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ABSTRACT Polygonatum sibiricum polysaccharide
(PSP) has demonstrated diverse medicinal properties,
extensively researched for human applications. None-
theless, there is a lack of studies investigating the
potential advantages of PSP in poultry farming. The
present study investigated the impact of incorporating
PSP into broiler diets on their growth performance,
meat quality, blood metabolites, antioxidative status,
and ileal histomorphology. Two hundred and forty-one-
day-old male Ross-308 broiler chicks (44.98 § 0.79 g)
were randomly assigned to 3 experimental groups, with
8 replicates of 10 birds each. The birds were fed diets
supplemented with PSP at 0, 400, and 800 mg/kg (con-
trol, PSP400, and PSP800, respectively). The results
revealed a linear (P > 0.05) improvement in body
weight gain, European production efficiency index, and
feed conversion ratio during the grower (22−35 d) and
overall periods (1−35 d). The pH levels in the ingluvies,
ileum, and cecum exhibited a linear reduction (P >
0.05) in the PSP800 group at d 21 and d 35, respec-
tively. Villus height and crypt depth were increased in
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the PSP400 and PSP800 groups compared to the con-
trol group. PSP400 and PSP800 groups exhibited
decreased hydrogen peroxide (H2O2) levels and
increased total antioxidant capacity (TAC) at 21 d,
while at 35 d, TAC and sulfhydryl concentrations were
elevated, and H2O2 was reduced only in the PSP800
group compared to the untreated one. No significant
variations between the groups at the phylum and genus
levels were observed, with Bacteroidetes and Firmi-
cutes being the dominant phyla. However, PSP supple-
mentation notably augmented Firmicutes and
Verrucomicrobiota while reducing Euryarchaeota and
Proteobacteria. At the genus level, there was an
increase in Akkermansia, Alistipes, CHKCI001, Erysi-
pelatoclostridium, and a decrease in Methanobrevi-
bacter. Conclusively, incorporating PSP into broiler
diets, particularly at a dosage of 800 mg/kg, improved
growth performance, antioxidant capacity, and intesti-
nal architecture and resulted in alterations in cecal
microbiota without discernible impacts on digestive
function and meat quality criteria.
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INTRODUCTION

Eminent progress has been made in enhancing produc-
tivity in modern intensive poultry production. Nonethe-
less, the utilization of antibiotic-growth-promoters
(AGP), encompassing antibiotics and chemotherapeutic
substances in poultry diets to boost productivity and
combat diseases, has raised concerns about food and
human safety (Castanon, 2007). Consequences such as
drug residues and the development of resistant bacteria
have been identified as substantial outcomes of these
practices (Abdel-Moneim et al., 2020c). Consequently,
the poultry industry is undergoing a transformation
towards more sustainable and responsible approaches
to meet the growing customer preference for safe, nutri-
tious, and eco-friendly products (Abd El-Moneim et al.,
2020; Chen et al., 2023; Elbaz et al., 2023; Saleh et al.,
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Table 1. Ingredient and composition of the basal diet.

Items Starter (1−21 d) Grower (22−35 d)

Ingredients (g/kg)
Corn 514.2 566.6
Corn starch 10.0 10.0
Soybean meal 386.5 341.0
Fish meal 35.0 20.0
Soybean oil 30.0 35.0
Dicalcium phosphate 9.5 11.0
Ground limestone 9.0 10.5
Iodine salt 2.5 2.5
DL-methionine 0.9 1.0
Vitamin-mineral premix1 2.4 2.4

Nutrient content2

Crude protein 231.2 204.7
AME (MJ/kg) 11.35 12.46
Methionine 4.8 4.3
Lysine 12.5 11.4
Methionine + cysteine 8.4 7.6
Non-phytate phosphorus 4.2 3.7
Calcium 10.3 8.8
1vitamin-mineral premix provided per kg diet: IU: vit. A 4,000,000, vit.

D3 500,000; g: vit. E 16.7, vit. K 0.67, vit. B1 0.67, vit. B2 2, vit. B6 67, vit.
B12 0.004, nicotinic acid 16.7, pantothenic acid 6.67, biotin 0.07, folic acid
1.67, choline chloride 400, Zn 23.3, Mn 10, Fe 25, Cu 1.67, I 0.25, Se 0.033,
Mg 133.4
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2023; Chen et al., 2024b). The transition from AGPs to
alternative solutions has been motivated by concerns
regarding resistance to antibiotics, as well as the
increasing consumers’ preference for poultry products
free from antibiotics. This shift is not limited to specific
regions, as the European Union banned the use of
AGPs in poultry feed in 2006, setting an example for
other countries to follow (Castanon, 2007).

Alternative substances, including prebiotics (Abd El-
Hack et al., 2021; Shehata et al., 2022), probiotics (Abd
El-Hack et al., 2020; Abdel-Moneim et al., 2020a), essen-
tial oils (Abd El-Hack et al., 2020; Elbaz et al., 2022b),
traditional Chinese medicine (TCM) (Dosoky et al.,
2021; Yang et al., 2023), and herbal extracts (Elbaz et
al., 2021; Mesalam et al., 2021; Ebeid et al., 2023; Chen
et al., 2024a), as well as improved management and
nutritional practices (Abdel-Moneim et al., 2021; Elbaz
et al., 2022a; Siddiqui et al., 2022; Abdel-Moneim et al.,
2023), offer avenues to improve bird health and produc-
tivity, obviating the necessity for AGPs. Traditional
Chinese medicine and phytochemicals, in particular,
have emerged as promising substitutes owing to their
plant-derived compounds with immunomodulatory,
antioxidant, and antimicrobial attributes. Integrating
TCM in poultry production aligns with eco-friendly
practices and disease prevention. Recent research under-
scores the advantageous effects of plant-derived bioac-
tives, particularly polysaccharides, in enhancing poultry
growth, meat quality, and carcass characteristics (Wang
et al., 2022b; Yang et al., 2023). Extensive research
focused on polysaccharides commonly found in TCM
plants and their extracts, which are rich in polysacchar-
ides, have gained attention as AGP alternatives because
of their multifunctionality, low toxicity, and limited
adverse effects (Shan et al., 2019; Abdel-Moneim et al.,
2020b; Sun et al., 2022).

