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ABSTRACT

Neurodegenerative diseases (NDs) are a group of
debilitating neurological disorders that primarily affect
elderly populations and include Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and
amyotrophic lateral sclerosis (ALS). Currently, there are no
therapies available that can delay, stop, or reverse the
pathological progression of NDs in clinical settings. As the
population ages, NDs are imposing a huge burden on
public health systems and affected families. Animal models
are important tools for preclinical investigations to
understand disease pathogenesis and test potential
treatments. While numerous rodent models of NDs have
been developed to enhance our understanding of disease
mechanisms, the limited success of translating findings
from animal models to clinical practice suggests that there
is still a need to bridge this translation gap. Old World non-
human primates (NHPs), such as rhesus, cynomolgus, and
vervet monkeys, are phylogenetically, physiologically,
biochemically, and behaviorally most relevant to humans.
This is particularly evident in the similarity of the structure
and function of their central nervous systems, rendering
such species uniquely valuable for neuroscience research.
Recently, the development of several genetically modified
NHP models of NDs has successfully recapitulated key
pathologies and revealed novel mechanisms. This review
focuses on the efficacy of NHPs in modeling NDs and the
novel pathological insights gained, as well as the
challenges associated with the generation of such models
and the complexities involved in their subsequent analysis.
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INTRODUCTION

Neurodegenerative diseases (NDs), such as Alzheimer's
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disease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS), are devastating
neurological disorders characterized by the gradual loss of
specific neuronal populations in affected brain regions. The
primary risk factor for NDs is aging. With advancements in
medical technologies and the increasing global population,
NDs are expected to impose an intense burden on the medical
system and affected families, both economically and
emotionally, in the coming decades (Labzin et al., 2018; Rai
et al., 2022; Ransohoff, 2016; Wyss-Coray, 2016).

Currently, no effective treatments exist that can reverse,
halt, or significantly slow the progression of NDs, despite
considerable efforts and advances in recent years. A key
factor contributing to this challenge is the incomplete
understanding of the mechanisms underlying ND
pathogenesis. Patient samples are typically obtained at the
end stage of the disease, hindering the acquisition of fresh
tissues that display cardinal pathological events. Animal
models serve as valuable tools for preclinical studies,
especially for inheritable disease models that exhibit stable
and reproducible phenotypes. Rodents are a primary resource
for the development of ND models due to their small body
size, short lifespan, potent reproductivity, low maintenance
costs, and genetically modifiable embryonic stem cells,
despite their distant phylogenetic proximity to humans. The
discovery of causative gene mutations has led to the creation
of various inheritable rodent ND models carrying these genes,
exponentially expanding our understanding of NDs (Kabir
et al., 2020; Wareham et al., 2022). However, although typical
pathological features can be recapitulated in rodent ND
models, rodent neurons exhibit a resistance to
neurodegeneration (Tu etal, 2015). Evaluating the
therapeutic impact on neurodegeneration using rodent models
presents a significant challenge, as these models often lack
the selective and overt neurodegeneration observed in patient
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brains. This limitation is evident in the limited success of
translating research from rodent models of NDs into clinical
applications (Drummond & Wisniewski, 2017). Non-human
primates (NHPs) are essential for neuroscience research
given their striking similarity to humans in brain structure and
function, as well as in their aging processes (Ding, 2013;
Freire-Cobo et al., 2021; Yao, on behalf of the Construction
Team of the KIZ Primate Facility, 2022). Recent
advancements have led to the development of several
genetically modified NHP models for NDs, revealing primate-
specific mechanisms of ND pathogenesis. In this review, we
explore important findings obtained from NHP models of NDs,
with a focus on AD, PD, HD, and ALS, highlight novel
pathogenic insights gained from such models, and discuss
existing limitations, challenges, and perspectives in this field of
study.

IMPORTANCE OF NHPs IN ND RESEARCH

After millions of years of evolution, the modern human brain
has become exceptionally sophisticated, playing an essential
role in information reception, processing, decision-making,
and behavior (Dorus et al., 2004). While NDs often manifest
as the deterioration of specific brain regions or neuronal
populations, their pathology emerges and influences a broader
context of neural circuits and cellular interactions, involving
multiple cell types and cerebral regions. Therefore, faithful
recapitulation of ND pathogenesis necessitates models with
brain structures and functions that closely resemble those of
humans. Being evolutionarily close to humans, NHPs possess
complex brains. Cynomolgus (Macaca fascicularis), rhesus
(Macaca mulatta), vervet (Chlorocebus sabaeus), and
marmoset monkeys (Callithrix jacchus) are the most
commonly used NHP species in research. In particular, Old
World macaques share a common ancestor with humans
dating back approximately 30 million years (Kanthaswamy
et al., 2013), in contrast to mice, which diverged from humans
around 70 million years ago (Kumar & Hedges, 2011). Thus,
Old World primates present several advantages for modeling

Table 1 CNS trait comparisons across species

NDs, as outlined in Table 1.

