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scMoresDB: A comprehensive database
of single-cell multi-omics data
for human respiratory system

Kang Chen,1 Yutong Han,1 Yanni Wang,1 Dingli Zhou,1 Fanjie Wu,1 Wenhao Cai,1 Shikang Zheng,1

Qinyuan Xiao,1 Haiyue Zhang,1 and Weizhong Li1,2,3,4,*
SUMMARY

The human respiratory system is a complex and important system that can suffer a variety of diseases.
Single-cell sequencing technologies, applied in many respiratory disease studies, have enhanced our
ability in characterizing molecular and phenotypic features at a single-cell resolution. The exponentially
increasing data from these studies have consequently led to difficulties in data sharing and analysis.
Here, we present scMoresDB, a single-cell multi-omics database platform with extensive omics types
tailored for human respiratory diseases. scMoresDB re-analyzes single-cell multi-omics datasets,
providing a user-friendly interface with cross-omics search capabilities, interactive visualizations, and
analytical tools for comprehensive data sharing and integrative analysis. Our example applications high-
light the potential significance of BSG receptor in SARS-CoV-2 infection as well as the involvement of
HHIP and TGFB2 in the development and progression of chronic obstructive pulmonary disease. scMor-
esDB significantly increases accessibility and utility of single-cell data relevant to human respiratory sys-
tem and associated diseases.

INTRODUCTION

The human respiratory system is a complex and important system that can suffer a variety of diseases. Notably, as reported by the World

Health Organization (www.who.org), coronavirus disease 2019 (COVID-19) has caused nearly 7 million fatalities worldwide, profoundly im-

pacting both public health and global economic stability. Concurrently, in 2019, other respiratory diseases such as chronic obstructive pul-

monary disease (COPD), lower respiratory tract infections, and lung cancers accounted for approximately 7.7 million deaths, representing

13.9% of total deaths of the year.1 Despite substantial clinical research has focused on the treatment and prevention of human respiratory

diseases, the mechanisms of many respiratory diseases remain inadequately elucidated.

In recent times, the mechanisms of occurrence and development of respiratory diseases have been better deciphered through next-gen-

eration sequencing (NGS). During the early phase of COVID-19 pandemic, NGS facilitated the acquisition of full-length genomic sequence of

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), offering initial insights into the virus.2,3 Subsequently, the genomic informa-

tion played a pivotal role in the diagnosis of disease and the development of vaccines, drugs, and therapies. Particularly, the emergence of

single-cell sequencing technologies, including single-cell RNA sequencing (scRNA-seq),4 single-cell assay for transposase-accessible chro-

matin followed by sequencing (scATAC-seq),5,6 single-cell T cell receptor sequencing (scTCR-seq),7 and cellular indexing of transcriptome

and epitope by sequencing (CITE-seq),8 has significantly enhanced our capability to precisely characterizemolecular and phenotypic features

in respiratory diseases at a single-cell resolution. This advancement has facilitated the identification of the novel biomarkers, the types, states,

and fates of cells, as well as the interactions between cells, consequently paving the way for innovative therapeutic interventions and treat-

ments for respiratory illnesses.9–12

Single-cell studies have led to a surge of single-cell multi-omics data, which are usually stored in various public databases. While several

multi-omics databases such as SC2diseases,13 Aging Atlas,14 HTCA,15 and SCLC-CellMiner16 and respiratory disease databases like LCMD,17

REALGAR,18 LDGDB,19 LungMAP,20 and LGEA21,22 have been established, few incorporates single-cell multi-omics sequencing data. Addi-

tionally, these databases contain limited amount of data for respiratory diseases. The utilization and analysis of these resources requires a

significant investment of time and expertise. Comprehensive integration and effective utilization of the molecular data resources for human

respiratory system are urgently needed for both basic researches and clinical applications. Hence, providing a user-friendly, centralized, and

comprehensive data portal to facilitate access to single-cell multi-omics data of human respiratory system is crucial.
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Figure 1. The design layers of scMoresDB

(A) Data content and statistics of scMoresDB.

(B) Omics data types in scMoresDB.

(C) Data sources, tools, and brief workflows for data processing.

(D) Data visualization tools.

(E) The database applications of scMoresDB.
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In this study, we developed scMoresDB (www.liwzlab.cn/scmoresdb/), a novel database serving as a centralized hub for comprehensive

single-cell multi-omics data for human respiratory system and associated diseases. scMoresDB encompasses 9 types of molecular omics

data from 69 datasets, covering approximately 1.66million cells derived from 66 cell types and 2,593 respiratory samples in diverse conditions

including healthy, aging, smoking, and 24 respiratory diseases (Figures 1A and 1B). Notably, single-cell multi-omics datasets from different

sources were collected and reanalyzed using various tools (Figure 1C) and can be interactively visualized by five distinct viewers (Figure 1D).

