
Ecological inference for infectious disease data, with application 
to vaccination strategies

Leigh H. Fisher1, Jon Wakefield2,3

1Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, 
Washington

2Department of Biostatistics, University of Washington, Seattle, Washington

3Department of Statistics, University of Washington, Seattle, Washington

Abstract

Disease surveillance systems provide a rich source of data regarding infectious diseases, 

aggregated across geographical regions. The analysis of such ecological data is fraught with 

difficulties, and, unless care and suitable data summaries are available, will lead to biased 

estimates of individual-level parameters. We consider using surveillance data to study the impacts 

of vaccination. To catalog the problems of ecological inference, we start with an individual-level 

model, which contains familiar parameters, and derive an ecologically consistent model for 

infectious diseases in partially vaccinated populations. We compare with other popular model 

classes and highlight deficiencies. We explore the properties of the new model through simulation 

and demonstrate that, under standard assumptions, the ecological model provides less biased 

estimates. We then fit the new model to data collected on measles outbreaks in Germany from 

2005–2007.
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1 | INTRODUCTION

A wide range of diseases are monitored at the local, state, and national levels using disease 

surveillance systems designed to assess the current disease burden or to detect emerging 

outbreaks. Although there are a variety of approaches to surveillance, ranging from daily 

collection of de-identified electronic medical records to mandatory reporting of certain 

notifiable diseases, the resulting data typically captures information for large populations 
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over time. For this reason, disease surveillance systems are frequently a primary source 

of information for public health researchers and officials who use such data to design 

and deploy effective interventions. While this approach is economical, cases are typically 

aggregated in space, time, or both, and the information regarding any single case is limited.

This aggregation can present challenges when studying the spread of infectious disease. 

In the social sciences and noninfectious disease epidemiology, aggregated data is often 

analyzed with established disease mapping approaches such as ecological regression. 

However, the risk of drawing erroneous individual-level conclusions from group-level data 

has been well characterized.1–6 This phenomenon is referred to as ecological bias and can 

arise when the form of the risk model changes under aggregation. When the model for the 

individual-level risk of disease is a nonlinear function of the exposure, as is typically the 

case for infectious disease models, the form of the marginal aggregate risk model changes 

as a result of the within-group variability of the exposure that is not accounted for in the 

group-level model.7

In the infectious disease setting, ecological regression approaches are typically not 

considered since they do not leverage known dependencies. For aggregated infectious 

disease data, there are two common approaches in the literature: the time series SIR (TSIR) 

model8 and the epidemic-endemic framework.9–15 Under the TSIR approach, the number 

of susceptible and infected individuals are modeled independently without recourse to a 

development from the individual level. The epidemic-endemic framework is motivated by 

spatial branching processes and is closely related to standard SIR and multivariate TSIR 

models.16 Meanwhile, these epidemic-endemic models are easily fit in standard software 

via the surveillance package in the R programming environment.14 A recent review 

compares and contrasts the two classes of models.17 For both approaches to modeling 

aggregated infectious disease data, the risks of infections are nonlinear and, thus, inference 

is susceptible to ecological bias. However, there has been little discussion of ecological 

bias for aggregate infectious disease models.18 In particular, the ecological aspects of the 

epidemic-endemic model have not been investigated.

In this manuscript, we consider using aggregated surveillance data to study the impact 

of vaccination on infectious disease transmission. To avoid ecological bias, we start 

with an individual-level infectious disease model that includes vaccination and derive an 

ecologically consistent infectious disease model for a partially vaccinated populations. This 

ecological vaccine model is easily fit and provides estimates of familiar epidemiological 

parameters. The remainder of this paper is organized as follows. In Section 2, we motivate 

the aim of this paper and introduce some notation and preliminary concepts. In Section 3, 

we develop an ecologically consistent vaccine model under two models of vaccine action; 

we present simulations to better understand the behavior of the ecological vaccine model in 

Section 4; and fit the ecological vaccine model to measles data from Germany in Section 5. 

Final comments appear in Section 6.
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2 | MOTIVATION AND NOTATION

In surveillance data, new cases are commonly reported in discrete time and space. It is 

common to use time steps relative to the disease of interest, meaning that we are assuming 

the sum of incubation and infectious times is approximately that of the observation times. 

For example, for measles, the data are often aggregated over 2-week periods. We denote the 

number of cases and the population size for area i and time t by Y it and Nit. Let Sit denote 

the number of susceptible individuals and xit the proportion of vaccinated individuals in area 

i and time t. Area- and time-specific covariates other than vaccination coverage are denoted 

zit.

Recently, the epidemic-endemic model was derived via aggregation of an individual-level 

model, and the framework was extended to handle a stratified population.15 We briefly 

review this derivation before discussing how the epidemic-endemic models are typically 

applied when considering vaccination. We use λit
† to denote the generic force of infection, or 

the risk of an individual who was susceptible at time t − 1, becoming infected by time t in 

area i.19 Assuming a constant hazard of infection between time steps, the probability of a 

susceptible individual in area i and time t − 1 becoming infected by time t is determined by 

the hazard rate λit
†, implying the following individual-level model: Pr(infection in (t − 1, t] ∣

no infection by t − 1, area i) = 1 − e−λit
†
. A Reed-Frost chain binomial SIR model is implied 

if we additionally assume that the time until infection is independent for all susceptible 

individuals19; hence, the number of new infectives in area i at time t can be modeled as 

Y it ∣ λit
† ∼ Binomial Si, t − 1, 1 − e−λit

†
. When λit

† is small, the Taylor expansion, 1 − exp −λit
† ≈ λit

†, 

simplifies the form of the probability of infection. When the number of susceptibles, Si, t − 1 is 

large and the probability of infection is small, the binomial distribution can be approximated 

by a Poisson distribution so that Y it ∣ μit ∼ Poisson μit , where μit = Si, t − 1λit
†. When the number 

of new infections is small and the population is large, the number of susceptibles can be 

approximated by the initial number of susceptibles, Sit ≈ Ni.

In the infectious disease setting, there are typically multiple sources of infection. For 

example, a susceptible may become infected from an infective in their own area, another 

area, or from an environmental reservoir or infective external to the study region. Typically, 

the epidemic-endemic framework decomposes the force of infection into three components: 

autoregressive (AR), neighborhood (NE), and endemic (EN), where the endemic component 

includes all other sources of infection.9 For simplicity, here, we consider the AR and EN 

components only (though the discussion holds if neighborhood terms are included also). 