Firstly, the cerebrum of Old World primates is structurally
more similar to that of humans than rodents. On the external
surface, the cerebra of humans and Old World primates are
characterized by sulci and gyri, whereas rodent brains lack the
cardinal feature of gyrification (Amiez et al., 2019; Garin et al.,
2022; Zheng etal, 2022). Moreover, various structural
differences exist between rodents and humans in subcortical
regions that are selectively present in NHPs. For example, in
both humans and monkeys, the striatum is divided into the
caudate and putamen, a distinction absent in the rodent
striatum (Bjerke et al., 2022; Joutsa et al., 2022; Lanciego &
Véazquez, 2012; Zhu & Qiu, 2022). This complexity in cerebral
structure shared by humans and monkeys may be attributed
to their relatively prolonged developmental periods. Humans
and macaques each require 280 and 160 days, respectively,
for prenatal central nervous system (CNS) establishment, in
contrast to rodents, which complete CNS development within
21 days (Table 1). Additionally, postnatal brain maturation in
primates, including macaques and humans, requires years to
complete, whereas the rodent brain matures in less than half a
year (Yin et al., 2022). The persistence of neurogenesis in the
subventricular zone (SVZ) and subgranular zone (SGZ) of the
hippocampus is well-documented in adult mice, but its
existence in primates remains a subject of debate (Eriksson
etal.,, 1998; Hao etal., 2022; Li etal., 2023; Sorrells et al.,
2018). These structural and developmental parallels extend to
most other Old World monkeys, although macaques are more
commonly used in neuroscience research.

Secondly, the composition, morphology, and distribution of
cerebral cells in NHPs more closely resemble those in
humans than in smaller animals. Glial cells, including
astrocytes, microglia, and oligodendrocytes, are crucial for
interacting with neurons and maintaining brain homeostasis.
These cells also play critical roles in aging and
neurodegeneration processes (Hickman etal., 2018; Lee
etal., 2022; Von Bernhardi etal., 2015). The size,
arborization, and proportion of glial cells to neurons in mice

Species Humans Old World monkeys Mice References
. Ackert-Bicknell et al., 2015; Asadi Shahmirzadi et al., 2020; Mattison &
Life span (years) 70-90 30-40 2 Vaughan, 2017; Moqri et al., 2023
Gestation period (days) 280 165-200 18 Liu et al., 2020; Souter et al., 2019; Weed et al., 2008
Neostriatum Yes Yes No D'Amours et al., 2011; Liu et al., 2020, 2021; Weed et al., 2008
Cerebral cortex Gyrification Yes Yes No Chen et al., 2023; Glasser et al., 2016; Wang et al., 2020
Circadian Diurnal Diurnal Nocturnal Jensen et al., 2013; Qin et al., 2015; Yan et al., 2020
Cortex thickness (mm) 2.5 2 0.85 Fischl & Dale, 2000; Hammelrath et al., 2016; Koo et al., 2012
Inter cortex communication High Moderate Low Semedo et al., 2019; Tsurugizawa et al., 2020
etiunel B B peifaleny Ves Yes No :trr;Tte;O(:’t?al., 2019; Heuer et al., 2012; Paspalas et al., 2018; Qiang
Average cerebral volume Akerét et al., 2021; Johnson et al., 2023; Reveley et al., 2017; Sousa
3 1350 80 0.5
(cm?) etal., 2017
Neuron number (billion) 85 6 0.07 Chen et al., 2023; Ero et al., 2018; Von Bartheld et al., 2016
. . . . Han et al., 2022; Khrameeva et al., 2020; Oberheim et al., 2006; Von
Astrocyte to neuron ratio  1:1.4 1:2 1:3 Bartheld et al., 2016
Adult neurogenesis No No Yes Snyder et al., 2011; Sorrells et al., 2018
/:;’s:gge Synapse per 7000 6700 6000 Drachman, 2005; O'Kusky & Colonnier, 1982; Schiiz & Palm, 1989
ﬁ;t;ocyte size (in diameter, 30 15 Oberheim et al., 2006; Robertson, 2014; Taber & Hurley, 2008
Astrocyte diversity High Moderate Low Chen et al., 2023; Endo et al., 2022; Zhou et al., 2019
Tau isoform in adult 6 6 3 Buée et al., 2000; Gambardella et al., 2023; McMillan et al., 2008

