batches from different mice on different days).

Rahman et al. Page 26

Cell Rep. Author manuscript; available in PMC 2024 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Cross-correlations of signaling features reveal the sources of RelA and c-Rel divergence 
in encoding ligand specificity
(A) The pan-ligand cross-correlation matrix was generated by calculating the Pearson 

correlation coefficients between all possible pairs of signaling features between RelA and 

c-Rel. The entire single-cell time series imaging data were used from all ligands. The 

individual correlation coefficient values are shown within each cell, and the asterisk (*) 

denotes the statistical significance, where *p < 0.05, **p < 0.001, and ***p < 0.0001.

(B) The ligand-specific cross-correlation matrix was similarly generated except by using 

imaging data for the indicated ligand only. The diagonal of each matrix corresponds to 
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the column for the indicated ligand in Figure 2C. The green boxes around the cells in the 

matrix represent the correlations that are different (at least 0.45 absolute difference) from 

the pan-ligand correlation matrix. The data are representative of three individual biological 

replicates (using independent BMDM batches from different mice on different days).

Rahman et al. Page 28

Cell Rep. Author manuscript; available in PMC 2024 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. The signaling features of both NF-κB subunits can distinguish immune threats better 
than those of either subunit alone
(A) Computational workflow of supervised machine learning (ML)with K-nearest neighbor 

(KNN) models that learn features from RelA alone or from both RelA and c-Rel and predict 

ligand identity. Models were created by randomly selecting 70% of data for training; the 

remaining 30% of data were used for testing with a 10-fold cross-validation.

(B) The average F1 scores of ligand predictions using either the RelA signaling features only 

or both RelA and c-Rel signaling features, produced by the KNN or the linear discriminant 
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analysis (LDA) methods. The F1 scores are shown here with mean ± standard error from a 

10-fold cross-validation.

(C) Confusion matrices show the performance of KNN ML models (K = 7, Canberra 

distance) using the signaling features of RelA (top left), c-Rel (top right), or both RelA and 

c-Rel (bottom). Within each cell of the matrix, the colors within the subrectangles above and 

below the numerical value (mean of the 10-fold cross-validation in B) represent the upper 

and lower bounds (95% confidence interval). The sum of diagonals (percentage correctly 

identified) for each matrix is shown in parentheses. The statistically significant changes 

between components of an upper matrix and a lower matrix are underlined (p < 0.05 in 

Mann-Whitney U test). The results are representative of three individual biological replicates 

(using independent BMDM batches from different mice on different days).
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Figure 5. Signaling features of c-Rel help maintain ligand discrimination at high doses
Primary BMDM cells from a young male green-red double-knockin reporter mouse 

(11 week of age) were imaged for their responses to LPS or TNF-α at the indicated 

concentrations. The dynamic features of RelA and c-Rel were quantified and analyzed 

(numbers of single cells analyzed: n = 154, 113, 127, and 149 for 1, 10, 100, and 500 ng/mL 

LPS; n = 267, 265, 212, and 266 for 1, 10, 100, and 500 ng/mL TNF-α).

(A) For each dose, models were created by randomly selecting 70% of data for training; 

the remaining 30% of data were used for testing with a 10-fold cross-validation. The 2 × 
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2 confusion matrices show the performance of ML models, KNN with K = 7, Canberra 

distance (left), and LDA (right), using the signaling features of RelA, or both RelA and 

c-Rel, for a given dose. Within each cell of the matrix, the colors within the subrectangles 

above and below the numerical value (mean of the 10-fold cross-validation) represent the 

upper and lower bounds (95% confidence interval). The green boxes mark the ML models 

with less accurate predictions using RelA features only that undergo statistically significant 

improvements in predictions by using features of both subunits (p < 0.05 in Mann-Whitney 

U test).

(B) ML models were trained with the signaling features extracted from data for the indicated 

concentration shown on the right. Each dose-specific model was tested against the remaining 

data from all the other doses. The confusion matrices show the performance of ML models, 

KNN with K = 7, Canberra distance (left), and LDA (right), using the signaling features 

of RelA or both RelA and c-Rel. The colormap was chosen to aid the visualization of 

changes in the 80%–100% range. The results are from one of two biological replicates 

(using independent BMDM batches from different mice on different days).
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Figure 6. Mathematical modeling of the TLR-NF-κB signaling network recapitulates stimulus-
responsive RelA and c-Rel dynamics
(A) The topology of the model that combines seven receptor-proximal signaling modules 

with a core NF-κB module that includes both RelA-and c-Rel-containing NF-κB dimers and 

both IκBα and IκBε. See STAR Methods for details. In the core module, A: RelA, C: c-Rel, 

50: p50.

(B) Simulated nuclear abundances (relative to total) of RelA- (blue) and c-Rel- (red) 

containing NF-κB dimers are shown as bold curves. Lighter color curves indicate five 

representative single-cell trajectories from imaging data of Figure 2.

Rahman et al. Page 33

Cell Rep. Author manuscript; available in PMC 2024 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Plots of peak amplitude (maximum value within first 4 h) and total activity (integral over 

complete time series) extracted from the experimental NF-κB trajectories and from model 

simulations.