Considering a competing risk framework, we can write λit
† = λit

AR† + λit
EN†, where λit

AR† and λit
EN†

are generic forms of the component-specific risks. A frequency dependent transmission 

model implies λit
AR† = λit

ARyi, t − 1/Ni.15 Then, assuming rare events and Sit ≈ Ni we obtain a 

general form of the epidemic-endemic model, with Y it ∣ μit ∼ Poisson μit , where

μit = Si, t − 1λit
† = λit

ARyi, t − 1

Autoregressive
+ λit

ENNi

Endemic
.

(1)
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The autoregressive component accounts for the disease risk from infectives in the previous 

time period and in the same area. The endemic component describes the additional risk from 

environmental reservoirs that contribute to the risk of infection or other sources of infection 

not already accounted for by the other component(s). The parameters λit
AR and λit

EN are rates 

and determine the relative contributions of cases from the respective sources, though are not 

directly comparable.

The epidemic-endemic framework typically models the number of cases in area i and 

time t with a negative binomial distribution with mean λit
†.14 For simplicity, we model 

overdispersion via a Poisson distribution with log-normal random effects, with the mean 

decomposed as in Equation (1). Each component can be modeled with a log-linear model 

to include covariates as well as fixed and random effects. For example, the autoregressive 

component may take the form

logλit
AR = αAR + ai + βARzit,

(2)

where αAR is a log-risk intercept, ai are area-specific fixed (or random) effects, zit are area- 

and time-specific covariates, and exp βAR  are the associated covariate relative risks. The 

endemic component can be modeled in a similar fashion to the above AR component. 

Seasonality can be included in either component of the model by adding to the log-risk, a 

term of the form, ∑s = 1
S γssin ωst + δscos ωst , where S is the number of pairs of sines and 

cosines to include and ωs are Fourier frequencies. For biweekly data, ωs = 2πs/26. In practice, 

seasonal terms have been included in only the endemic component.12–14

In the surveillance package, parameter estimates are quickly obtained for the epidemic-

endemic models via penalized maximum likelihood estimation.14 While epidemic-endemic 

models can be used for prediction, they are more often used to smooth observed counts, in 

which case, parameter interpretation is not done extensively. Within the epidemic-endemic 

framework, there has been no discussion of the ecological bias implications of the use 

of loglinear models of the form (2). Appendix A shows the inconsistency between the 

individual and ecological models in some simple situations, using this loglinear model, and 

simulations in Section 4.2 provide numerical examples of ecological bias in this setting.

In the context of studying vaccination on disease spread, there are two analyses that use 

the epidemic-endemic framework to model measles in Germany that include vaccination 

coverage.12,14 Both analyses consider multiple ways of incorporating vaccination coverage 

into the mean model and use AIC to select a final model. However, the analyses of 

separate data sets produced different models for measles in Germany. One analysis included 

vaccination coverage in only the autoregressive component, whereas the other included it 

in is only the endemic component. For example, the model Y it ∣ μit ∼ Poisson μit  included 

vaccination coverage in the endemic component, with

μit = λit
ARyi, t − 1 + 1 − xi

α1λit
ENNit/N,
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(3)

where xi is the proportion of vaccinated individuals in area i.

While this approach may lead to models that fit the data well, it fails to account for 

the scientific context of how vaccination affects susceptibility. In (3), if the proportion of 

unvaccinated individuals, 1 − xi  is thought of as a proxy for the number of susceptible 

individuals in the population, then the parameter associated with the vaccination coverage, 

α1 can be thought of as a flexibility parameter to improve model fit.12 Moreover, the 

interpretation of the parameter associated with vaccination coverage can be cumbersome 

or nonintuitive and the parameters may not be comparable across analyses. For example, 

the interpretation from (3) is that the expected multiplicative change in endemic incidence 

associated with a doubling of the proportion of susceptible individuals in area i is estimated 

to be 2α1.14

Alternatively, it is common to account for vaccination in applications of the TSIR 

framework by augmenting the susceptibles model to account for vaccination coverage. For 

example, in the context of modeling hand, foot and mouth disease in China, the basic 

accounting equation for susceptibles, the number of new births is reduced by the vaccination 

coverage, which is assumed known and vaccine effect is not estimated.20 As these examples 

demonstrate, current approaches to modeling aggregate data may be inappropriate when the 

goal is to study the covariate effects on disease spread. When the interest is to study the 

effects of vaccination for an imperfect vaccine, the resulting models lack familiar parameter 

interpretation and primarily focus on model fit.

Before proceeding, we take a moment to introduce a key parameter for quantifying 

infectious diseases that is regularly used in practice. The basic reproductive number, 

represented by R0, is defined as the average number of individuals a typical infectious 

individual would infect in a completely susceptible population.21 When a portion of the 

population is immune, either because of vaccination or previous infection, the average 

number of new infections caused by a single infectious is called the effective reproductive 
number, represented by R. In our setting, where x is the proportion of the population that is 

immune to infection, either through natural infection or vaccination, R = (1 − x)R0. For both 

R0 and R, values less than 1 imply that major outbreaks can be avoided.

3 | ECOLOGICAL VACCINE MODEL DEVELOPMENT

3.1 | Introduction

With inference as a primary goal, we now develop an aggregate infectious disease model 

with vaccination for inference. For clarity, we develop the ecological model in a single 

area and with a generic force of infection, although as we show in Section 5, extensions 

to multiple areas and more complex forms of risk can be made. We further assume that 

the vaccine only affects an individual’s susceptibility to infection (and not infectiousness 

or disease progression) and that vaccination provides lifetime immunity. We let ϕ be the 

reduction in a vaccine recipient’s risk of infection (the vaccine effect) after vaccination and 

Fisher and Wakefield Page 5

Stat Med. Author manuscript; available in PMC 2024 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assume a constant vaccine coverage denoted by x. We subscript the number of susceptibles, 

cases, and force of infections with v and u to indicate vaccinated and unvaccinated. Hence, 

Y ut and Y vt are the total number of unvaccinated and vaccinated infectives at time t, such that 

Y t = Y ut + Y vt. We assume that vaccination is administered in a totally susceptible population, 

so that, at t = 0, the number of unvaccinated susceptible individuals is Su0 = (1 − x)N.