CNS: Central nervous system; BBB: Blood-brain barrier; AD: Alzheimer’s disease; PD: Parkinson’s disease.
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differ substantially from those in primates (Geirsdottir et al.,
2020; Taber & Hurley, 2008). For instance, NHP astrocytes
develop more abundant processes compared to those in mice,
resembling the astrocytes found in humans (Falcone et al.,
2019; Matyash & Kettenmann, 2010; Oberheim et al., 2006;
Rash etal., 2019). Additionally, astrocytes contribute to the
blood-brain barrier (BBB) and regulate the exchange of
materials between capillaries and cerebral parenchyma (Knox
etal.,, 2022; Xu etal., 2013). Breakdown of the BBB is
implicated in various degenerative diseases. Positron
emission computed tomography (PET) radiotracers (Liu et al.,
2016; Pike, 2009) and adeno-associated virus (AAV)-
mediated cross-BBB transgenic studies (Goertsen et al., 2022;
Terstappen et al., 2021) have revealed that BBB permeability
in NHPs is more stringent than that in rodents, an essential
consideration for exogenous gene delivery into brain cells to
generate genetically modified NHP models. Neuronal function
and survival depend on neurotrophic, nutritional, and structural
support, as well as toxic material clearance, from glial cells
(Allen & Lyons, 2018; Barres, 2008). Furthermore, glial cells
are critical players in ND initiation and progression (Scheiblich
etal.,, 2020; Stephenson etal., 2018; Ulland & Colonna,
2018). The comparability between NHP and human glial cells
is therefore a marked advantage in the use of NHPs to model
NDs.

Thirdly, NHPs also closely resemble humans in many other
aspects, such as gene diversity, metabolism, aging processes,
and behavioral versatility. The genomes of monkeys possess
greater allelic diversity, offering a more faithful genomic
context to mimic molecular pathogenesis. For example,
genome-wide association studies (GWAS) have identified the
APOE ¢4 allele as a significant genetic risk factor for AD
(Mahley et al., 2006, 2009). Unlike mice, which lack this allele,
some monkey species are known carriers (Mahley etal,
2006; Poduri et al., 1994). Given the multifactorial etiology of
NDs, the closer the resemblance to human conditions, the
higher potential for developing effective models. Behavioral
abnormalities comprise an important proportion of the clinical
symptoms of NDs, an area where NHPs prove especially
valuable. Depressive behavior and cognitive impairment,
common features in ND patients, are challenging to assess in
small animal models but can be evaluated in monkeys using
well-established behavioral tests (Frye etal., 2022; Herndon
etal., 1997).

AD NHP MODELS

AD is the most prevalent ND, affecting 7%—8% of individuals
over the age of 65 globally and ranking as the sixth leading
cause of death (Alzheimer’s disease facts and figures, 2021;
Scheltens et al., 2021). Symptomatically, AD is characterized
by memory loss, cognitive dysfunction, and mental and
behavioral abnormalities (Perrin et al., 2009). The two primary
pathological hallmarks of AD are the excessive accumulation
of extracellular amyloid-B (AB) and the presence of
intracellular neurofibrillary tangles (NFTs). Other frequently
observed associated pathologies include demyelination,
neuroinflammation,  brain  atrophy, cerebral amyloid
angiopathy, and synapse loss (Dubois et al., 2014). Although
most cases of AD are late-onset and sporadic, lacking specific
genetic mutations, a minor proportion are familial forms with
early-onset symptoms caused by genetic mutations in the
amyloid precursor protein (APP) and presenilin 1 or 2 genes
(Kunkle etal., 2019; Masters etal., 2015). Following these

genetic discoveries, many genetically modified mouse models
expressing familial mutations driven by various promoters
have been created (Gotz & Ittner, 2008). However, despite
successfully recapitulating prominent AB deposition, these
mouse models do not induce other pathological hallmarks,
notably Tau aggregation (McGowan et al., 2006; Sakakibara
etal.,, 2019; Sasaguri et al., 2022). Furthermore, the salient
neuronal loss observed in AD patients is not present in these
AB transgenic mouse models (Elder et al., 2010; Flood et al.,
2009). PET imaging data and functional correlation analysis
have indicated that Tau pathology is more tightly correlated
with AD symptom deterioration than A deposition (Leuzy
etal.,, 2020). Consequently, several human Tau transgenic
mouse models have been generated (Eskandari-Sedighi et al.,
2017; Gotz et al., 2010; Myers & McGonigle, 2019). Although
these mice exhibit Tau pathology, its distribution differs from
that in AD patients, and the affected neurons remain resistant
to degeneration, even when crossed with AR mouse lines
(Esquerda-Canals et al., 2017). Minipigs have also been used
to recapitulate AD pathogenesis using advanced gene
manipulation tools (Jakobsen et al., 2013; Kragh et al., 2009),
but they failed to exhibit typical pathology after a 3-year
longitudinal study (Sendergaard et al., 2012). These findings
underscore the necessity for establishing better AD models
(Beckman & Morrison, 2021; King, 2018).