Polygonatum sibiricum polysaccharide (PSP) repre-
sents a recently identified water-soluble compound
extracted from the rhizome of Polygonatum. It is primar-
ily composed of galactose and rhamnose (Liu et al.,
2018a). This compound has been shown to possess
medicinal efficacy by enhancing immune function (Peng
et al., 2018), as well as showcasing antitumor (Peng et
al., 2018), antiviral and antiinflammatory (Lu et al.,
2013), and antioxidant properties (Jiang et al., 2013).
Studies indicated that PSP may have the potential in
addressing conditions like diabetes, osteoporosis, acting
as a neuroprotective agent, and alleviating inflamma-
tory disorders (Zhang et al., 2015; Wang et al., 2017). In
a study conducted by Shu et al. (2021), the authors
underscored the significance of polysaccharides derived
from Polygonatum sibiricum in mitigating cyclophos-
phamide-caused immunosuppression in chickens, sug-
gesting its potential immunostimulant activity.
However, while the beneficial effects of PSP have been
extensively studied in traditional human medicine, lim-
ited research exists on its potential application in poul-
try farming.
Presently, there is a lack of research evaluating the
impact of dietary supplementation of PSP in broiler
chickens. Therefore, the objective of this study was to
explore the influence of PSP dietary inclusion on the
growth, meat quality, antioxidative status, digestive
physiology, and cecal microbiota of broiler chickens.
MATERIAL AND METHODS

Ethics Statement

The procedures of the present study were reviewed
and approved by the Institutional Animal Care and Use
Committee of Anhui Science and Technology Univer-
sity, Fengyang, Anhui Province in China (ECASTU-
2019-P03).
PSP Composition Analysis

The percentages of crude protein, crude ash, ether
extract, neutral detergent fiber, acid detergent fiber, cal-
cium, and phosphorus in PSP were measured as reported
by da Teixeira et al. (2018). The phenol-sulfuric acid
method was used to assess the polysaccharides content in
PSP (Masuko et al., 2005), which was purchased from
Shaanxi Hannah Biotechnology Co., Ltd. (Xi’an, China).
Experimental Design and Bird Management

Two hundred and forty-one-day-old male Ross-308
broiler chicks (44.98 § 0.79 g) were randomly assigned
into 3 experimental groups, with 8 replicates of 10 birds
each. The chicks were supplied by Bengbu Dacheng
Food Co., Ltd.’s hatchery (Anhui, China). They were
2Calculated according to NRC (1994).



POLYGONATUM SIBIRICUM POLYSACCHARIDE IN BROILER DIETS 3
provided with a starter (1−21 d) and grower (22−35 d)
mash corn-soybean meal basal diet (Table 1) with ad
libitum access to feed and fresh water. PSP was added
to the diets at levels of 0, 400, and 800 mg/kg, respec-
tively (control, PSP400, and PSP800, respectively). The
chicks were reared in floor cages with a 23L:1D lighting
program under controlled environmental conditions.
For the first 3 d of the experiment, the indoor tempera-
ture was maintained at 35°C and gradually decreased to
20°C with a relative humidity of 58% till the end of the
trial.
Growth Performance

On a pen basis, body weight and feed intake (FI) were
measured on d 21 and 35. Body weight gain (BWG),
European production efficiency index (EPEI), and feed
conversion ratio (FCR) were calculated from the
obtained data for each experimental phase as mentioned
by Abdel-Moneim et al. (2022).
The Intestinal Morphology

At the end of the experiment, eight chicks per
group were randomly chosen for blood and meat
sampling. Birds were fasted for 12 h and then man-
ually slaughtered. Following slaughter, the intestinal
segments (duodenum, jejunum, ileum, and cecum)
were gathered and weighed, and their length was
measured. The boundary between the jejunum and
ileum was determined by the presence of the yolk
pedicle.
Gastrointestinal pH

On d 21 and 35, gastrointestinal organs, including
proventriculus, ingluvies, gizzard, jejunum, duodenum,
cecum, and ileum, were dissected. Subsequently, a small
incision was made at the midpoint of each organ, and an
electrode was promptly inserted into the organ content
to measure the pH value using a pH meter (Shenzhen
Jige Electromechanical Equipment Co., Ltd., Shenzhen,
China).
Histomorphometric Evaluation

Ileal samples were collected (1.5 cm from the mid-
ileum), were flushed with 0.9% saline, and were fixed
in a 10% formalin solution. Tissue sections, 4 mm
thick, were obtained from paraffin-embedded tissue
blocks and were stained with hematoxylin and eosin
following the protocol of Bancroft and Gamble
(2002). Stained tissues were observed using a light
microscope (Leica DM300 with Leica FLEXA-
CAMC1), and representative fields were photo-
graphed for morphometric analysis using Leica LAS
X dedicated software. Measurements of villus height
(VH), and crypt depth (CD) were obtained by
averaging data from 10 randomly chosen sections in
each sample, and VH/CD ratio was calculated.
Antioxidative Status