We further conducted case studies in COPD and COVID-19 using scMoresDB to unveil novel insights and research clues, illustrating its po-

tential value (Figure 1E).
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Table 1. Statistics of data resource for scMoresDB

Modality Data statistic Key information in search module Visualization type

Single-cell transcriptomics 6 disease types, 154 samples,

40 cell types, 872,591 cells

DEGs in different cell types Cell Browser

Bulk transcriptomics 8 disease types, 1,477

samples, 60,443 DEGs

DEGs in different conditions Volcano plot

Single-cell epigenomics 1 disease type, 6 samples,

45 cell types, 19,360 cells

Annotations for accessible chromatin

regions in different cell types

Cell Browser,

Genome Browser

Bulk epigenomics 1 disease type, 1 sample,

4 tissue types

Annotations for accessible chromatin

regions in different conditions

Genome Browser

Single-cell immune

repertoire sequencing

2 disease types, 84 samples,

86,361 cells

TCR clonotypes in different cell types Cell Browser, circos plot

Bulk immune

repertoire sequencing

9 disease types, 1,233 samples,

6 tissue types

TCR clonotypes in different conditions Circos plot

Single-cell multimodal 1 disease type, 136 samples,

20 cell types, 681,730 cells

DEGs and surface protein

abundance in different cell types

Cell Browser

Spatial transcriptomics 1 disease type, 8 samples, 11,969 spots Spatially variable genes Spatial Browser

GWAS 87 traits, 323,928 associated SNPs Annotation of associated SNPs Genome Browser
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RESULTS

The homepage of scMoresDB displays the overviews of data statistics, disease data module, multi-omics data module, and visualization tool

module. In the disease data module, the disease classification and the cell type annotation adopted the controlled vocabularies of Disease

Ontology23 and Cell Ontology,24 respectively. In the multi-omics module, the data types include single-cell and bulk RNA sequencing (RNA-

seq) for transcriptomics, assay for transposase-accessible chromatin followed by sequencing (ATAC-seq) for epigenomics, T cell receptor

sequencing (TCR-seq) for immune repertoire, spatial transcriptomics sequencing for spatial omics, and CITE-seq for multi-modal omics.

The visualization tool module offers Cell Browser, Genome Browser, Immune Abundance Browser, Spatial Browser, and volcano plot.25

The data resources for scMoresDB are listed with statistical information in Table 1, and the flow chart of data collection, processing, analysis,

and visualization is illustrated in Figure 2. More details about the source data integration and the web implementation can be found in STAR

Methods.

Multi-omics data search and browse

The search page enables to navigate data in either gene-, cell type-, or disease-centric manner through data searching and filtering (Fig-

ure 3A). The datasets from different publications were re-analyzed, generating corresponding tables that contain key information about

respective omics. The data selection menu on the left side of search page lists the multi-omics data types for user’s selection as well as

the number of match items for each omics type (Figure 3A left menu). Data statistics for the numbers of samples, publications, cells, and

cell types is illustrated on the right-top corner of search page. The search box enables user to submit keywords, such as gene symbols

and metadata attributes, to search data within a single omics or across multi-omics, and subsequently to filter cell types, tissue types, and

disease types (Figure 3A search box). Resulting tables from searching or browsing offer key information of differentially expressed genes

(DEGs) from diverse conditions and different cell types for transcriptomics, T cell receptor (TCR) clonotypes and their frequency for immune

repertoire, and local usage annotation for epigenomics. Particularly, the resulting table for spatial omics and multi-modal omics presents

essential information about spatially variable genes and DEGs plus surface proteins. The dataset IDs link to the data summary and visualiza-

tion for the dataset. The downloading link on the top-right corner of the result page eases raw data retrieval from external resources.

Users can also browse disease categories from homepage and search for healthy or disease-associatedmulti-omics data. The diseases are

categorized based on Disease Ontology and presented in a hierarchical tree structure for easy navigation. 24 major respiratory diseases are

included, such as small-cell lung carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma for lung cancers; COVID-19, Klebsiella

pneumonia, influenza, cytomegalovirus infection, and tuberculosis for respiratory tract infectious diseases; andCOPD, asthma, idiopathic pul-

monary fibrosis, hypersensitivity pneumonitis, cystic fibrosis, extrinsic allergic alveolitis, and interstitial lung disease (ILD) for lower respiratory

tract diseases.