Recent investigations on aged NHPs have found the
presence of naturally developed amyloid plaques and NFTs
(Arnsten etal., 2019; Heuer etal., 2012; Paspalas etal,
2018). Importantly, the accumulation sites and spreading
routes of Tau are the same as those reported in AD patients,
strongly suggesting that monkeys are exceptional animals for
modeling late-onset sporadic AD (Arnsten etal., 2021,
Paspalas et al., 2018). Investigating the potential contributions
of environmental toxic chemicals to AD pathogenesis, Yang
etal. (2014) endeavored to induce AD in monkeys by
formaldehyde or methanol exposure (Yang et al., 2014; Zhai
etal.,, 2018). Attempts to create AD monkey models also
include intracerebral or lateral ventricle injections of patient-
derived or synthetic AR oligomers (ABOs), resulting in early
pathological events, such as increased inflammation, reduced
spines, and synaptic dysfunction, as well as the development
of overt amyloid plaques and NFTs in multiple brain regions
(Beckman et al., 2019; Forny-Germano et al., 2014). The use
of younger animals in these studies may have influenced the
outcomes, given that aging is a critical contributor to AD
pathogenesis. Achieving widespread AB deposition across
various brain regions is challenging due to the stringent BBB
permeability in NHPs, although a recent study successfully
created a monkey model with extensive AB accumulation in
most brain regions via serial focal injections of synthetic ABOs
into the cerebral parenchyma (Yue et al., 2021). This model
also exhibited aberrant Tau phosphorylation and
neuroinflammation, as evidenced by immunostaining, although
brain atrophy and cognitive decline were not assessed (Yue
et al., 2021). While it is not feasible to sacrifice a vast number
of NHPs for disease progression examination, blood and
cerebrospinal fluid (CSF) biomarkers, such as ap42, ap40,
pTau, neurofilament light, soluble TREM2, IL6, and TNF-
alpha, can non-invasively reflect pathological changes. PET
imaging can also detect widespread amyloid plaque
accumulation, warranting further integrative analysis of this
model. Given the strong correlation between memory function
decline and Tau hyperphosphorylation and aggregation
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(laccarino et al., 2018; Perrin et al., 2009; Veitch et al., 2019),
stereotaxic injections of AAV-expressing mutant human Tau
have been performed in the entorhinal cortex of monkeys, a
region where AD pathology initiates in its early stages
(Beckman et al., 2021). Remarkably, the injected exogenous
Tau demonstrated propagation through neural circuits,
mimicking the spatiotemporal Tau pathology seen in AD,
leading to increased levels of total Tau, phosphorylated Tau,
neurofilament light, TNF-alpha, and soluble TREM2 in blood
and CSF, similar to early AD stages (Beckman et al., 2021),
but without changes in ap42 and a40 levels, indicating a
potential tauopathy-focused model due to the use of mutant
Tau forms not typical in AD. Furthermore, the absence of
functional assessment in this monkey model limits the
validation of molecular results. Since the introduction of a
small amount of mutant Tau was localized to a single site and
AD pathology typically progresses over many years, extended
longitudinal studies of such AD monkey models are needed to
better understand the relationship between pathological
changes and clinical manifestations.

PD NHP MODELS

Currently, more than 6 million people are affected by PD,
making it the second most common ND (Bloem et al., 2021).
PD is clinically diagnosed based on motor deficits, such as
bradykinesia, rigidity, resting tremor, and postural instability. In
addition, PD patients often experience non-motor problems,
such as hyposmia, constipation, cognitive impairments,
psychiatric disorders, and sleep abnormalities (Armstrong &
Okun, 2020). Pathologically, PD is characterized by the
presence of Lewy bodies and Lewy neurites in dopaminergic
neurons in the substantia nigra (SN) (Kordower et al., 2013).
Although most PD cases are sporadic, lacking specific
causative gene mutations, approximately 10% are attributed to
mutations in genes encoding a-Synuclein, PINK1, Parkin,
LRRK2, and DJ-1, among others (Deng et al., 2018; Ye et al.,
2023). Based on these genetic findings, various genetically
modified PD mouse models have been generated by
expressing PD-related gene mutations. However, none of
these models has successfully simulated dopaminergic
neuron degeneration characteristic of PD (Lee et al., 2012).
Recent studies on mitochondrial dysfunction theory have
suggested that mice with nigral disruptions in mitochondrial
transcription A or respiratory chain complex component
NDUFS2 develop progressive motor deficits (Beckstead &
Howell, 2021; Gonzalez-Rodriguez et al., 2021), offering a
valuable model for therapies or drugs targeting mitochondrial
dysfunction, despite the lack of identification of such gene
mutations in PD patients.