Blood samples were collected from the wing vein at 21
d of age and after slaughtering at 35 d of age. Samples
were then centrifuged for 20 min at 5℃ at 3,500 £ g and
the sera were separated and stored at -80℃. The serum
concentrations of total antioxidant capacity (TAC),
sulfhydryl, and hydrogen peroxide (H2O2) were colori-
metrically measured following the manufacturing
instructions of the commercial kits (NJIB, Jiangsu,
China).
Meat Quality

Following the procedure documented by Hou et al.
(2020), meat pH and color were determined. In brief,
immediately after slaughter, the physical characteristics
of pectoral and leg muscle samples were evaluated. Meat
pH was measured by totally embedding the electrodes in
the samples to ensure entire contact with the tissue fluid.
The pH values were measured using a pH meter (Shenz-
hen Jige Electromechanical Equipment Co., Ltd., Shenz-
hen, China) and were recorded after the readings had
stabilized. The CR-10 Plus chromameter (Zibo Diye
Instrument Equipment Co., Ltd., Zibo, China) was used
to measure color lightness (L*), yellowness (b*), and
redness (a*) of pectoral and leg muscle samples.
In order to calculate drip loss (%), in triplicate, pecto-

ral, and leg muscle meat samples were suspended in
sealed plastic bags and stored at 4℃ for 24 h. The differ-
ences between the initial and final weights of the samples
were calculated and expressed as relative weights to the
initial weight. The calculation of cooking loss (%) was
conducted in accordance with the procedure proposed
by Honikel (1998). In brief, fresh slices of muscle samples
measuring 4 £ 3 £ 1 cm3 were weighed, positioned
within sealed plastic bags, and subjected to cooking until
an internal temperature of 70°C was attained, which
took approximately 15 min in a water bath set at 80°C.
Subsequently, the slices were cooled in water, dried, and
reweighed. The percentage of cooking loss was deter-
mined using the formula: (initial weight - final weight)/
initial weight £ 100%.
Cecal Microbiota Analysis

On d 35, cecum samples from 5 randomly selected
birds from both the control and PSP800 groups (the
highest level of the supplement used in the present
study) were quickly collected, tightly tied with a thin
thread, and stored in a -80℃ freezer for sequencing.
Microbial DNA was extracted from the cecum samples
using the HiPure Soil DNA Kits (Magen, Guangzhou,
China), following the manufacturer’s guidelines. The
16S rDNA target regions of the ribosomal RNA gene
were PCR-amplified using a 50 mL mixture comprising



Table 2. The composition of Polygonatum sibiricum polysaccha-
ride.

Ingredients Content (%)

Polysaccharide 81.95
Crude protein 1.31
Ether extract 1.86
Neutral detergent fiber 3.44
Acid detergent fiber 3.12
Crude ash 1.78
Calcium 0.42
Phosphorus 0.24
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10 mL of 5 £ Q5@ Reaction Buffer, 10 mL of 5 £ Q5@
High GC Enhancer, 1.5 mL of 2.5 mM dNTPs, 1.5 mL of
each primer (10 mM), 0.2 mL of Q5@ High-Fidelity
DNA Polymerase, and 50 ng of template DNA. PCR
reagents were sourced from New England Biolabs, USA.
The purified amplicons were pooled equimolarly and
subjected to paired-end sequenced (PE250) on an Illu-
mina platform following standardized protocols. The
V3-V4 hypervariable region of the bacterial 16S rRNA
gene was specifically PCR-amplified using the forward
primer 341F: 50-CCTACGGGNGGCWGCAG-30 and
the reverse primer 806R: 50-GGACTACHVGGGTATC-
TAAT-30.
Reads Filtering and Assembly and Raw Tag
Filtering

To obtain high-quality clean reads, we applied filter-
ing steps to the raw reads using FASTP (version 0.18.0)
based on the following criteria: 1) Removal of reads con-
taining more than 10% of unknown nucleotides (N); 2)
Discarding reads with less than 50% of bases with qual-
ity (Q-value) above 20; 3) Elimination of adapter con-
tamination. Paired-end clean reads were merged into
raw tags using FLASH (version 1.2.11) with a minimum
overlap of 10 bp and a mismatch error rate of 2%. Fur-
thermore, for obtaining high-quality clean tags, we per-
formed additional filtering on the raw tags using the
following standards: 1) Trimming raw tags starting
from the first low-quality base site (default quality
threshold is ≤3) until the desired length (default length
is 3 bp); 2) Filtering out tags with a continuous high-
quality base length of less than 75% of the tag length.
Chimera Removal and Community
Composition Analysis

The clean tags were then clustered into operational
taxonomic units (OTU) with a similarity threshold of
97% using the UPARSE (version 9.2.64) pipeline. Chi-
meric tags were removed using the UCHIME algorithm
while retaining the effective tags for subsequent analysis.
Within each cluster, the tag sequence with the highest
abundance was selected as the representative sequence.
The abundance of each taxonomic group was visualized
using Krona (version 2.6). Circular layout representa-
tions depicting species abundance were generated using
Circus (version 0.69-3). Additionally, a heatmap illus-
trating species abundance was created within the R proj-
ect using the heatmap package (version 1.0.12).
Function Prediction

To predict the function of the OTUs/ASVs, we con-
ducted a KEGG pathway analysis using Tax4Fun (ver-
sion 1.0). To classify the bacterial microbiome
phenotypes, BugBase was employed. The ecological
functional profiles of bacteria were generated using the
FAPROTAX database. For the functional grouping of
fungi, FUNGuild (version 1.0) was utilized. Differences
in functionality between groups were evaluated using
Welch’s t-test within the R project Vegan package (ver-
sion 2.5.3).
Statistical Analysis