Analysis applications by data visualization tools

The datasets of different omics can be visualized by the UCSC Cell Browser for scRNA-seq, scATAC-seq, scTCR-seq, and CITE-seq, the IGV

Genome Browser26 for ATAC-seq, scATAC-seq, and genome-wide association study (GWAS), and the Spatial Browser for spatial transcrip-

tomics. The differential gene expression of RNA-seq datasets and the immune abundance of TCR-seq datasets have been re-analyzed and

can be plotted in the interactive volcano view as well as the Immune Abundance Browser.
iScience 27, 109567, April 19, 2024 3



Figure 2. The flow chart of data collection, processing, analysis, and visualization in details

(A) The collection of source data.

(B) The data processing and analysis for multi-omics types.

(C) The construction of 5 visualization tools. See also Table S1.
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In the UCSC Cell Browser (Figure 3B), cells can be colored according to the provided annotation (e.g., cell types and TCR abundance).

Additionally, cells can also be colored by gene expression, scATAC-seq peaks, and CITE-seq surface protein abundance. For instance,

the frequency of shared TCR clonotypes per cell from the scTCR-seq dataset (Figure 3B left) can be queried along with the expression level

of the granulysin (GNLY) gene from the corresponding scRNA dataset (Figure 3B right). A high proportion of clonal T cells are shown among

T cells that express high levels of GNLY, particularly among effector CD8+ T cells.

The Immune Abundance Browser (Figure 3C) allows visualization for the pairing of different clonotypic VJ genes in TCR-seq datasets and

for the sharing of clonality between different cell types and samples in scTCR-seq datasets. For example, the Immune Abundance Browser of

the scTCR-seq data displays the shared TCR clonotypes which are identified from effector T cell subtypes (Figure 3C). This observation is

consistent with Ji-Yuan Zhang’s research,27 suggesting a potential state transformation in effector T cells.

TheGenomeBrowser (Figure 3D) visualizes enrichment of peaks for different cell types in scATAC-seq datasets and for different samples in

ATAC-seq datasets. For instance, the Genome Browser for the mouse lung scATAC-seq dataset demonstrates that the open regions of chro-

matin are enriched in the promoters of basigin (BSG) gene in various immune cells, epithelial cells, and endothelial cells (Figure 3D). BSG is

one of the receptors of SARS-CoV-2 spike protein.28 This finding suggests the contribution of BSG in SARS-CoV-2 infection via infecting lung

epithelial cells and spreading to immune and endothelial cells, consistent with the discovery of an RNA-seq study by Radzikowska et al.29
4 iScience 27, 109567, April 19, 2024
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Figure 3. The visualizations of data search and browsers in scMoresDB

(A) The result table page of a multi-omics searching for the BSG gene.

(B) The Cell Browser displays the UMAPs for amulti-omics dataset of COVID-19. Themain layout view is divided into two vertical panels. The cells on the left panel

are colored based on the frequencymetadata, which represents the number of cells with the shared TCR clonotype; the cells on the right panel are colored based

on the gene expression of GNLY.

(C) The Immune Abundance Browser displays the sharing of TCR clonotypes among different cell types for the same COVID-19 dataset. The left navigationmenu

selects ‘‘all_sample’’ to display TCR clonotypes that are shared by cell types in all the samples. The right-side image highlights the effector CD8 cells that share

TCRs with other cell types.

(D) TheGenome Browser visualizes the lung scATAC-seq dataset from amouse. The interface shows open chromatin regions around the BSG gene in various cell

types, including macrophages, T cells, dendritic cells, monocytes, NK cells, regulatory T cells, type II pneumocytes, endothelial cells, and activated B cells.

(E) The Spatial Browser displays a spatial transcriptomic dataset fromCOVID-19 bronchioles and alveolar tissues. The spots in themain view are colored based on

the expression of the BSG gene, and the spots in the bottom-left dash box are shaded based on the total number of UMIs in each spot.

(F) The volcano plot displays the DEGs for an RNA-seq dataset from lung cancer tumor and non-tumor tissues. The red plots indicate significantly upregulated

genes in tumor tissues, while the blue plots show significantly upregulated genes in non-tumor tissues. The black box in the volcano figure illustrates the

significantly upregulated expression of the BSG gene.
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The Spatial Browser enables to color spots on tissue sections using information on gene expression and clusters. The spatial spots for a

small spatial transcriptomics sequencing dataset of bronchial and alveolar tissue derived from COVID-19 patients (Figure 3E) display highly

expressed BSG in many regions of both bronchial and alveolar areas, suggesting the pivotal role of BSG in SARS-CoV-2 infection process.