To properly model the effects of vaccination, at the population level, it is important to 

consider how the vaccine reduces an individual’s risk of infection. We consider aggregate 

models for two modes of vaccine action: leaky and all-or-none. Leaky vaccines are assumed 

to reduce the risk of infection by a constant proportion for all vaccinated individuals; in 

contrast, all-or-none vaccines provide full protection from infection to vaccinated individuals 

when successful but fail to provide protection with some probability.19 In other words, 

leaky vaccines reduce the per-exposure risk of infection, whereas an all-or-none vaccine’s 

protection is independent of the number of contacts made. In reality, a given vaccine may 

not fall squarely into one of these two categories, but we use these two different models to 

explore these extremes. In the subsequent sections, we show that, regardless of the assumed 

mode of vaccine action, there is a common ecologically consistent model that can be fit to 

aggregate data.

3.2 | All-or-none vaccine ecological model

For an all-or-none vaccine, it is assumed that the vaccine fails with probability (1 − ϕ)
and offers no partial protection in this case.19 This implies that the number of susceptible 

individuals who were vaccinated is Sv0(ϕ) = (1 − ϕ)xN, and λvt = λut = λt
† is the common risk 

of infection. We denote the number of susceptibles at time t by St(ϕ) to emphasize that the 

number of susceptibles is a function of the vaccine effect. At time t = 0, the number of 

susceptibles at time S0(ϕ) = Su0(ϕ) + Sv0(ϕ) = (1 − x)N + (1 − ϕ)xN = (1 − ϕx)N. The number 

of new infections at time t + 1 can be modeled as

Y t + 1 ∣ λt
† ∼ Binomial St(ϕ), 1 − exp −λt

† ,

(4)

where St(ϕ) = St − 1(ϕ) − Y t. In the rare disease setting, the binomial can be approximated 

by a Poisson and, when λt
† is small, a Taylor expansion approximates 1 − exp −λt

† ≈ λt
†

so that Y t + 1 ∣ λt
† ∼ Poisson St(ϕ)λt

† , where St(ϕ) = (1 − ϕx)N − ∑k = 1
t Y k. When the susceptible 

population is sufficiently large, and the number of cases is small, the number of susceptibles 

is effectively constant and can be approximated by St(ϕ) ≈ (1 − ϕx)N. The ecological model 

in (4) becomes

Y t + 1 ∣ λt
† ∼ Poisson λt

†(1 − ϕx)N ,

(5)

when the approximations are valid. In Section 4.1, we consider the conditions under which 

these modeling assumptions are reasonable.
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3.3 | Leaky vaccine ecological model

Under the leaky vaccine model, vaccinated individuals are still susceptible to infection, 

and therefore, Su0 = (1 − x)N and Sv0 = xN. Additionally, the leaky vaccine implies that we 

can write the risk of infection for the vaccinated as a function of that in the unvaccinated 

population and the vaccine effect

λvt
† = (1 − ϕ)λut

† .

(6)

Then, the number of new infections at time t + 1 can be modeled as

Y u, t + 1 ∣ λut
† ∼ Binomial Sut, 1 − exp −λut

† ,

(7)

Y v, t + 1 ∣ λvt
† ∼ Binomial Svt, 1 − exp −λvt

† ,

(8)

where λut
†  is the risk of infection for an unvaccinated susceptible at time t, and λvt

†  is defined in 

(6); the number of susceptibles at time t + 1 are

Su, t + 1 = Su, t − Y u, t + 1 and Sv, t + 1 = Sv, t − Y v, t + 1 .

The resulting aggregate model is a convolution of binomials, where

Pr Y t = y ∣ λut
† , λvt

† = ∑
z = 0

y
Pr Y ut = z ∣ λut

† Pr Y vt = y − z ∣ λvt
† .

(9)

When the susceptible populations or disease counts are large, this aggregate model will 

be computationally expensive and practically intractable. When the risks of infection are 

small, the Taylor approximation simplifies the probability of infection in Equations (7) and 

(8). Moreover, when infections are rare, the binomial distributions can be approximated by 

Poisson’s. Hence, when risk of infection is small for both the unvaccinated and vaccinated 

populations, the number of new infections in each group is approximately

Y u, t + 1 ∣ λut
† ∼ Poisson Sutλut

† ,

(10)

Y v, t + 1 ∣ λut
† , ϕ ∼ Poisson Svt(1 − ϕ)λut

† .

(11)
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The resulting aggregate model, when the risk is small for both vaccinated and unvaccinated 

groups is

Y t + 1 ∣ λut
† , ϕ ∼ Poisson Sut + Svt(1 − ϕ) λut

† .

(12)

Compared to the convolution model of (9), this likelihood is more tractable in large 

populations with few cases. However, this model still requires knowing the number of 

susceptibles by vaccination status, which is typically not known or easily approximated. If 

it is reasonable to assume that the number of infectives is negligible when compared to the 

size of the susceptible pool, ie, Sut ≈ Su0 and Svt ≈ Sv0, the ecological model for a partially 

vaccinated population is approximately

Y t + 1 ∣ λut
† , ϕ ∼ Poisson λut

† (1 − ϕx)N ,

(13)

which is identical to the ecological model derived assuming an all-or-none vaccine given in 

Equation (5).

3.4 | Comments on the ecological vaccine model

We summarize the development of the ecological vaccine model starting from the all-or-

none and leaky vaccine assumptions, as well as the simplifying assumptions that result in the 

ecological vaccine model in Table 1.

Both the all-or-none and leaky vaccine models can be approximated by the ecological 

vaccine model when the following simplifying assumptions can be made:

1. Poisson approximation to the binomial distribution;

2. force of infection approximation: 1 − e−λt
† ≈ λt

†;

3. negligible number of infections: Sut ≈ Su0 for unvaccinated individuals, and 

Svt ≈ Sv0 for vaccinated individuals. Note that the number of susceptibles may 

also be a function of the vaccine effect.

This list of assumptions helps illuminate when the ecological vaccine model we have 

developed is appropriate to use. The fact that, when aggregated, both vaccine models can be 

approximated by the same model suggests that, with aggregated data, there is not sufficient 

information to tease apart the mechanism of vaccine protection. In fact, in Appendix B, 

we derive the ecological vaccine model assuming the vaccine that has both leaky and 

all-or-none effects and show that the specific vaccine effects are not identifiable with the 

ecological vaccine model.
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4 | SIMULATIONS

4.1 | Assessing the simplifying assumptions in the absence of vaccination

We first assess the conditions under which these simplifying assumptions are appropriate 

in the absence of vaccination via simulation. Each simulated epidemic starts with a single 

infected individual in an otherwise susceptible population of N = 100 000; in other words, 

let Y 0 = 1 and S0 = N − Y 0. Moreover, the number of cases over the course of a given 

epidemic is simulated as follows:

Y t + 1 ∣ λt
†, yt ∼ Binomial St, 1 − e−λt

†
,

λt
† = eαARyt/N + eαEN,

St = N − ∑
k = 0

t
yk .