The gathered data were statistically analyzed by One-
way ANOVA after conducting the tests of normality
and the homogeneity of variance using SPSS software
(version 19.0; SPSS Inc., IL). The statistical significance
among mean differences was determined at P < 0.05
using Tukey’s multiple comparison test.
RESULTS

Composition of PSP

Data in Table 2 represent the chemical composition of
PSP. Crude protein, crude ash, acid detergent fiber, neu-
tral detergent fiber, calcium, phosphorus, ether extract,
and polysaccharide levels of PSP were 1.31,1.78, 3.12,
3.44, 0.42, 0.24, 1.86, and 81.95%, respectively.
Growth Performance

Table 3 presents the impact of dietary PSP incorpo-
ration on the growth performance of broiler chicks.
BWG, FI, FCR, and EPEI were not affected by PSP
treatment during the starter period. However, all the
aforementioned parameters, except FI, were linearly
improved (P > 0.05) in the PSP400 and PSP800 groups
during the grower period (22−35 d). Throughout the
overall period, EPEI, FCR, and BWG were linearly
enhanced (P > 0.05) in the PSP800 group and numeri-
cally in the PSP400 group, while FI remained unaf-
fected.
Gut Morphology

Table 4 presents the influence of adding PSP to the
diet on the gut structure of broiler chickens at 21 and 35
d old. The incorporation of PSP did not affect the pro-
portional length and weight of the jejunum, duodenum,
ileum, or cecum at either age.



Table 3. Effect of dietary Polygonatum sibiricum polysaccharide (PSP) on growth performance of broiler chickens from 1 to 35 d of age.

Parameter1
Dietary PSP level, mg/kg

SEM2

P-values

0 400 800 PSP Linear Quadratic

BWG, g.bird/d
1−21 d 32.88 32.36 34.09 0.353 0.116 0.146 0.122
22−35 d 65.46b 70.09a 69.68a 0.715 0.003 0.004 0.029
1−35 d 45.91b 47.45ab 48.33a 0.412 0.038 0.013 0.652
FI, g.bird/d
1−21 d 46.89 47.20 47.05 0.118 0.599 0.592 0.399
22−35 d 129.4 128.4 129.5 0.346 0.357 0.848 0.163
1−35 d 79.88 79.66 80.04 0.176 0.709 0.722 0.463
FCR, g feed.g/gain
1−21 d 1.427 1.460 1.382 0.016 0.134 0.234 0.090
22−35 d 1.976a 1.833b 1.861b 0.022 0.008 0.013 0.027
1−35 d 1.740a 1.680ab 1.658b 0.016 0.010 0.041 0.555
EPEI
1−21 d 245.8 237.0 262.8 5.335 0.130 0.180 0.119
22−35 d 597.4b 666.1a 667.8a 12.74 0.021 0.014 0.139
1−35 d 271.4b 290.7ab 299.8a 5.281 0.049 0.026 0.610

Means in the same row with different superscripts are significantly different.
1BWG: body weight gain; FI: feed intake; FCR: feed conversion ratio, EPEI: European production efficiency index.
2SEM: standard error of means. Values with different superscript letters are statistically different (P < 0.05).

POLYGONATUM SIBIRICUM POLYSACCHARIDE IN BROILER DIETS 5
pH of the Digestive Organs

As presented in Table 5, the introduction of PSP
resulted in a linear decrease (P < 0.05) in the pH levels
of the ingluvies at d 21 and in the ileum and cecum at d
35 within the PSP800 group compared to the control.
However, there were no notable changes in the pH of the
other digestive organs at either age.
Table 4. Effect of dietary Polygonatum sibiricum polysaccharide (PS

Parameter

Dietary PSP level, mg/kg

0 400 800

21 d
Intestinal segments’ relative weight, %
Duodenum 17.81 19.79 19.47
Jejunum 39.32 38.81 39.15
Ileum 33.53 31.59 32.10
Cecum 9.346 9.807 9.277
Total, g 36.07 34.43 35.63
Intestinal segments’ relative length, %
Duodenum 14.94 14.75 15.26
Jejunum 36.27 36.34 36.65
Ileum 36.54 36.92 36.44
Cecum 12.25 12.00 11.66
Total, cm 161.4 161.5 157.7
Density 0.224 0.213 0.182
35 d
Intestinal segments’ relative weight, %
Duodenum 16.61 16.34 16.23
Jejunum 37.53 35.89 36.64
Ileum 35.90 36.71 36.52
Cecum 9.963 11.06 10.62
Total, g 45.55 45.21 45.12
Intestinal segments’ relative length, %
Duodenum 13.13 13.32 13.61
Jejunum 35.16 35.23 35.71
Ileum 36.05 35.82 34.90
Cecum 15.66 15.63 15.78
Total, cm 182.2 181.5 182.0
Density 0.250 0.249 0.248

Means in the same row with different superscripts are significantly different
1SEM: standard error of means, Density = total weight/ total length ratio
Histomorphometric Evaluation

The impact of dietary PSP on the ileal histomorph-
ometry of broilers at 35 d of age is depicted in
Figure 1. VH and CD were linearly increased (P <
0.05) in the PSP400 and PSP800 groups compared to
the control. The VH/CD ratio was not significantly
affected.
P) on gut morphology of broiler chickens at 21 and 35 d of age.