Particularly, the BSG expression in the alveolar epithelial region (Figure 3E solid blue circle) is lower than that in the regions with immune

infiltration (Figure 3E solid red circle). However, this may be attributed to relatively fewer counts of unique molecular identifiers (UMIs)

detected in the alveolar region. The spots detected by the 10X Visium assay do not reach single-cell precision, and the composition of sin-

gle-layered epithelial cells andmultiple cavities in the alveolar regionmay lead to the relatively fewer counts of UMIs detected by each spot in

this area (Figure 3E dash red box). Hence, we can see a correlation trend between the total number of UMIs per spot and the expression level

of BSG, which also supports our interpretation described previously.

Finally, the volcano plot (Figure 3F) allows us to visualize DEGs. Thresholds can be adjusted to identify genes that differ significantly

compared to control experiments. Through the volcano plot (Figure 3F), a prominent upregulation of BSG is detected in tumor cells. Inter-

estingly, several clinical studies reported that patients with lung cancer were more susceptible to SARS-CoV-2 infection and more likely to

develop severe symptoms of COVID-19. This suggests a possible correlation between the BSG expression and the susceptibility of lung can-

cer patients to SARS-CoV-2 infection.
A case study in COPD using scMoresDB

The application of scMoresDBenables users to access crucial information concerning respiratory diseases, encompassing disease-associated

surface protein abundance, cell types, chromosomal accessibility regions peak, V(D)J rearrangements of TCR, experimental treatments, and

gene expressions (Figure 1E). The output information can infer disease-associated biomarkers, immune characteristics, novel cell types, and

more. In this study, the utility of scMoresDB in multi-omics research for lung diseases is demonstrated using COPD as an example to explore

the heterogeneity of pathogenic mutations at a single-cell resolution. COPD, a pervasive and slowly progressing respiratory ailment, leads to

persistent airflow restriction due to irreversible chronic inflammation, ranking as the third leading cause of global mortality.30 While GWASs

have pinpointed genomic variants associatedwith heightenedCOPD risk, the precisemechanisms by which these loci influence disease path-

ogenesis remain elusive.

In pathology, COPD is characterized by airway remodeling,31 which refers to the thickening and deformation of airway wall due to cellular

and structural changes. Previous research has linked the gene of Hedgehog-interacting protein (HHIP) through GWAS to the modulation of

airway remodeling, revealing its role in curtailing the proliferation andmetabolic reprogramming of airway smoothmuscle cells.32 To validate

this discovery and investigate the role of HHIP in diverse cellular contexts within the airway remodeling cascade, we firstly input the gene name

of HHIP into the scMoresDB search box and conducted the search to yield a result table. Subsequently, accessing the bubble plots (Figure 4)

through the provided link in the result table, we retrieved the cell types derived frommultiple single-cell transcriptomics datasets. Employing

conventional filtering criteria (log2 fold-change of average expression >0.25 and adjusted p value <13 10�5), we then retained the cell types

with significantly high HHIP expression. Further exploration involved selecting one of the dataset IDs (e.g., LSE100106) in the result table,

prompting scMoresDB to display the uniform manifold approximation and projections (UMAPs) in the Cell Browser (Figure 5). These

UMAPs mark the cell types exhibiting significantly high HHIP expression.

The bubble plot (Figure 4A) indicates several key cell types with high HHIP expression, including adventitial fibroblasts, airway smooth

muscle cells, alveolar epithelial cells, fibromyocytes, neuroendocrine cells, and ionocytes. High HHIP expression acrossmultiple datasets (Fig-

ure 5: panels in 2nd column) suggests potential implications of HHIP mutations on airway smooth muscle cells, possibly leading to smooth

muscle hypertrophy.32 Additionally, these mutations might influence alveolar (epithelial) type II cells and fibromyocytes, ultimately resulting

in destruction of alveolar wall and pulmonary fibrosis.32 The pathological changes of these cell types are associated with airway remodeling.

Specifically, within the LSE100106 dataset, HHIP exhibits robust expression in airway smoothmuscle cell (avg_log2_fc 1.82), aligningwith prior

studies.32 Concurrently, alveolar (epithelial) type II cells are notably prevalent in datasets LSE100111, LSE100112, and LSE101112, displaying

relatively high HHIP expression compared to other cell types. This suggests that mutations in HHIP might significantly impact the function of
6 iScience 27, 109567, April 19, 2024



Figure 4. Differential expression of HHIP and TGFB2 across cell types and datasets