Although PD was long thought to occur exclusively in
humans, recent research has shown that senile monkeys can
develop mild symptoms akin to early PD (Hurley et al., 2011).
Furthermore, recent studies have revealed significant
synucleinopathy in certain aged NHPs and the natural
development of PD symptoms in a monkey. (Li et al., 2021a,
2021c), highlighting the unparalleled potential of NHPs for PD
research. Given that creating transgenic NHP PD models is
both expensive and time-consuming, chemically induced NHP
models have emerged as popular alternatives. For example,
6-hydroxydopamine (6-OHDA, a hydroxylated analogue of
dopamine), rotenone, and  1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) can selectively target dopaminergic
neurons in the SN (Porras et al., 2012; Redmond et al., 1986;
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Tieu, 2011), inducing typical motor deficits, but without Lewy
pathology. MPTP-induced monkey models have been widely
used for drug testing and potential therapy evaluation for over
four decades (Tieu, 2011). However, the phenotypes of this
toxin-induced model are unstable and do not exactly mirror the
slow progression characteristic of the disease. Recently
developed protocols have attempted to address this issue
employing stereotaxic injections of N-Methyl-4-
Phenylpyridinium (MPP*) into multiple sites within the
unilateral SN, guided by magnetic resonance imaging (MRI)
(Lei etal., 2015). Notably, a-synucleinopathy has been
reported in monkey models subjected to repeated MPTP
administration (Huang et al., 2018), paving the way for the
development of more accurate PD animal models.

As Lewy bodies primarily consist of a-Synuclein, the
overexpression of mutant human a-Synuclein in the SN of
monkeys has been utilized to generate an NHP model of PD
(Eslamboli et al., 2007; Kirik et al., 2003; Koprich et al., 2016).
In marmosets, elevated a-Synuclein levels resulted in
prominent tyrosine-positive cell loss within 16 weeks, along
with the manifestation of head bias (Kirik et al., 2003). Mutant
a-Synuclein has also been shown to cause accelerated
pathology and symptom progression (Eslamboli et al., 2007).
In macaques, introducing human A53T a-Synuclein through
stereotaxic injection into the SN, using a virus driven by a
universal promoter, led to the loss of over 50% of
dopaminergic neurons within 4 months, effectively replicating
nigrostriatal pathway degeneration, albeit without motor
dysfunction and a-Synuclein spread (Koprich etal., 2016).
Longer study on disease progression using this model may
reveal advanced-stage PD. To mimic widespread expression,
we previously generated an a-Synuclein transgenic PD
monkey model by delivering lentivirus-expressing mutant a-
Synuclein genes into the perivitelline space of fertilized eggs,
resulting in reduced finger dexterity and cognitive impairment
in 3-year-old monkeys (Niu et al.,, 2015). As aging is a risk
factor for PD, Yang et al. (2015) administered intracerebral
injections of mutant a-Synuclein into the SN of different aged
monkeys and found that aging potently promoted a-Synuclein
aggregation and synucleinopathy (Yang et al., 2015). Although
a-Synuclein accumulation in dopaminergic neurons is toxic,
knockdown of a-Synuclein by AAV-mediated RNA interference
in the SN of monkeys has been shown to be detrimental
(Collier et al., 2016), raising caution for therapies aiming to
reduce endogenous a-Synuclein levels.

While earlier studies suggested that dopaminergic neurons
in genetic mouse models of PD are resistant to degeneration
(Blesa & Przedborski, 2014; Lee etal, 2012), recent
developments in a PINK7-targeted PD monkey model
established via CRISPR/Cas9 have shown that PINK1
disruption results in severe neuronal loss (Chen et al., 2021;
Yang et al., 2019c). Notably, some patients with early onset
PD carry autosomal recessive mutations in the PINK1 gene. In
line with the loss-of-function mechanism associated with
PINK1 mutations in PD, several groups have attempted to
generate PD monkey models based on CRISPR/Cas9-
mediated PINK1 knockout in fertilized monkey eggs (Chen
etal.,, 2021; Yang etal, 2019c). Notably, PINK1 gene
knockout through fragment deletion results in severe neuronal
loss in the monkey cerebral cortex (Yang et al., 2019c, 2022).
However, most PINK1 mutations in PD patients are point
mutations, which may partially affect PINK1 function and
cause age-dependent neurodegeneration.  Therefore,