We simulate epidemics for high, medium, and low values of R0, which correspond to αAR = 

log(2.5), log(1), or log(0.85), and fix αEN = −10. To increase variability in the initial number 

of cases in each simulated epidemic, we discard observations from t = 0, …, 4 and simulate 

the equivalent of 3 years of weekly data starting from t = 5. We simulate 250 epidemics for 

each of the three simulation scenarios. For each simulated epidemic, we fit models from all 

possible combinations of the three simplifying assumptions summarized in Section 3.4 (and 

Table 1) and compare the maximum likelihood estimates (MLEs) obtained via numerical 

optimization. Specifically, we fit the following:

1. Y t + 1 ∣ λt
† ∼ Binomial St, 1 − e−λt

† ;

2. Y t + 1 ∣ λt
† ∼ Binomial N, 1 − e−λt

† ;

3. Y t + 1 ∣ λt
† ∼ Binomial St, λt

† ;

4. Y t + 1 ∣ λt
† ∼ Binomial N, λt

† ;

5. Y t + 1 ∣ λt
† ∼ Poisson St 1 − e−λt

† ;

6. Y t + 1 ∣ λt
† ∼ Poisson N 1 − e−λt

† ;

7. Y t + 1 ∣ λt
† ∼ Poisson Stλt

† ;

8. Y t + 1 ∣ λt
† ∼ Poisson Nλt

† .

For all eight models, the force of infection is modeled as λt
† = eαΛRY t/N + eαEN. In Figure 

1, we plot the average parameter estimates from each of the eight models under the three 

values of R0, along with the 2.5- and 97.5-percentiles of the estimates across simulations. 

Fisher and Wakefield Page 9

Stat Med. Author manuscript; available in PMC 2024 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Figure 1A, where R0 = 2.5, the epidemic is limited by the number of susceptibles and 

dies off when there are few remaining susceptible individuals in the population. In this 

setting, we see that those models that approximate the number of susceptibles with the 

initial number of susceptibles do not perform well. Although less dramatic, estimates from 

models that made the Taylor approximation of risk perform worse than those that do not 

make the approximation. However, with such explosive growth, there is limited variability 

in the simulated epidemics, and, as a result, the range of estimates of αAR is so narrow 

that the intervals are undetectable in the upper panel of 1A; further details of these results 

are included in the web material. In Figures 1B and 1C, where R0 = 1 and R0 = 0.85, 

and the epidemic is not growing as dramatically, we see that the simplifying assumptions 

necessary for the ecological vaccine model are more appropriate. While there is some slight 

underestimation of the autoregressive term and overestimation of the endemic term due to 

the finite sample size, the estimated bias and MSE are similarly small for all eight models 

(see web material).

4.2 | Assessing the ecological model in a partially vaccinated population

We now consider the performance of the ecological model within a partially vaccinated 

population. For identifiability, we consider i = 5 areas, each with Ni = 100 000 and that 

have varying levels of vaccine coverage. We focus on scenarios in which we expect the 

ecological vaccine model to perform well. The results from Section 4.1 showed that the 

ecological vaccine model performed well when R0 < 1, which corresponds to R < 1 in 

a partially vaccinated population. Assuming R0 = 2.5 and a vaccine effect of 0.8, we let 

vaccine coverages range from 65% to 85%. We simulate 250 epidemics assuming either an 

all-or-none vaccine or a leaky vaccine. Each simulated epidemic assumes a single infected 

individual who is unvaccinated to start, so that Y ui0 = 1 and Y vi0 = 0; and the initial number of 

susceptibles by vaccination status (Sui0 and Svi0) is determined by the assumed vaccine mode 

of action (see Table 1). The number of cases by vaccination status is simulated as follows:

Y ui,t+1 ∣ λuit
† ∼ Binomial Suit, 1 − exp −λuit

† ,

(14)

Y vi, t + 1 ∣ λvit
† ∼ Binomial Svit, 1 − exp −λvit

† ,

(15)

where the forms of λuit
†  and λvit

†  are determined by the assumed vaccine mode of action. The 

underlying force of infection is λit
† = exp αAR Y uit + Y vit /Ni + exp αEN /N, where N = ∑i Ni. 

As in the previous simulations, we discard the first four time steps before simulating the 

equivalent of 3 years of weekly counts. We assume there are no infections from other 

areas, ie, no neighborhood component. We compare MLE estimates obtained via numerical 

optimization from the following models:

1. Fully observed all-or-nothing model:
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Y ui, t + 1 ∣ λit
†, ϕ ∼ Binomial Suit(ϕ), 1 − e−λit

†
,

Y vi, t + 1 ∣ λit
†, ϕ ∼ Binomial Svit(ϕ), 1 − e−λit

†
,

Suit(ϕ) = 1 − xi Ni − ∑
k = 1

t
Y uik,

Svit(ϕ) = (1 − ϕ)xiNi − ∑
k = 1

t
Y vik .

2. Fully observed leaky model:

Y ui, t + 1 ∣ λit
†, ϕ ∼ Binomial Suit, 1 − e−λit

†
,

Y vi, t + 1 ∣ λit
†, ϕ ∼ Binomial Svit, 1 − e−(1 − ϕ)λit

†
,

Suit = 1 − xi Ni − ∑
k = 1

t
Y uik,

Svit = xiNi − ∑
k = 1

t
Y vik .

3. Ecological vaccine model:

Y i, t + 1 ∣ λit
† ∼ Poisson Ni 1 − ϕxi λit

† .

4. Epidemic-endemic model:

Y i, t + 1 ∣ μit ∼ Poisson μit ,

μit = exp α0 1 − xi
α1Y it + Ni

N exp β0 ,
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We have parameterized λit
† in models 1 to 3 so that α0 and β0 in the epidemic-endemic 

model are comparable to αAR and αEN, respectively, in the other models. Note that the 

parameter associated with vaccine coverage in the epidemic-endemic model, α1, is not 

directly comparable to the vaccine effect ϕ of the other models. Additionally, both the 

all-or-none (1) and the leaky (2) models assume that we have observed the number of cases 

by vaccination status, which is not necessary for the ecological (3) and epidemic-endemic 

(4) models.