Bubble plots delineating the differential expression of (A) HHIP and (B) TGFB2 genes across various cell types identified in multiple scRNA-seq datasets. Each

data point specifies a cell type within a particular dataset, where the color intensity of the bubbles corresponds to the average log2 fold-change in gene

expression, and the bubble size indicates the adjusted p value. Cell type markers were determined utilizing Wilcoxon rank-sum tests via the FindAllMarkers

function in the Seurat package. Adjusted p value, based on Bonferroni correction using all genes in the dataset. Pulmonary neuroendocrine cell, PNEC; DC,

dendritic cell.
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alveolar (epithelial) type II cells, potentially contributing to surfactant insufficiency and alveolar instability in COPD.33Moreover, fibromyocytes

exhibiting heightened HHIP expression in datasets LSE100112 and LSE101112 may contribute to airway remodeling by differentiating into

airway smooth muscle cells, leading to increased smooth muscle thickness.34 Regarding other cell types displaying high HHIP expression

in datasets LSE101112 or LSE100100, neuroendocrine cell and ionocytemay contribute tomucous gland secretion,35,36 while adventitial fibro-

blast could be implicated in the fibrotic processes associated with COPD progression.

Emphysema, another pathological state of COPD that can arise from genetic perturbations, has been linked to TGFB2 gene using

GWAS.37 Previous research has established a connection between TGFB2 and emphysema through its role in fibroblasts.37,38 In this study,

we performed a similar search as described previously in scMoresDB to screen TGFB2 cell types in multiple scRNA-seq datasets using the

same criteria (log2 fold-change of average expression >0.25, adjusted p value <1 3 10�5). The resulting bubble plot (Figure 4B) highlights

key cell types with notable TGFB2 expression, including airway smoothmuscle cells, bud tip adjacent cells, bud tip progenitor cells, dendritic

cells, myofibroblasts, and pericytes. These cell types are predominantly mesenchymal components, potentially involved in processes, such as

epithelial cell development, airway and vascular remodeling, excessive mucus secretion, and alveolar structural destruction.31 Specifically,

high TGFB2 expression is observed in bud tip progenitor cells within dataset LSE100106 (Figure 5: top panel in 3rd column). These lung pro-

genitors significantly contribute to human lung development, repairing, and regeneration by differentiating into both alveolar and airway

cells,39 suggesting a potential impact of TGFB2 mutations on airway remodeling. Concurrently, pericytes, prominently expressing TGFB2

in datasets LSE100112 and LSE101112 (Figure 5: 3rd and 4th panels in 3rd column), are recognized for mediating endothelial proliferation

and angiogenesis.40 Biopsies from COPD patients have revealed disrupted basement membranes, increased vascularization, and enhanced

smooth muscle proliferation leading to thicker vascular walls.41 These findings implicate the contribution of TGFB2 in emphysema develop-

ment through vascular remodeling.
iScience 27, 109567, April 19, 2024 7



ll
OPEN ACCESS

8 iScience 27, 109567, April 19, 2024

iScience
Article



Figure 5. The UMAPs visualize cell types and their expressions of HHIP and TGFB2 in five datasets (dataset IDs: LSE100106, LSE100111, LSE100112,

LSE101112, and LSE100100)

The panels of 1st column display cell types in UMAP plots with each cell type represented by a unique color. In the subsequent columns, the results of querying for

HHIP (panels of 2nd columns) and TGFB2 (panels of 3rd columns) are illustrated with black plotsmarking the cells with high expressions of the query genes. The cell

types that significantly express the query genes are enclosed by rectangle boxes in different colors. Pulmonary neuroendocrine cell, PNEC; DC, dendritic cell.
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To unravel how GWAS-identified risk loci drive disease progression, we incorporated the SCAVENGE tool into our scMoresDB. This

specialized tool is designed to analyze single-nucleus ATAC-seq (snATAC-seq) data to assess enrichments of open chromatin regions asso-

ciated with the risk loci. We proposed to combine the use of the snATAC-seq and GWAS data in scMoresDB to pinpoint cell types associated

with COPD. Employing the SCAVENGE tool in scMoresDB, we correlated never-smoking COPDGWAS fine-mapping data with snATAC-seq

data encompassing 90,980 profiles across 19 cell types (Figure 6A) from neonatal, pediatric, and adult samples. The output from SCAVENGE,

termed the trait relevance score (TRS) for each single cell, reveals high TRS in certain cell types, such as basal cells, club cells, type I and type II

pneumocytes, and matrix fibroblasts (Figures 6B and 6C), implying their associations with COPD. Notably, this result is highly consistent with

the findings in Phuwanat Sakornsakolpat’s study,42 in which the prominent cell types (e.g., basal cell, club cell, fibroblasts, smoothmuscle cell,

and type II pneumocyte) are enriched in COPD heritability assessed through scRNA-seq.
DISCUSSION

scMoresDB gains significant advances in data coverage, database functionality, and research applications compared with other existing

similar databases. In terms of data coverage, while databases like SC2diseases and Aging Atlas have been developed to accommodate

large-scale single-cell sequencing data, they focus solely on single-cell transcriptomics data. On the other hand, the applications of scA-

TAC-seq, scTCR-seq, CITE-seq, and spatial transcriptomic technologies have produced massive multimodal data, providing epigenetic,

immunological, and spatial information to facilitate the inference of disease-associated expression regulations, cell types, and immune states.