SEM1

P-values

PSP Linear Quadratic

0.511 0.249 0.192 0.291
0.872 0.975 0.941 0.836
0.770 0.603 0.481 0.483
0.343 0.814 0.940 0.533
0.783 0.706 0.830 0.430

0.280 0.779 0.665 0.585
0.360 0.915 0.700 0.885
0.431 0.905 0.927 0.668
0.370 0.831 0.553 0.959
1.731 0.625 0.412 0.623
0.004 0.562 0.866 0.298

0.246 0.830 0.561 0.890
0.417 0.297 0.391 0.193
0.381 0.697 0.540 0.567
0.301 0.347 0.386 0.243
0.373 0.898 0.666 0.882

0.197 0.646 0.364 0.904
0.207 0.521 0.301 0.655
0.309 0.294 0.145 0.600
0.255 0.976 0.868 0.887
1.282 0.977 0.956 0.837
0.003 0.961 0.784 0.975



Table 5. Effect of dietary Polygonatum sibiricum polysaccharide (PSP) on digestive organs’ pH of broiler chickens at 21 and 35 d of
age.

Parameter

Dietary PSP level, mg/kg

SEM1

P-values

0 400 800 PSP Linear Quadratic

21 d
Ingluvies 6.292a 6.128ab 5.724b 0.155 0.030 0.049 0.718
Proventriculus 4.458 4.558 4.384 0.120 0.858 0.817 0.623
Gizzard 2.618 2.718 2.626 0.074 0.849 0.968 0.577
Duodenum 6.146 6.060 5.952 0.086 0.686 0.633 0.478
Jejunum 6.424 6.336 6.214 0.088 0.656 0.370 0.932
Ileum 6.242 6.196 6.064 0.078 0.657 0.518 0.526
Cecum 7.272 7.250 7.096 0.092 0.728 0.473 0.754
35 d
Ingluvies 6.220 6.290 6.206 0.050 0.783 0.592 0.667
Proventriculus 4.310 4.204 4.148 0.115 0.863 0.731 0.684
Gizzard 3.042 3.106 3.052 0.051 0.878 0.642 0.853
Duodenum 5.986 6.038 5.960 0.053 0.849 0.713 0.671
Jejunum 6.252 6.422 6.282 0.059 0.488 0.270 0.673
Ileum 6.772a 6.364ab 6.100b 0.114 0.039 0.270 0.673
Cecum 6.668a 6.326ab 6.084b 0.121 0.037 0.050 0.834

Means in the same row with different superscripts are significantly different
1SEM: standard error of means.
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Figure 1. Effect of dietary Polygonatum sibiricum polysaccharide (PSP) on ileal histomorphometry of broiler chickens at 35 d of age. PSP400=
400 mg PSP/kg diet, PSP800 = 800 mg PSP/kg diet. Data presented as mean values with their standard errors. Values with different superscript
letters are statistically different (P < 0.05).
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Figure 2. Effect of dietary Polygonatum sibiricum polysaccharide (PSP) on oxidative status in the serum of broiler chickens at 21 d of age.
PSP400 = 400 mg PSP/kg diet, PSP800 = 800 mg PSP/kg diet. Data presented as mean values with their standard errors. Values with different
superscript letters are statistically different (P < 0.05).
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Antioxidative Status

Figures 2 and 3 illustrate the impacts of dietary PSP
incorporation on the antioxidant status of broilers at 21
and 35 d of age. Dietary supplementation of PSP at 400
and 800 mg/kg reduced (P < 0.05) serum level of H2O2
and increased the concentration of TAC (P < 0.05) at
21 d of age, while sulfhydryl content was not affected.
However, at 35 d of age, TAC and sulfhydryl levels were
elevated (P < 0.05) and H2O2 content was reduced (P <
0.05) only in the PSP800 group compared to the con-
trol.
Meat Quality

Tables 6 and 7 show the impacts of the inclusion of
PSP in broilers’ diets on meat quality criteria of pectoral
and leg muscles at 35 d of age. PSP supplementation did
not exert a significant effect on the pH45, pH24, color,
cooking, and drip losses of the collected samples com-
pared to the unsupplemented group. However, there was
a linear decrease (P < 0.05) observed in the yellowness
(b*) of the meat from birds in the PSP800 group com-
pared to the control.
Microbiota Dynamics

To assess the impact of PSP supplementation on cae-
cal microbiota composition, 16S rDNA sequencing was
performed on the cecal contents of both the control and
PSP800 groups. The average number of raw reads was
109,518 and 121,169, while the average number of clean
data was 109,440 and 121,079 for the PSP800 and con-
trol groups, respectively. Beta diversity indexes were cal-
culated at the phylum and genus levels to assess
differences in species diversity and richness differences
between the treated and control groups. The results
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Figure 3. Effect of dietary Polygonatum sibiricum polysaccharide (PSP) on oxidative status in the serum of broiler chickens at 35 d of age.
PSP400 = 400 mg PSP/kg diet, PSP800= 800 mg PSP/kg diet. Data presented as mean values with their standard errors. Values with different
superscript letters are statistically different (P < 0.05).

8 YANG ET AL.
revealed no significant variations in observed species
between the groups (Figures 4A and 4B; P > 0.05).
Analysis of microbial abundance at the phylum and
genus levels revealed that Bacteroidetes and Firmicutes
were the dominant phyla, accounting for 86.99% and
79.32% of detected microbes in the PSP800 and control
Table 6. Effect of dietary Polygonatum sibiricum polysaccharide (PS
at 35 d of age.