In Figure 2, we present an example of realizations for the five populations under the 

assumption of no vaccine effect, an all-or-none vaccine, and a leaky vaccine, with an 

assumed vaccine effect of ϕ = 0.8.

In Figures 3 and 4, we present the average estimates, along with the 2.5- and 97.5-

percentiles of estimates obtained under all four models, when the data were simulated 

assuming an all-or-none or leaky vaccine, respectively. Under all scenarios, the fully 

observed models yield estimates close to the true model parameters. Compared to the fully 

observed model estimates, the ecological vaccine model obtains similar estimates, but with 

wider intervals, appropriately reflecting the lost information as a result of the aggregation. 

In contrast, the epidemic-endemic models yield estimates that are very different from the 

true autoregressive and endemic parameter values. We do not include the epidemic-endemic 

estimates in the pictures for the estimates of the vaccine effect, ϕ, since the epidemic-

endemic parameter is not comparable to the parameters in the other models.

These simulations also provide a clear example of the risk for ecological bias when using 

the epidemic-endemic model. Interpreting the results from the epidemic-endemic model 

as individual-level parameter estimates would result in erroneous conclusions, especially 

regarding the endemic risk.

We also consider the results from 20 years’ worth of data in Appendix C and see that, 

asymptotically, the ecological vaccine model yields unbiased estimates for all model 

parameters, consistent with the fully observed models.

5 | APPLICATION TO MEASLES DATA

We now apply the ecological vaccine model to data collected on measles outbreaks in 

Germany from 2005 through 2007. Measles is a highly contagious viral infection that can 

result in death for young or malnourished children. The average number of secondary 

infections that arise from a single measles infection in a completely susceptible population 

is estimated to be between 15 and 20.21,22 Fortunately, the measles, mumps, and rubella 

(MMR) vaccine is very effective. Between 85% and 95% of children will develop immunity 

after a single dose of the MMR vaccine and a second dose provides nearly 99% vaccine 

efficacy.22

Even with an effective vaccine the highly infectious nature of measles means that more than 

93% of the population needs to be immune in order to prevent epidemics.23,24 Hence, even 
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in countries with well establish vaccination programs, such as Germany, small outbreaks 

persist.

We use data from Germany’s national disease surveillance system, which has been previous 

used to examine the relationship between vaccination coverage and the size of measles 

outbreaks and is included in the surveillance package for R.9 Further details about 

this data and previous analysis can be found elsewhere.12 For our analyses, we assume a 

two-week time step, based on the approximate generation time for measles.12,25 Between 

2005 and 2007, over 3500 cases of measles were reported throughout Germany, with as 

many as 344 cases observed in a single biweek. Over the 3 years, no cases were observed 

in Saarland, and approximately 2000 of those cases were observed in the state of North 

Rhine-Westphalia (see Figure 5A).

Estimated MMR vaccination coverage is based on the number of students presenting 

vaccination cards at the required medical exam for school entry.12 Between 87% and 95% of 

students brought vaccination cards to the entry exam preceding the start of the 2006–2007 

school year. Following the previous analysis, we estimate the coverage for at least one MMR 

vaccine by assuming that the coverage in the population that did not bring the vaccination 

cards is half that of those who did have vaccination cards.12 In Figures 5B and 5C, we 

map the estimated vaccine coverage for one or more MMR vaccines (left) and at least two 

vaccines (right). Although the available vaccination data is for children starting primary 

school, typically between 4 and 7 years of age, we assume that the MMR vaccination 

coverage for the whole population is the same as the estimated vaccination coverage for 

this analysis. We note that the estimated coverage is likely to be an overestimate, as those 

who show up for the annual medical exam and bring vaccination cards are more likely to 

have more complete medical records.12 We summarize the number of cases and estimated 

coverage in Table D1.

In this analysis, we are primarily interested in estimating the effects of vaccination on the 

observed cases of measles. We expand the ecological vaccine model developed in previous 

sections to incorporate spatial and temporal dependencies. In addition, we adopt a Bayesian 

paradigm to incorporate our previous knowledge about the MMR vaccine effectiveness.

We fit the following ecological model to the measles data:

Y i, t + 1 ∣ μit, ϕ ∼ Poisson Ni 1 − ϕxi λi
yit
Ni

+ vit ,

(16)

logλi = αAR + ai,

logvit = αEN + bi + γsin ωt + δcos ωt − log(N),
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ai ∼ N 0, σAR
2 ,

bi ∼ N 0, σEN
2 ,

ϕ ∼ Beta(10, 2.5),

where xi is the estimated vaccine coverage in area i ; component-specific random effects ai

and bi are assumed independent;ωt = 2πt/26; and the beta prior on ϕ places 90% of the mass 

is between 0.6 and 0.99. We assume lognormal priors with large variances on αAR and αEN. 

In the formulation of λi, we have assumed transmission to be frequency dependent based 

on previous studies of measles in England and Wales.25 Hamiltonian Monte Carlo sampling 

via Stan was used to fit this more complex ecological model.26 Corresponding code can be 

found in the web material.

In Table 2, we summarize the posterior estimates of the fixed effects from the ecological 

vaccine model. We estimate the vaccine effect to be 0.92, with a 95% posterior credible 

interval from 0.66 to 0.99, which is commensurate with the known vaccine efficacy for the 

MMR vaccine. However, this estimate is also similar to the strong prior placed on ϕ (prior 

95% interval is from 0.55 to 0.96). Vaccine coverage ranges from 88% to 95% across the 

16 German states, and these results suggest that there is little information about the vaccine 

effect in these data. As a sensitivity analysis, we fit the same hierarchical model with a 

noninformative prior for ϕ. The results are not presented here but can be found in the web 

material. The noninformative prior on ϕ results in slightly higher estimates for both αAR and 

ϕ, but each has substantially wider credible intervals. The prior choice for ϕ had little effect 

on the posterior estimates of the parameters in the endemic component of the model.

We plot the posterior median and 95% credible intervals for state-specific autoregressive 

parameters from the ecological vaccine model, computed as 1 − ϕxi exp αAR + a i  in Figure 6. 