Existing databases like HTCA integrate diverse data types but are limited to healthy samples. Similarly, respiratory system-related databases,

such as SCLC-CellMiner, LCMD, REALGAR, and ILDGDB, offer multi-omics and drug information but at bulk sequencing level, primarily

focusing on a single disease of either lung cancer, asthma, or ILD. Notably, the LungMAP Consortium has established a series of network

portals (e.g., LungMAP.net and LGEA) to provide single-cell, multi-omics, and imaging data. However, these data weremainly self-generated

for consortiummembers. Furthermore, public datasets such as TCR-seq from immune receptor profiling offer potential usages in respiratory

disease research. In comparison, our scMoresDB stands out by incorporating diverse data, spanning healthy and multi-disease samples, and

integrating public single-cell datasets of 9 omics types. This broad scope and inclusivity make scMoresDB a comprehensive resource for res-

piratory disease investigation.

Regarding database functionality, scMoresDB undertakes dataset re-analysis through standard workflows and implements various tools

for result visualization. The Cell Browser in scMoresDB allows user to easily visualize gene expression, chromatin accessibility, TCR clonotypes,

and surface protein enrichment on a UMAP plot. Simultaneously, the Immune Abundance Browser provides detailed information on TRBV-

TRBJ gene pairing and TCR sharing between cell types. Leveraging both browsers, we explored the immune cell status of COVID-19 patients

in this study. Moreover, the Genome Browser enables comparative visualization between different datasets, such as chromatin accessibility

and GWAS information, while the Spatial Browser permits examination of spatial gene expression distribution in tissue sections. For instance,

we searched the BSG receptor of SARS-CoV-2 spike protein via the Spatial Browser and visualized its chromatin accessibility in promoter re-

gions across different cell types as well as its spatial expression in lung tissue. The findings suggest the contribution of BSG in the process of

SARS-CoV-2 infection. Additionally, we employed the volcano plot to visualize RNA-seq data for DEG analysis.

We conducted the analysis cases in COPD and COVID-19 to demonstrate the database application of scMoresDB for lung disease

research. By integrating scRNA-seq, scATAC, and GWAS data in scMoresDB, we unveiled that the risk loci for COPD potentially affect the

function of pulmonary epithelial cells and fibroblasts, heightening susceptibility to the disease. Notably, our analysis suggests that the risk

loci in the HHIP gene identified by GWAS may be involved in the process of airway remodeling through their effects on type II alveolar cells.

Additionally, the geneof TGFB2 appears to play a pivotal role in vascular remodeling. By combining scATAC, spatial transcriptomics, andbulk

transcriptomics data, our study suggests that SARS-CoV-2 might invade alveolar epithelial cells through the BSG receptor, subsequently

spreading to endothelial cells and immune cells. Moreover, by correlating scTCR-seq and scRNA-seq data, we found high clonal proportions

in cytotoxic adaptive T cells within COVID-19 patients.

scMoresDB stands as a single-cellmulti-omics database platform focusing on human respiratory system, boasting extensive omics types. It

provides a user-friendly interface for seamless cross-omics data browsing and searching and integrates visualization and analysis tools for

comprehensive data sharing and integrative analysis, thereby aiding researchers in better decoding respiratory single-cell omics data.

Our example applications by the visualization tools hint at the potential significance of the BSG receptor in SARS-CoV-2 infection based

on its high expression and potential interaction to alveolar epithelial cells. The case study in COPD suggests the involvement of HHIP and

TGFB2 in the development and progression of COPD according to their expression changes at the single-cell resolution. Moreover, our find-

ings propose that the risk loci for COPD could impact the function of pulmonary epithelial cells and fibroblasts, leading tomore susceptibility

to this disease. These discoveries offer valuable insights for the identification of research targets, indicating the value and importance of

scMoresDB. Altogether, scMoresDB significantly increases the accessibility and utility of single-cell multi-omics data for human respiratory

system and associated diseases, accelerating data analysis and applications in both biological and clinical research.
iScience 27, 109567, April 19, 2024 9
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Figure 6. The analysis of disease-causal genetic variations of COPD at the single-cell resolution in scMoresDB

(A) The UMAP representation of snATAC-seq of 90,980 cells from neonatal, pediatric, and adult samples with 19 cell types annotated.