Parameter

Dietary PSP level, mg/kg

0 400 800

L45 min 52.48 52.22 51.72
a45 min 11.56 11.95 12.27
b45 min 7.553 7.429 7.175
pH45 min 7.126 7.036 6.808
pH24 h 6.306 6.158 6.172
Drip loss24 h/% 4.650 4.970 5.108
Cooking loss/% 23.01 22.56 22.53

Means in the same row with different superscripts are significantly different,
1SEM: standard error of means.
groups, respectively (Figure 4C). Moreover, PSP supple-
mentation notably augmented Firmicutes and Verruco-
microbiota while reduced Euryarchaeota and
Proteobacteria microbes (Figure 4C). At the genus level,
an increase in Akkermansia, Alistipes, CHKCI001, Ery-
sipelatoclostridium, and a decrease in
P) on meat quality traits of the pectoral muscle of broiler chickens

SEM1

P-values

PSP Linear Quadratic

0.139 0.062 0.053 0.650
0.163 0.206 0.082 0.912
0.162 0.658 0.379 0.860
0.119 0.564 0.309 0.794
0.062 0.597 0.411 0.564
0.120 0.298 0.137 0.721
0.253 0.719 0.479 0.713



Table 7. Effect of dietary Polygonatum sibiricum polysaccharide (PSP) on meat quality traits of leg muscle of broiler chickens at 35 d of
age.

Parameter

Dietary PSP level, mg/kg

SEM1

P-values

0 400 800 PSP Linear Quadratic

L45 min 52.83 52.46 52.83 0.170 0.626 0.993 0.343
a45 min 11.57 11.63 11.92 0.115 0.439 0.827 0.215
b45 min 7.310a 7.107ab 7.017b 0.171 0.049 0.047 0.267
pH45 min 7.108 7.001 7.082 0.130 0.948 0.936 0.757
pH24 h 6.646 6.332 6.208 0.148 0.492 0.257 0.771
Drip loss24 h/% 4.753 4.857 4.928 0.213 0.358 0.258 0.852
Cooking loss/% 22.87 22.69 22.84 0.189 0.846 0.587 0.729

Means in the same row with different superscripts are significantly different,
1SEM: standard error of means.
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Methanobrevibacter were found (Figure 4D). Linear dis-
criminant analysis (LDA) identified 41 high-dimensional
biomarkers, with LDA scores >2.5 from phylum to spe-
cies, illustrating distinct bacterial abundance between
the 2 groups (Figure 5). Notably, Bacteria, CHKCI001,
and Rikenellaceae were prominent in the PSP800 group,
whereas Methanobrevibacter, Euryarchaeota, Methano-
bacteriaceae, Methanobacteria, and Methanobacteriales
prevailed in the control group.

Functional and phenotypic abundance analyses were
conducted to understand the pathways associated with
microorganisms with varying abundance in the 2 groups.
Tax4Fun functional abundance analysis (Figure 5A)
revealed that these microorganisms were associated with
various pathways, including ABC transporters, nitrogen
metabolism, 2-component systems, methane metabo-
lism, peptidoglycan biosynthesis, arginine and proline
metabolism, cell cycle (caulobacter), cysteine, amino
sugar, nucleotide sugar, and methionine metabolism,
among others (Figure 6A). Additionally, PICRUSt2
functional abundance analysis revealed the involvement
of these microorganisms in transcription, energy metab-
olism, amino acid metabolism, membrane transport, car-
bohydrate metabolism, signal transduction, lipid,
cofactor, and vitamin metabolism, among others
(Figure 6B). Furthermore, BugBase phenotypic abun-
dance analysis demonstrated associations of these micro-
organisms with traits such as aerobic nature, negative
biofilm formation, potentially pathogenic anaerobic fea-
tures, stress tolerance, facultative anaerobic gram-posi-
tive characteristics, and the presence of mobile genetic
elements (Figure 6C).
DISCUSSION

The utilization of plant-derived polysaccharides for
enhancing the productivity and general health of
broilers has gained traction due to their varied biological
activities, including hypoglycemic benefits, spanning
improvements in immunity, antioxidant capacity, anti-
viral, antitumor, and anti-inflammatory properties
(Wang et al., 2022b; Yang et al., 2023). The bioactive
potential of polysaccharides derived from Yingshan
yunwu, Radix rehmanniae praeparata, Lycium bar-
barum, Astragalus membranaceus, Camellia oleifera,
and Ficus carica has been investigated (Liu et al.,
2021b; Shu et al., 2021; Yang et al., 2023). The findings
of Liu et al. (2021b) highlighted that dietary incorpo-
ration of Yingshan yunwu tea-polysaccharides improved
broilers’ gut health and microbiota, meat quality, and
immunity. Moreover, Shu et al. (2021) reported the
immunostimulant potential of polysaccharides derived
from Polygonatum sibiricum in safeguarding cyclophos-
phamide-immunosuppressed chickens. However, to the
best of our knowledge, there is a dearth of research inves-
tigating the effects of dietary PSP incorporation as an
AGP alternative on broiler chickens.
In the present study, dietary PSP incorporation

improved the growth performance of broilers during the
grower and overall period. The improvement in broiler
growth might attributed to its capability to stimulate
the expression of protease, amylase, and lipase (Long et
al., 2020), thereby increasing the activities of these
digestive enzymes and ultimately enhancing digestive
function. Furthermore, it has been reported that plant-
derived polysaccharides have the capacity to enhance
intestinal permeability and improve nutrient absorption
(Ren et al., 2017). These outcomes are consistent with
Wu (2018) and Wang et al. (2015), who demonstrated
improved growth performance in broilers treated with
Astragalus polysaccharides. Additionally, Long et al.
(2020) and Yang et al. (2023) observed that polysac-
charides extracted from Lycium barbarum and Radix
rehmanniae praeparata improved the growth perfor-
mance of Arbor Acres and Cobb-500 broiler chickens.
The intestine plays a pivotal role in nutrient digestion,