Notice that, for the ecological vaccine model, the autoregressive parameter has an intuitive 

interpretation as the effective reproductive number, where R = (1 − xϕ)R0.19 As expected, 

all estimates were below 1, but the area-specific estimates have credible intervals with 

varying widths. The widest interval was observed for Saarland, and the smallest for North 

Rhine-Westphalia, the two states with the fewest (0) and most (2036) observed cases over 

the three-year study.

In Figure 7, we plot the total number of observed measles cases and prevalence per 100 000 

people, by state and biweek for the 16 states in Germany. The left axis indicates the total 

number of cases; the right axis indicates the prevalence per 100 000 people. The estimated 

vaccine coverage and effective reproductive number are included the upper left and right 

corners of each frame. Fitted values are included in the red and computed following (16) as
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Y it = 1 − ϕxi exp αAR + ai Y i, t − 1 + Ni/N exp αEN + b i + γsin ωt + δcos ωt ,

(17)

where Y i, t − 1 is the observed number of counts for area i and week t − 1, and ωt = 2πt/26. In 

general, the ecological vaccine model provides good estimates for the number of cases.

In Figure D1, we plot the area-specific random effects for the autoregressive and endemic 

components. The states with the highest prevalence have higher autoregressive random 

effects. The endemic random effects do not appear to have a similar spatial structure as 

the autoregressive random effects. Moreover, when the autoregressive random effects are 

plotted against the endemic random effects, as in Figure D2, there is no evidence of a 

strong correlation between the two components. This supports our decision to model the 

component-specific random effects as independent. However, in other settings, we may 

want to consider more complex forms of random effects. For example, if there were strong 

correlations between the component-specific random effects, it may be more appropriate to 

assume bivariate normal distribution for the random effects.

In this analysis, the posterior estimate of R0 is 2.49 (95% CI: 0.77 – 5.24), which is 

much smaller than the typical R0 between 15 and 20 for measles.21,22 There are many 

possible sources of this underestimation. Our analyses (and the available data) are in discrete 

time (biweeks), but in reality, new infections occur in continuous time and space. The 

discretization of time is known to result in a biased estimate of R0.27 It is likely that large 

outbreaks, like that in North Rhine-Westphalia in 2006 prompted additional vaccination 

campaigns. However, we have only a single estimate of vaccination coverage, from children 

entering school. The estimation of vaccine coverage is likely to not capture the true levels 

of protection within the population, or the heterogeneity of protection across various age 

groups.28 Lastly, with any disease surveillance system there is likely to be underreporting of 

cases. One study of a single German state found that underreporting varied dramatically over 

the course of the outbreak.29

6 | DISCUSSION

Infectious disease surveillance data is the primary source of information about disease 

spread in large populations over time. Current approaches to analyzing these sorts 

of data tend to focus on prediction, but when used to study covariate effects, the 

parameter interpretation is cumbersome, especially when the interest is in understanding 

how vaccination coverage associates with disease. With inference in mind, we started 

with an individual-level model that included how vaccination affect risk of infection 

and derived an ecologically consistent model for infectious disease data that accounts 

for vaccination coverage. A key benefit to our approach is that we obtain estimates of 

familiar epidemiological parameters, which are easy to interpret (though caveats are in 

order due to other issues, see the discussion at the end of Section 5). Furthermore, we 

saw that, under common simplifying assumptions, the resulting ecological vaccine model 

is the same regardless of the assumed mode of vaccine action. Simulations showed that 
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the ecological vaccine model performs reasonably well in many practical scenarios and 

illuminated situations when the ecological vaccine model may be inappropriate.

There are limitations to the current model and important extensions to make the approach 

more broadly applicable. For example, it would be beneficial to extend the ecological 

vaccine model to account for a nonconstant and perhaps longer infectiousness period. It may 

be interesting to consider bivariate random effects, or spatially structured random effects in 

the autoregressive and/or endemic components. Future work will be focused on extending 

the method to account for stratified population structures and including neighborhood effects 

in the ecological vaccine model.

Stan and R code to fit the models of this paper can be found in the supporting information 

for this article at https://github.com/lhfisher/Ecological_Inference.
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APPENDIX A: ECOLOGICAL BIAS FOR INFECTIOUS DISEASE MODELS

To better understand ecological bias in the infectious disease setting, we start with a simple 

individual-level model. Recall, ecological bias occurs when a naïve ecological model is used 

to make conclusions on individual-level parameters but the implied aggregate risk differs 

from that of the individual. Let Y itj be the disease indicator for susceptible individual j in 

week t and area i, where j = 1, …, ni. Assuming a rare disease so that 1 − exp λitj
† ≈ λitj

† , we 

start with the individual-level model

Y itj ∣ yi, t − 1 ∼ Bernoulli λitj
† ,

(A1)

where λitj
† = λitj

ARyi, t − 1/ni + λitj
EN and λitj

AR and λitj
EN are individual-level risks. We additionally assume 

that the individual risk of infection is a function of some individual-level covariates zitj such 

that

λitj
AR = eα0f α1, zitj ,

(A2)
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λitj
EN = λit

EN,

where f α1, z  describes the relationships between the covariate and component-specific risk. 

In the rare disease setting, the aggregate model for the total number of cases in area i and 

time t implied by the individual-level model in (A1) and (A2) is

Y it ∣ yi, t − 1 ∼ Poisson λit
ARyi, t − 1/ni + λit

EN ,

(A3)

where λit
AR and λit

EN are the aggregate autoregressive and endemic risks. We have assumed a 

constant endemic risk and, therefore, λit
EN = niλit

EN. The form of the aggregate autoregressive 

risk, λit
AR, will depend on the form of the covariate. For a continuous covariate, the 

autoregressive aggregate risk is

λit
AR = eα0∫

Ai
f α1, z git z ∣ ωit dz,

(A4)

where z is assumed to be distributed git z ∣ ωit , with area- and week-level parameters for that 

distribution ωit; and where Ai represents area i. For a discrete individual-level covariate, zk

with K levels, the aggregate risk implied by the individual-level model is

λit
AR = eα0 ∑

k = 1

K
f α1, zk git zk ∣ ωit .

(A5)

In other words, the consistent aggregated risk is found by averaging the individual-level risk 

over the distribution of the covariate within area i and week t.