(B and C) TRS for the never-smoking COPD GWAS fine-mapping data displayed as (B) the UMAP plot and (C) the boxplot. Type I pneumocyte, alveolar_type_1;

Type II pneumocyte, alveolar_type_2; Club cell, club; Ciliated cell, ciliated; Basal cell, basal; lymphatic endothelial cell, lymphatic_ endothelial; ciliated cell,

ciliated; capillary endothelial cell, capillary_endothelial_2, capillary_endothelial_1; B cell, b_cell; arterial endothelial cell, arterial_endothelial; natural killer

cell, nk_cell; T cell, t_cell.
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Limitations of the study

This study has certain limitations. scMoresDB offers a singular online tool for the integrative analysis of GWAS and scATAC-seq. While

our intent is to include more tools for integrative multi-omics data analysis, the current scarcity of such tools within the research com-

munity impedes this endeavor. In addition, we analyzed each dataset independently and extracted information by matching the same

keywords. To some extent, the effectiveness of this approach relies on the prior knowledge of the user. In the future, knowledge bases

can be built to strengthen the connection between information of different datasets and thus to discover new biological insights. Further-

more, the application instances highlighted in this study primarily serve to illustrate the visualization techniques and the utility of the

online analysis tool. It is important to acknowledge that the findings derived from the case studies lack comprehensive experimental

verification.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R 4.0.3 R Core Team https://www.r-project.org

Seurat 4.1.0 Hao et al., 202143 https://satijalab.org/seurat/

Signac Stuart et al., 202144 https://stuartlab.org/signac/

UCSC Cell Browser Speir et al., 202145 https://github.com/maximilianh/cellBrowser

Sinto https://github.com/timoast/sinto https://github.com/timoast/sinto

STUtility Bergenstråhle et al., 202046 https://github.com/jbergenstrahle/STUtility

AUCell Aibar et al., 201747 https://github.com/aertslab/AUCell

ChIPseeker Wang et al., 202248 https://github.com/YuLab-SMU/ChIPseeker

Limma Ritchie et al., 201549 https://bioinf.wehi.edu.au/limma/

scRepertoire Borcherding et al., 202050 https://github.com/ncborcherding/

scRepertoire

SpringBoot 2.5.6 https://spring.io/projects/spring-boot https://spring.io/projects/spring-boot

Vue.js 2.0 https://vuejs.org/ https://vuejs.org/

MySQL 5.7 https://www.mysql.com https://www.mysql.com

igv.js 2.13.3 Robinson et al., 202326 https://github.com/igvteam/igv.js/

HTTPD 2.4.6 https://httpd.apache.org/ https://httpd.apache.org/

Tomcat 9.0.54 https://tomcat.apache.org/ https://tomcat.apache.org/

HighCharts 10.3.2 https://www.hcharts.cn https://www.hcharts.cn

Shiny 1.5.18 https://shiny.posit.co/ https://shiny.posit.co/

VolcanNoseR 1.0.3 Goedhart and Luijsterburg, 202025 https://github.com/JoachimGoedhart/

VolcaNoseR

Other

Resource website for the publication This paper http://www.liwzlab.cn/scmoresdb
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Weizhong Li (liweizhong@mail.

sysu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All public source data used in this study were listed in the Table S1. All analysis results are accessible through the search pages of

scMoresDB (http://www.liwzlab.cn/scmoresdb/#/Browse).

� The scripts used in data processing can be got through reasonable requests.
� Any additional information required to reanalyse the data reported in this paper is available from the lead contact (Weizhong Li,

liweizhong@mail.sysu.edu.cn) upon request.

METHOD DETAILS

Source data integration

The source datasets were collected from GEO,51 ArrayExpress,52 UCSC Cell Browser,45 immuneACCESS (https://clients.adaptivebiotech.

com), Single Cell Portal (https://singlecell.broadinstitute.org/single_cell), Mendeley Data (https://data.mendeley.com), TCRdb,53
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CAUSALdb,54 GWAS Catalog,55 and several publication-related web repositories56,57 (Figure 2A) (Tables 1 and S1), followed by data filtering

and normalization under standard quality control protocols, as well as data integration, clustering, and annotation by prevalent tools (Fig-

ure 2B). Details about the data pre-processing and parameter settings for each dataset can be found on the summary tab of the dataset visu-

alization page, for instance http://www.liwzlab.cn/scmoresdb/#/Visualization/LSE100100.

To ensure uniform search and visualization through the web application, we employed specific data processing pipelines for different

types of omics data. In details, the scRNA-seq datasets were initially pre-processed by Seurat (v4.1.0)43 for quality control, normalization,

dimension reduction, clustering, and cell-type annotation according to relevant publications and metadata (Figure 2B). Subsequently, the

expressions of differentially expressed genes (DEGs) were computed across various cell types usingWilcoxon test, as implemented in Seurat’s

FindAllMarkers function. The DEG criteria included a log-scale fold difference > 0.25, a min.pct threshold of 0.1, and a min.diff.pct > 0.05.