absorption, and immune function, significantly influenc-
ing animal health (Cui et al., 2023). It has been reported
that plant-derived polysaccharides can enhance intesti-
nal permeability and nutrient absorption (Ren et al.,
2017) and stimulate the expression of digestive enzymes
like protease, amylase, and lipase (Long et al., 2020).
This upregulation increases the activities of these diges-
tive enzymes, ultimately improving digestive function.
Additionally, changes in small intestine length can
directly affect nutrient uptake. In this study, we investi-
gated the effect of PSP supplementation on the lengths
of various intestinal segments and the pH levels of differ-
ent digestive organs. The length and weight of the intes-
tinal segment were not affected by PSP dietary
supplementation. However, PSP use significantly



Figure 4. The differences in species diversity and richness in chicken cecal. Statistical tests for b diversity index at the phylum (A) and genus
(B) levels. Relative microbial abundance at phylum (C) and genus (D) levels.
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reduced pH, specifically in the cecum and ileum. Plant-
derived polysaccharides can influence intestinal pH
reduction in birds through various mechanisms. Typi-
cally, these polysaccharides undergo fermentation by
gut microbiota in the cecum and ileum, producing
SCFA (Wahlstr€om et al., 2016). The metabolism of
SCFA leads to an acidic environment, contributing to a
lowered pH in the intestines (Nogal et al., 2021). More-
over, polysaccharides’ microbial fermentation generates
other secondary substances, such as succinate and lac-
tate, further contributing to a lower intestinal pH
(Wassie et al., 2021; Wang et al., 2022b). The decline in
gut pH can significantly affect various physiological pro-
cesses, including microbial populations, nutrient absorp-
tion, and overall gut health. The role of PSP in reducing
ileal and cecal pH could additionally explain the
improvement in growth traits in the present study.
Small intestine mucosa morphology is evaluated

through indices like VH, CD, and the VH/CD ratio,
which serve as key measures to assess small intestine
nutrient absorption capacity. Higher values of these
indices signify increased absorptive potential of the



Figure 5. Linear discriminant analysis (LDA) effect size (LEFSe) analysis identified microbial taxa between PSP800 (green) and control (red)
groups. (A) the histogram plot from LEfSe analysis displays the LDA scores of microbial taxa with significantly different abundance between the
PSP800 supplemented and control groups (LDA score > 2.5). The length of the bar columns represents the LDA score. (B) the cladogram illustrates
the variances in the relative abundance of microbial taxa from phylum to genus level between the PSP800 and control groups, with circles radiating
from the inner to the outer side. The red and green points indicate a clear contrast in relative abundance between the PSP800 and control groups.
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small intestine (Shehata et al., 2021; Li et al., 2022b).
PSP exhibits the capacity to enhance intestinal architec-
ture, contributing to its prebiotic effects by fostering
beneficial intestinal bacteria (Li et al., 2009). Previous
research noted significant increases in VH and VH/CD
ratio in the jejunum of broilers treated with cyclophos-
phamide when supplemented with 600 or 900 mg/kg of
gamma-irradiated Astragalus polysaccharides (Li et al.,
2019). Similarly, Wang et al. (2021) reported that
administering gamma-irradiated Astragalus polysac-
charides at 600 mg/kg in broiler diets increased VH and
VH/CD ratio in the duodenum, jejunum, and ileum.
Consistent with these findings, our study observed a
notable increase in VH and CD of the ileum following
dietary PSP supplementation, indicating improved feed
absorption. Hence, it’s plausible that PSP could enhance
broiler performance by positively impacting intestinal
mucosal morphology and fostering intestinal health.
This study reveals the antioxidant properties of PSP,

evident in the assessment of serum H2O2 and sulfhydryl
levels. Hydrogen peroxide, produced by vascular and
inflammatory cells, triggers oxidative stress by generat-
ing reactive oxygen species (ROS) (OH and O2�)
through activating NADPH oxidase (Coyle et al., 2006)
and the Fenton’s reaction involving Fe2+ (Ransy et al.,
2020). Conversely, sulfhydryl groups found in thiols
play a pivotal role in combating ROS during amplified
oxidative stress (Erkus et al., 2015). The thiol pool in
the plasma mainly includes low molecular weight thiols
like glutathione and protein thiols such as albumin (Tur-
ell et al., 2013). Lately, thiol/disulfide balance and thiol
levels have emerged as novel markers for oxidative stress



Figure 6. Functional and phenotypic abundance analyses for gut microbial with significant differences between control and PSP800 groups.
Tax4Fun (A) and PICRUSt2 (B) functional abundance analyses. (C) represent BugBase phenotypic abundance analysis.
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assessment (Kundi et al., 2015; Alt{parmak et al., 2016;
Shang et al., 2021). Notably, the present findings reveal
that PSP incorporation increases serum TAC levels and
reduces H2O2 concentration, indicating the potent
ability of PSP to scavenge ROS effectively. Our results
agree with those of Xing et al. (2023), who reported that
Artemisia ordosica polysaccharide enhanced the antiox-
idant capacity of LPS-induced broiler chickens.
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Similarly, the treatment with Lycium barbarum polysac-
charide improved liver and serum antioxidant indices in
Arbor Acres broilers (Long et al., 2020). Wang et al.
(2022a) also documented the potent antioxidant activity
of Polygonatum sibiricum polysaccharides.