However, when only the aggregated data is available, analyses are limited to modeling total 

number of cases Y it = ∑j = 1
ni Y itj, and the area- and week-specific average exposures, Zit. It is 

tempting to fit the naïve ecological regression model

E Y it ∣ yi, t − 1 = exp β0 + β1zit yi, t − 1 + exp β2 ,

(A6)

where exp β1  is the relative risk of within-area infection associated with a one unit increase 

in the average exposure, Zit. Therefore, the naïve ecological model assumes the aggregate 

risk is consistent with the individual-level risk, λit
AR = exp β0 + β1zit .

Typically, the parameter estimates from (A6) will not be equal to those from implied 

aggregate model of (A3). The specific form of the implied aggregate risk will, therefore, 
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depend on the within-area distribution of that specific covariate. For example, if 

f α1, z = exp α1z  and we assume the within-area exposures are distributed normally, ie, 

z ∣ zit, σit
2 ∼ Normal zit, σit

2 , the aggregate risk is

λit
AR = exp α0 + α1zit + α1

2σit
2 /2 .

(A7)

Thus the consistent aggregate risk is a function of both the average exposure and the 

variability of that exposure within a given area. Notice that when either the mean and 

variance are independent or when there is no within-area variability of exposures, σit
2 = 0 for 

all areas i and weeks t, the naïve model (A6) is identical to the consistent aggregate model 

(A7). For further details in a noninfectious disease setting, see the works of Plummer and 

Clayton30 and Richardson et al.31 When the exposure is binary, implied aggregate risk is

λit
AR = eα0 1 − zit + ziteα1 ,

(A8)

where zit is the proportion of exposed individuals in area i and week t.

In the noninfectious disease setting, it is well understood that, when data are aggregated 

to the group level, individual-level associations can become distorted, leading to ecological 

bias. In some ways, it is misleading to refer to this difference as bias. Both the implied 

aggregate and naïve model will produce unbiased estimates of different parameters. The 

naïve model estimates the risk associated with the average exposure, whereas the implied 

aggregate model estimates the average of individual risks.32 The ‘bias’ comes from trying to 

estimate individual-level associations from a model that estimates average parameters.

APPENDIX B: ECOLOGICAL VACCINE MODEL IDENTIFIABILITY

We derive the ecological vaccine model when the vaccine’s mode of action is a combination 

of both leaky and all-or-none. Following the development in Section 3, we assume that a 

vaccine fails with probability θ and, when it takes, reduces risk of infection by ϕ. Individuals 

will fit into one of three groups: unvaccinated, failed vaccinated, and vaccinated subscripted 

by u, f, and v, respectively. Let x be the proportion of vaccinated individuals in a fully 

susceptible population of size N. Hence, the initial susceptible population will be

Su0 = (1 − x)N, Sf0 = (1 − θ)xN, Sv0 = θxN .

The force of infection for each group is defined as

λut
† = λt

†, λft
† = λt

†, λvt
† = (1 − ϕ)λt

†.

Together, these define disease progression
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Y u, t + 1 ∣ λut
† ∼ Binomial Sut, 1 − e−λt

†
,

Y f, t + 1 ∣ λut
† ∼ Binomial Sft, 1 − e−λt

†
,

Y v, t + 1 ∣ λut
† ∼ Binomial Svt, 1 − e−(1 − ϕ)λt

†
,

where Sgt = Sg0 − ∑s = 1
t Y gs, for g = u, f, v . Furthermore, the aggregated model is a 

convolution of the binomials (and unvaccinated and failed vaccinated groups can be 

combined into a single group). When the binomial distributions can be approximated by 

Poisson distributions, this implies

Y t + 1 ∣ λt
† ∼ Poisson Sut + Sft 1 − e−λt

†
+ Svt1 − e−(1 − ϕ)λt

†
.

The Taylor approximation simplifies the above, ie,

Y t + 1 ∣ λt
† ∼ Poisson Sut + Sft + (1 − ϕ)Svt λt

† .

Moreover, when the number of infections is negligible, so that the number of susceptibles is 

approximately the initially susceptible population, we arrive at the ecological vaccine model

Y t + 1 ∣ λt
† ∼ Poisson (1 − ϕθx)Nλt

† .

(B1)

Notice that, in the above, the specific modes of vaccine action (all-or-none or leaky) cannot 

be identified with aggregate data.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF THE ECOLOGICAL VACCINE 

MODEL

Under the same conditions as the simulations in Section 4.2, we considered the results 

for 10 years’ worth of data. In Figure C1, we present estimates from the fully observed 

all-or-none and leaky models, along with estimates from the ecological vaccine model and 

the epidemic-endemic model. We see that the estimates for the fully observed models, as 

well as the ecological vaccine models are much closer to the true parameter values compared 

to the previous simulations, which used only 3 years of weekly data. With long time series, 

the ecological vaccine model provides unbiased estimates for all model parameters.
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APPENDIX D: ADDITIONAL RESULTS FROM MEASLES ANALYSIS

Table D1 presents the total number of measles cases and the estimates of vaccination 

coverage for the 16 states of Germany.

In Figure D3, we plot a histogram of posterior samples of ϕ along with the prior Beta(10, 

2.5) curve. The posterior is similar to the prior, suggesting that there is little information 

about the vaccine effect in this data. As a sensitivity analysis, we fit the same hierarchical 

model with a noninformative prior for ϕ. The noninformative prior on ϕ results in slightly 

higher estimates for both αAR and ϕ, but each has substantially wider credible intervals. The 

prior choice for ϕ had little effect on the posterior estimates of the parameters in the endemic 

component of the model.