CRISPR/Cas9-mediated PINK1 deletion may completely
erase PINK1 function, enabling investigation of its essential
role in neuronal survival in the primate brain (Yang etal.,
2019b). Chen et al. (2021) used D10A nickase, a single-strand
DNA cutting enzyme, to target PINK7 in monkeys but did not
observe PD symptoms in the generated models (Chen et al.,
2021). Conversely, focal disruption of the PINK1 and DJ-1
genes in the adult brain has elicited important PD pathologies
in monkeys, including significant loss of nigral dopaminergic
neurons and increased phosphorylated a-Synuclein
aggregates, as well as almost all classical PD symptoms, such
as bradykinesia, tremor, and postural instability (Li etal.,
2021b). This suggests that genetic mutation patterns and
aging are both essential for developing PD symptoms in
monkeys. However, the regional damage caused by
heterogeneous gene manipulation could lead to mixed results,
complicating the interpretation of these models. Yang et al.
(2019b) indicated that PINK1 is more abundantly expressed
under normal conditions in primates, whereas mouse PINK1
protein is undetectable, suggesting a potentially more
significant role for PINK1 in primates than in mice.

ALS NHP MODELS

ALS is a rare, yet fatal ND characterized by progressive loss
of motor neurons in the brain and spinal cord, leading to
muscle atrophy and movement disorders (Grad et al., 2017).
The disease occurs at an incidence of approximately 6 per
100 000 people, predominantly affecting elderly white
populations (Talbott et al., 2016). Similar to AD and PD, over
90% of ALS patients are diagnosed without any identifiable
gene mutation, while 5%—10% of cases are linked to genetic
dysfunctions. Mutations in certain genes, such as TAR DNA-
binding protein 43 (TDP-43), superoxide dismutase 1 (SODT),
fused in sarcoma (FUS), and C9ORF72, are implicated in ALS
(Forman et al., 2007; Saberi et al., 2015). TDP-43 is a nuclear
protein involved in gene transcription regulation, RNA
processing, and protein homeostasis (Da Cruz & Cleveland,
2011; Lagier-Tourenne & Cleveland, 2009). In addition to ALS,
TDP-43 mutations are also implicated in fronto-temporal lobar
degeneration (FTLD) and other neurological disorders, with
cytoplasmic accumulation as a common pathological hallmark
(Chen-Plotkin etal., 2010; Neumann et al., 2006). Normally
residing in the nucleus, TDP-43 relocates to the cytoplasm
during pathogenesiseliciting loss-of-function in the nucleus
and toxicity in the cytoplasm (Mitchell et al., 2015).

Efforts to understand ALS pathogenesis have led to the
development of several transgenic mouse models (Huang
etal., 2012; Shan et al., 2010; Wang et al., 2015). However,
none have successfully recapitulated the typical pathology,
especially the cytoplasmic mislocalization of TDP-43 (Mitchell
etal, 2015; Wils etal., 2010), highlighting the need to
establish better animal models for ALS using larger animals.
Cytoplasmic distribution of TDP-43 has been achieved in a
transgenic pig model expressing human mutant TDP-43
(Wang etal., 2015). Similarly, cytoplasmic distribution of
mutant TDP-43 has been achieved in a macaque model
expressing mutant TDP-43 in the cortex and SN via
stereotaxic viral vector delivery (Yin etal.,, 2019),
corroborating earlier findings of mutant human TDP-43 in the
neuronal cytoplasm of monkey spinal cord (Uchida et al.,
2012). These results suggest that TDP-43-mediated neuronal
pathology likely depends on species-specific factors. For
instance, the primate-specific caspase-4 enzyme has been

identified as responsible for cleaving mutant TDP-43, leading
to its accumulation in the cytoplasm (Yin etal., 2019). The
differences between mouse and monkey models of ALS
underscore the unique contribution of NHPs to ALS research.

HD NHP MODELS

HD is a rare, monogenic, autosomal-dominant ND with
complete penetrance. Its prevalence varies globally, with a
higher rate in Western countries than in Asian populations.
Pathogenically, HD is caused by CAG repeat expansion (>36
CAGs) in exon 1 of the huntingtin (HTT) gene, which
translates to form polyglutamine (polyQ) repeats in the HTT
protein (Bates et al., 2015; Yang et al., 2020). The expansion
of polyQ induces conformational change in HTT and its
aggregation in the brain, leading to preferential loss of striatal
medium spiny neurons and extensive neurodegeneration in
multiple brain regions as the disease progresses (Bates et al.,
2015). Symptomatically, HD is characterized by involuntary
movements, known as chorea, which typically manifest in
midlife. The number of polyQ repeats is a determinant of
disease onset, progression, and severity. To date, no effective
treatment for HD is available (Bates et al., 2015).