(D) Workflow for parameter set variation to identify determinants of RelA and c-Rel 

dynamic trajectories.

(E) PCA (principal-component analysis) of 100,000 parameter sets defined by their 

differences in RelA and c-Rel signaling codons in response to TNF-α and LPS stimulation 

(left). Parameter sets colored by cluster identity and WT (wild-type) parameter set marked. 

Representative parameter set (smallest distance to cluster mean) simulations from each 

cluster (right).

(F) PCA colored by values for the indicated interaction parameters.
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Figure 7. RelA and c-Rel dynamics from IκB signaling mutants support model predictions
(A) Mathematical model predictions of RelA and c-Rel response dynamics to LPS and 

TNF-α stimulation in IκBε KO (middle) and IκBα mutant (bottom) cells.

(B) Representative experimental trajectories of RelA and c-Rel in response to LPS and 

TNF-α stimulation in WT, IκBε KO,27 and IκBα mutant.46

(C) Violin plots of peak amplitude (left) in response to TNF-α of experimental RelA and 

c-Rel trajectories in IκBε KO, time to first peak (middle) in response to LPS, and oscillatory 

power (right) in response to TNF-α (average power within the biologically relevant 0.33–1 
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h−1 frequency range from power spectral density estimate of signal) of RelA and c-Rel 

experimental trajectories in IκBα mutant. White boxes denote median values.

(D) Mathematical model simulations of RelA and c-Rel trajectories in response to LPS 

and TNF-α stimulation when IκBε affinity to RelA is set equivalent to that of c-Rel 

(left) and IKK affinity to IκBε is set equivalent to that of IκBα (right). The experimental 

results for RelA dynamics are consistent with three replicates in response to multiple ligand 

stimulations.7
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Figure 8. Ligand discrimination by joint signaling of two NF-κB subunits
Some concepts and results of the study are illustrated. PAMPs are recognized by different 

TLRs as activating ligands, initiating complex kinetic responses of downstream transcription 

factors. Live-cell imaging of co-signaling dynamics showed unexpectedly non-redundant 

behaviors of the two subunits, RelA and c-Rel, of NF-κB that underlie an enhanced PAMP 

ligand discrimination in macrophages.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Recombinant mouse M-CSF protein R&D systems Cat#1416-ML-010

Embryonic stem cell FBS Gibco Cat# 10439024

IMDM Media Gibco Cat# 12440061

DMEM Gibco Cat# 11965-092

Lipopolysaccharide from Salmonella Enzo Life Science Cat# ALX-581-008-L001

Lipopolysaccharide from Escherichia coli Sigma-Aldrich Cat# L6529

Flagellin Thomas Scientific Cat# C905R23

CpG (ODN2395) InvivoGen Cat# tlrl-2395

Poly(I:C) InvivoGen Cat# tlrl-picw

R848 InvivoGen Cat# tlrl-r848

Pam3CSK4 InvivoGen Cat# tlrl-pms

TNF-α R & D systems Cat# 410-MT-010

Fibronectin Fisher Scientific Cat# FC010

Deposited data

Imaging data from double knock-in Green/Red 
mice

This paper https://github.com/Toufiq54/Ligand-Discrimination-
from-RelA-and-c-Rel-signaling-dynamics-in-
primary-macrophages

Experimental models: Cell lines

L929 (supernatant used for differentiation media) ATCC ATCC L929 CCL-1

Experimental models: Organisms/strains

Double knock-in Green/Red mice Rahman et al.39 N/A

mTFP1-cRel mice H.V.N., unpublished data JAX No. 038986

mVenus-RelA mice Adelaja et al.7 JAX No. 038987

mCherry-H2B mice Abe et al.60 Riken CDB0239K

Nfkbie−/− knockout mice Hoffmann et al.27 N/A

IκBα-Mut mice Peng et al.46 JAX No. 037800

Software and algorithms

MATLAB R2023a MathWorks N/A

ImageJ (FiJi) National Institutes of Health N/A

Imaging data quantification This paper https://github.com/Toufiq54/Ligand-Discrimination-
from-RelA-and-c-Rel-signaling-dynamics-in-
primary-macrophages

R R Core Team N/A

RStudio Posit, PBC N/A

KernelKnn Lampros Mouselimis https://cran.r-project.org/web/packages/KernelKnn/
index.html

class W. N. Venables and B. D. Ripley https://cran.r-project.org/web/packages/class/
index.htm
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REAGENT or RESOURCE SOURCE IDENTIFIER

caret Max Kuhn https://cran.r-project.org/web/packages/caret/
index.html

lattice Deepayan Sarkar https://cran.r-project.org/web/packages/lattice/
index.html

MASS W. N. Venables and B. D. Ripley https://cran.r-project.org/web/packages/MASS/
index.html

NF-κB signaling network model & simulation 
code

This paper https://github.com/apekshasingh/Rela_cRel_Model

Other

Cell strainers Fisher Scientific Cat# 22-363-548

μ-Slide 8 Well chamber slide Ibidi Cat# 80826
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