FIGURE D1. 
Maps of the random effect estimates for the autoregressive and endemic components in the 

ecological vaccine model A, AR random effects; B, EN random effects
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FIGURE D2. 
Comparison of autoregressive and endemic random effect estimates

FIGURE D3. 
Histogram of posterior samples of ϕ. The red curve is the prior distribution, Beta(10, 2.5)
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FIGURE C1. 
Estimates and 95% confidence intervals for the fully observed all-or-none and leaky models, 

the ecological vaccine model, and the epidemic-endemic model for 10 years’ worth of 

weekly data simulated assuming an all-or-none vaccine. Red horizontal lines denote the true 

parameter values. A, αAR; B, αEN; C, ϕ

TABLE D1

Number of measles cases and estimated vaccination coverage for the 16 German states from 

2005–2007. Estimated vaccination coverage for at least 1 or 2 MMR vaccinations and comes 

from the school entry examinations. Note this partially reproduces Table 1 from previous 

analyses12

Est. Coverage (%)

State (Abbreviation) Population Total Cases 1st dose 2nd dose

Baden-Wuerttemberg (BW) 10,738,753 162 90.0% 75.6%

Bavaria (BY) 12,492,658 606 88.7% 73.2%

Berlin (BE) 3,404,037 104 90.0% 80.2%

Brandenburg (BB) 2,547,772 18 93.9% 86.9%

Bremen (HB) 663,979 4 88.4% 71.9%

Hamburg (HH) 1,754,182 29 90.0% 80.5%

Hesse (HE) 6,075,359 336 91.2% 78.1%

Mecklenburg-Western Pomerania (MV) 1,693,754 4 93.6% 88.0%

Lower Saxony (NI) 7,982,685 144 91.2% 78.0%

North Rhine-Westphalia (NW) 18,028,745 2,036 89.7% 76.9%

Rhineland-Palatinate (RP) 4,052,860 85 90.8% 77.3%

Saarland (SL) 1,043,167 0 91.0% 81.8%

Saxony (SN) 4,249,774 18 94.3% 82.4%

Saxony-Anhalt (ST) 2,441,787 12 94.1% 86.5%

Schleswig-Holstein (SH) 2,834,254 89 89.9% 79.3%

Thuringia (TH) 2,311,140 8 94.8% 85.9%
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FIGURE 1. 
Summary of simulation results assessing simplifying assumptions. Average parameter 

estimates and intervals extending from the 2.5th and 97.5th percentile of estimates across 

simulations. Rows correspond to the parameter, columns to the true values of R0. The first 

row shows estimates of αAR; the second row depicts estimates of αEN. True parameter values 

are denoted by red lines A, R0=2.5; B, R0=1; C, R0=0.85
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FIGURE 2. 
Simulated epidemic curves for five populations, when there is (A) no vaccine effect, (B) an 

effective all-or-none vaccine, and (C) an effective leaky vaccine. Darker lines correspond to 

areas with lower vaccination coverage. Corresponding effective reproductive numbers R
are included with vaccination coverage xi  in the legend. A, No vaccine effect (ϕ= 0); B, 

All-or-none vaccine (ϕ= 0.8); C, Leaky vaccine (ϕ= 0.8)
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FIGURE 3. 
Summary of simulation results of partially vaccinated populations, assuming an all-or-none 
vaccine. Average estimates and intervals extending from the 2.5th and 97.5th percentile of 

estimates across simulations of (A) αAR, (B) αEN, and (C) ϕ for the fully observed all-or-none 

and leaky models, the ecological vaccine model, and the epidemic-endemic model. Red 

horizontal lines denote the true parameter values. A, αAR; B, αEN; C, ϕ
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FIGURE 4. 
Summary of simulation results of partially vaccinated populations, assuming an leaky 
vaccine. Average estimates and intervals extending from the 2.5th and 97.5th percentile of 

estimates across simulations of (A) αAR, (B) αEN, and (C) ϕ for the fully observed all-or-none 

and leaky models, the ecological vaccine model, and the epidemic-endemic model. Red 

horizontal lines denote the true parameter values. A, αAR; B, αEN; C, ϕ
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FIGURE 5. 
Total number of measles cases per 100 000 observed between 2005 and 2007 (A). Estimated 

vaccine coverage for at least 1 measles, mumps, and rubella (MMR) vaccination (B) and at 

least 2 MMR vaccinations (C) in 2006, based on data from examination of vaccination cards 

in school aged children. A, Cases per 100 000; B, At least 1 MMR vaccination; C, At least 2 

MMR vaccinations
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FIGURE 6. 
Estimated state-level autoregressive components. For the ecological vaccine model, posterior 

median and 95% credible intervals are presented from the Stan model fit
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FIGURE 7. 
Number of measles cases and prevalence by state and biweek from 2005 through 2007. The 

left axis indicates the total number of cases; the right axis indicates the prevalence per 100 

000 people. Estimated MMR vaccine coverage is included in the upper left corner of each 

plot. Fitted values from the ecological vaccine model are included in red. Estimated effective 

reproductive numbers (R) is included in the upper right corner
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TABLE 1

Summary of the all-or-none and leaky vaccine models and the assumptions for the ecological vaccine model. 

N is the total population; x denotes the proportion of the population vaccinated (assumed constant over time); 

ϕ is the vaccine effect on susceptibility; Sut and Svt denote the number of unvaccinated and vaccinated 

susceptibles at time t; Y ut and Y vt denote new cases in time t among unvaccinated and vaccinated; and λt
† is a 

generic force of infection

All-or-none Leaky

Initial susceptible population

Su0(ϕ) = (1 − x)N Su0 = (1 − x)N
Sv0(ϕ) = (1 − ϕ)xN Sy0 = xN

Force of infection

λut
† = λt

† λut
† = λt

†

λvt
† = λt

† λvt
† = (1 − ϕ)λt

†

Progression

 Y u, t + 1 ∣ λut
† Bin Sut(ϕ), 1 − e−λt

† Bin Sut, 1 − e−λt
†

 Y v, t + 1 ∣ λvt
† Bin Svt(ϕ), 1 − e−λt

† Bin Svt, 1 − e−(1 − ϕ)λt
†

Implied aggregate model

 Y t + 1 ∣ λt
† Bin St(ϕ), 1 − e−λt

† Convolution of binomials

Simplifying assumptions

Poisson's approximate binomials

Poi St(ϕ) 1 − e−λt
† Poi Sut 1 − e−λt

† + Svt 1 − e−(1 − ϕ)λt
†

Taylor approximation

Poi St(ϕ)λt
† Poi Sut + (1 − ϕ)Svt λt

†

Negligible number of infections

St(ϕ) ≈ (1 − ϕx)N Sut ≈ (1 − x)N, Svt ≈ xN
Ecological vaccine model

Y t + 1 ∣ λt
†, ϕ ∼ Poisson λt

†(1 − ϕx)N
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TABLE 2

Posterior medians and 95% credible intervals for the parameters of the ecological model for the measles data

Median 2.5% 97.5%

αAR 0.91 −0.26 1.66

ϕ 0.92 0.66 0.99

αEN 3.53 2.54 4.16

γ 0.71 0.55 0.86

δ −0.20 −0.36 −0.04

σAR 0.66 0.28 1.61

σEN 0.52 0.28 0.96

R0 2.49 0.77 5.24
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