Numerous rodent models of HD, carrying varying lengths of
CAG repeats, have been established, although none have
successfully replicated the prominent progressive loss of
striatal neurons (Farshim & Bates, 2018; Lee & Heiman,
2022). The transgenic monkey model of HD, the first genetic
NHP disease model, was created by injecting lentivirus into
the perivitelline space of fertilized embryos (Yang etal.,
2008a). However, although the lentivirus transferred the
exogenous gene into host cell genome, the transgene
insertion site and copy number were uncontrollable (Yang
etal., 2008b), leading to pronounced phenotypic variation
among the transgenic HD monkeys. Among these models,
monkeys carrying 84 CAG repeats displayed severe
phenotypes at an early postnatal stage, in contrast to mice
with the same CAG repeat length, which showed subtle
symptoms (Farshim & Bates, 2018; Yang etal.,, 2008a).
Importantly, lentivirus-mediated transgenes can be transmitted
through the germline, maintaining stable expression in
monkeys (Moran et al., 2015; Putkhao et al., 2013), while first-
generation offspring (F1) display CAG repeat instability during
DNA replication, a cardinal feature of HD (Khampang et al.,
2021). Longitudinal investigations on this model have found
progressive changes in the striatum and hippocampus, along
with motor and cognitive impairments (Chan etal.,, 2014;
Kocerha et al., 2013), highlighting the value of monkeys in HD
research. More recently, a novel HD monkey model was
generated using focal delivery of an AAV2 and AAV2-retro
mixture into the striatum, with rapid spread of mutant Htt into
multiple brain regions, leading to cognitive decline and motor
dysfunction (Weiss et al., 2022).

Similar to NHPs, transgenic swine models of HD
demonstrate  advantages over mice in  mimicking
neurodegeneration and motor disorders under the same HD
transgene (Baxa etal., 2013; Schuldenzucker etal., 2017;
Yang et al.,, 2010). Yan etal. (2018) successfully created a
transgenic pig model of HD through CRISPR/Cas9-mediated
knock-in (KI) in pig fibroblasts combined with somatic cell
nuclear transfer cloning. This model, which expresses 150
CAG repeats driven by the endogenous HTT promoter,
exhibited selective neurodegeneration in the striatum and
movement impairments, effectively mimicking classic HD
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pathology and features (Yan et al., 2018). Although the HD Ki
pig model is valuable, the monkey model is more suitable for
emotional and psychiatric studies. Therefore, a more
comprehensive understanding of HD pathogenesis will
emerge from combining insights from both HD pig and
monkey models.

PERSPECTIVES

Although genetic models account for only a small proportion of
familial NDs, they often share a similar pathogenesis
mechanism with sporadic cases. Thus, genetically modified
NHPs are valuable tools for investigating disease
pathogenesis. With the advancement of gene-editing
techniques, particularly CRISPR/Cas9, several novel NHP
models of NDs have been generated, offering new insights
into their pathogenesis (Yang et al., 2021). However, precise
gene editing with the CRISPR/Cas9 system or targeted Kl of
transgenes remains challenging, resulting in genetic
heterogeneity and phenotype variation among individual
models (Table 2), hindering efforts to unravel the underlying
molecular mechanisms.

Aging is a key contributor to NDs, and the expression of
disease-associated proteins (AB, Tau, and a-Synuclein) in the
brains of old monkeys faithfully recapitulates neuropathology
(Beckman etal., 2021; Yang et al., 2015; Yue et al., 2021).
Research using NHP models of NDs has indicated that
species-specific factors are critical for the development of core
pathological events. For example, PINK1 depletion in mouse
brains does not cause neuronal loss, while in monkey brains,
it results in severe neuronal loss, possibly due to the
undetectable levels of PINK1 in rodent brains and abundant
expression of PINK1 in primate brains under normal
physiological conditions (Yang etal., 2019c, 2022). The
primate-specific enzyme caspase-4, which cleaves TDP-43 to
produce truncated TDP-43 that can be transported from the
nucleus to cytoplasm, may explain why mouse models of ALS
do not induce cytoplasmic mislocalization of TDP-43 (Yin
etal.,, 2019). In HD, symptom onset is inversely correlated
with the number of CAG repeats in exon 1 of the huntingtin

Table 2 NHP models of NDs generated by gene manipulation

gene. HD patients with more than 50 CAG repeats experience
severe symptoms by middle age. However, mice carrying
more than 100 CAG repeats may exhibit no obvious
phenotype. Conversely, transgenic HD macaques with 80
CAG repeats show severe symptoms and early postnatal
death (Yang etal.,, 2008a). The reasons for the milder
phenotypes in HD mouse models remain unclear. As research
continues, through both in-depth studies of current NHP
models and the establishment of new NHP models, significant
progress and novel insights into the pathogenesis of NDs are
anticipated.