Measuring the pH and color of meat is crucial for
assessing chicken meat quality characteristics (Juncher
et al., 2001). Improving raw meat quality has become a
priority to meet evolving consumer demands. Notably,
this study observed a linear decrease in the yellowness
(b*) of leg meat in birds from the PSP800 group com-
pared to the control. However, other meat color parame-
ters, pH, drip, and cooking losses remained unaffected in
both breast and leg muscles. These findings are consis-
tent with a prior study (Wang et al., 2020). Conversely,
Zhao et al. (2020) noted that polysaccharides from Ying-
shan Yunwu tea decreased the quality of the pectoral
muscle of Chongren Chicks, altering its color and pH.
However, Huang et al. (2021) reported that polysacchar-
ides of Morinda officinalis improved the meat quality
criteria of broilers with tibial dyschondroplasia. Addi-
tionally, chicken meat color serves as a crucial quality
attribute, and a lower b* value indicates less pale meat
(Fan et al., 2013). One possible mechanism could involve
accelerated synthesis of myoglobin and fat deposition in
muscles, leading to a lower b* value. Additionally, the
antioxidant potential of TCM polyphenols may protect
muscle cell membranes and reduce lipid peroxidation
injuries (Yang et al., 2011).

This study explores the interactions between intesti-
nal microflora and polysaccharides, an area that has yet
to be minimally explored despite the extensive research
on poultry gut microbe composition. Bacteroidetes and
Firmicutes emerged as the primary phyla in the intesti-
nal microflora in both PSP-treated and untreated
groups, aligning with previous studies by Li et al. (2020)
and Yadav et al. (2021). Li et al. (2020) illustrated that
Bacteroidetes and Firmicutes dominated chicken intes-
tinal microflora irrespective of polysaccharide treat-
ment. Meanwhile, Yadav et al. (2021) reported that
Bacteroidetes, Firmicutes, and Proteobacteria com-
prised around 90% of phyla in commercial chickens,
with Firmicutes at 63.3% and Bacteroidetes at 24.4%.
Additionally, our findings indicated a notable increase
in the abundance of Firmicutes following PSP supple-
mentation, consistent with the observations of Liu et al.
(2018b) on dietary Achyranthes bidentata polysacchar-
ides. Liu et al. (2021a) noted the potential of Firmicutes
in enhancing the intestinal barrier function of broiler
chickens, while Lin and Lee (2020) demonstrated how
Firmicutes in the ileum and cecum digesta reduced pH
values and ammonia nitrogen levels, potentially favoring
the growth and health of the broilers.

In addition, we observed an increase in the abundance
of Verrucomicrobiota in digesta following PSP supple-
mentation, aligning with previous studies (Liu et al.,
2023a; Liu et al., 2023b). Liu et al. (2023b) demon-
strated that Verrucomicrobiota has the potential to
enhance various intestinal aspects, such as VH and VH/
CD ratio and the length of ileum and cecum. Another
study by Liu et al. (2023a) indicated the potential of
Verrucomicrobiota in increasing intestinal villus height.
Concurrently, our findings indicated a reduction in the
relative abundance of Euryarchaeota microbes in
chicken cecum due to PSP supplementation. Barrera-
Rojas et al. (2023) reported that Euryarchaeota might
play a role in regulating methane production and assimi-
lation in environmental settings. Consequently, our
speculation stands that PSP supplementation might
decrease methane production and assimilation, poten-
tially enhancing the utilization of feed energy in birds.
Moreover, our study indicated a decline in the relative
abundance of Proteobacteria microbes due to PSP sup-
plementation, which is consistent with the findings of Li
et al. (2020), where Yingshan Yunwu tea polysacchar-
ides were observed to reduce the relative abundance of
Proteobacteria in chicken cecal contents.
Interestingly, our study also revealed that PSP treat-

ment increased the relative abundance of Akkermansia,
Alistipes, and CHKCI001 while decreasing Methanobre-
vibacter in chicken cecum (Figure 1D). This aligns with
previous studies suggesting the benefits of Akkermansia
in protecting broiler chicken health by safeguarding the
intestinal mucosa against injury induced by S. pullorum
and promoting intestinal epithelium proliferation (Bor-
toluzzi et al., 2019; Zhu et al., 2020). Furthermore, Li et
al. (2022a) found that the relative abundance of Alis-
tipes in cecal contents might elevate intestinal mucosal
factors such as mucin 2 while decreasing inflammatory
cytokine concentrations, Bax gene expression, and the
Bax/Bcl-2 ratio in the intestinal mucosa. Additionally,
Deng et al. (2022) found that the relative abundance of
CHKCI001 in fresh greenish-yellow faeces from Xuefeng
black-bone chickens had benefits in improving laying
performance and feed conversion ratio. On the other
hand, increasing the abundance of Methanobrevibacter
has been linked to improving energy capture and fat
accumulation. Recent studies have suggested that
higher levels of Methanobrevibacter are correlated with
increased abdominal fat in chickens, while lower levels
are associated with reduced fat accumulation (Wen et
al., 2019; Xiang et al., 2021).
To the best of our knowledge, this study introduces

novel evidence indicating the potential of PSP as a bene-
ficial feed supplement in enhancing broiler growth and
health. The inclusion of PSP showed potent antimicro-
bial and antioxidant activities, positively influencing
broilers’ growth without adverse effects on meat quality
and digestive physiology. The recommended inclusion
levels of 800 mg/kg yielded promising results. However,
further research is necessary to comprehensively under-
stand the mechanisms involved and the optimal PSP
inclusion levels in broiler production.
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