Seurat objects were then saved and transferred to the CellBrowser web application using the UCSC Cell Browser functions ‘cbSeuratImport’

and ‘cbBuild’.

Similarly, the datasets of scATAC-seq, CITE-seq, and spatial transcriptomics were processed by Seurat and Signac44 for data pre-process-

ing, cell-type annotation, and DEGs identification (Figure 2B). Particularly, we created a gene activity matrix for scATAC-seq before cell-type

annotation and adopted Sinto (https://github.com/timoast/sinto) to split the tracks of different cell types for visualization in the Genome

Browser. Meanwhile, we retrieved and processed the information of RNAs, hashtag oligos (HTOs), and antibody-derived tags (ADTs)

separately fromCITE-seq data, and integratedmultimodal information before cell-type annotation. For spatial transcriptomic data, we further

annotated genes that are highly varied in space by STUtility46 and AUCell47 (Figure 2B). The same parameter setting for scRNA-seq data pre-

processing was employed to compute expressions of DEGs and ADT profiles for CITE-seq. For scATAC-seq data, differentially accessible

chromatin regions across various cell types were annotated using Chipseeker.48 The Seurat function ‘FindSpatiallyVariableFeatures’ was

applied to find spatial DEGs across cell clusters generated by Seurat, and the resulting Seurat objects were saved for further spatial analysis

and visualization. For CITE-seq and scATAC-seq data, we used the applications ‘cbSeuratImport’ and ‘cbBuild’ in CellBrowser to export gene

expressions and ADT matrices as well as accessible chromatin regions matrix, respectively. In the case of spatial transcriptomics, Seurat ob-

jects were utilized by the application Shiny for visualization.

The bulk gene expression datasets containing RNA-seq and microarray data were normalized. RNA-seq data was uniformly converted to

transcripts in millions (TPM), and Wilcoxon test was performed to find DEGs based on the experimental design of control and treatment

groups. Meanwhile, batch effects were removed by limma49 for microarray datasets, followed by a differential expression analysis using a

linear model (Figure 2B).

We annotated the datasets of bulk ATAC-seq and genome-wide association studies (GWAS) using ChIPseeker (Figure 2B). ATAC-seq da-

tasets have been processed from MACS258 peak calling before downloading. Meanwhile, the downloaded GWAS datasets have been un-

dergone for finemapping processes. Hence, we were able to directly annotate themapped genes of chromosome positions, along with their

upstream anddownstream information. Promoters were defined as regionswithin 2000 base pairs upstreamand downstreamof the transcrip-

tion start site (Figure 2B).

For scTCR-seq data, we used scRepertoire50 to merge contigs and integrate them with the processed scRNA-seq data from the same

single cells (Figure 2B). Then the common clonotypes among different groups and clusters were generated for visualisation in the Immune

Abundance Browser. Complete TCR sequences were preserved frombulk TCR-seq datasets, retaining key information of V gene, J gene, and

in-frame complementarity determining region 3 (CDR3) (Figure 2B).
Web implementation

The scMoresDB website, implemented in Java language and the SpringBoot (v2.5.6) framework, was deployed by Apache web server. The

frontend interface was visualized by using the Vue.js framework (v2.0). All data were stored in aMySQLdatabase (v5.7). The analysis tools were

implemented using in-house R scripts. The Cell Browser and the Genome Browser, integrated based on UCSC Cell Browser and igv.js, were

deployed by HTTPD (v2.4.6) and Tomcat (v9.0.54) servers, respectively. The Immune Abundance Browser was developed using HighCharts

(v10.3.2). Shiny (v1.5.18) and VolcanNoseR25 were exploited for the Spatial Browser and volcano plotting (Figure 2C).
QUANTIFICATION AND STATISTICAL ANALYSIS

For the analyses of scRNA-seq, scATAC-seq, CITE-seq, and spatial transcriptome, we conducted the Wilcoxon rank-sum test using the

FindAllMarkers function in the Seurat software package (version 4.1.0). For our case study in COPD, we focused on data with a log2 fold-

change in average expression over 0.25 and an adjusted P-value below 1310-5. The number of cells in each dataset, which represents the

sample size, can be found in the dataset description on the database website. We standardized the RNA sequencing data to TPM and

then used the Wilcoxon rank-sum test again to identify DEGs under different conditions. For the microarray datasets, we corrected batch

effects using the limma tool and then performed differential expression analysis using a linear model. We applied the Bonferroni correction

method to minimize false positives to increase the statistical accuracy for the above results.
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