Despite considerable advancements, the widespread use of
NHP models for NDs remains limited. A major challenge is the
difficulty in scaling up most models for broader application.
Due to their relatively low reproductive rates, longer
generation intervals, and lack of germline integrating and
gene-modifiable embryonic stem cells, it is difficult to produce
NHP models through endogenous gene Kl or knock-out in
one-cell embryos, as is practicable in rodents (Tu et al., 2015).
Although macaque cloning (Meng etal., 1997), especially
through somatic cell nuclear transfer (Liu et al., 2018, 2019),
has been achieved, the efficiency of this process is very low
and needs further improvement. As most genetically based
NDs are linked to point mutations, emerging technologies in
base editing and prime editing (Yang et al., 2019a; Yeh et al.,
2020) may facilitate the generation of better animal models
carrying precise human genetic mutations. Recent research
suggests that small molecules can revert human embryonic
stem cells to an early blastomere state (Mazid et al., 2022),
raising the possibility of attempting germline integration
strategies in NHPs

NDs typically manifest in old age. Therefore, in animal
models generated by germline genetic manipulations, disease
pathologies are likely to appear as the animal ages. In this
regard, strategies that can expedite the aging process may
facilitate earlier development of disease symptoms. Given the
longer lifespan and higher breeding costs of NHPs, utilizing
older monkeys for ND research is a more practical approach.
As NDs often selectively affect specific brain regions or

Targeted

Model Method Pathology Phenotype References
) o . Kirik et al., 2003;
PD a-Synuclein Substantia injection Lewy body, DA neuronal loss Head bias Koprich et al., 2016
Age-dependent fine motor
Transgenic by embryo injection  a-Synuclein, accumulation deficits, anxiety, cognitive Niu et al., 2015
impairments
PINK1 Gene disruption by CRISPR/Cas9 Massive neuronal loss Neurodeyelopment Yang et al., 2019c,
at embryo stage dysfunction 2022
PINK+Dy1 5ene distuption by CRISPR/Cas9 Lewy body, DA neuronal Typical hemi-parkinsonism  Li et al., 2021b
by substantia injection degeneration, inflammation
Elevated inflammatory molecules
AD Tau Overexpressn?n of mutan.t human and pTau, NFL in CSF gnd blood, Not available Beckman et al., 2021
Tau by entorhinal cortex injection Tau hyperphosphorylation and
spread along circuitry network
e Massive AB plaque across brain,
AB Serial injection of human ABOs overt intracellular Tau Not investigated Yue et al., 2021

into hippocampus of aged animals

hyperphosphorylation

Overexpression of mutant human TDP-43 accumulation in

ALS TDP-43 TDP-43 by lateral cerebral

injection

B gl mutant Htt

Htt by lateral striatum injection

cytoplasm, salient
neurodegeneration
Transgenic by embryo injection of CAG repeat dependent neuron
inclusion and neurodegeneration function impairment
Overexpression of mutant human Overt intracellular aggregates,
mild neurodegeneration

Contralateral paralysis Yin et al., 2019

Prominent progressive motor Yang et al., 2008a

Mild motor deficits Weiss et al., 2022
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neuronal subclusters, genetic mutations can be introduced
into disease-associated neuronal cells or brain regions by
stereotaxic injection of viral vectors with high efficiency.
Recent studies employing this strategy have proven
successful, leading to the creation of several monkey models
of ND that have provided insights unattainable with smaller
animal models (Yang et al., 2015, 2019b; Yin etal., 2015).
Additionally, longitudinal phenotypic and genetic analyses of
older monkeys may uncover cases of naturally occurring NDs.
A team supported by the Chinese Academy of Sciences is
currently conducting such research (Yao, on behalf of the
Construction Team of the KIZ Primate Facility, 2022). This
team has also launched the Primate Genome Project, which
aims to sequence all primate genomes (Guo et al., 2023) and
deepen our understanding of specific monkey models from an
evolutionary perspective.

The development of AD typically spans many years
(Arvanitakis et al., 2019). While patients with AD may exhibit
mild cognitive impairment (MCI) in the early stages, MCI is
also found in some aged individuals without AD
neuropathology (Arvanitakis etal., 2019; Petersen etal.,
2018). There is no clear demarcation between normal
cognitive aging and early AD, both functionally and
pathologically (Kirova et al., 2015; Sanford, 2017), suggesting
that normal cognitive aging may serve as a natural model for
studying the molecular mechanisms of early pathogenesis.
Considering that Old World primates experience aging-related
cognitive decline similar to humans (Hara etal.,, 2012;
Herndon et al., 1997), they could provide an excellent model
for investigating aging-related diseases.

Studying the neuropathology and mechanisms underlying
selective neurodegeneration in NHPs models could yield
highly valuable information specific to primates. Moreover,
identifying primate-specific factors that contribute to selective
neurodegeneration holds considerable potential for the
generation of humanized rodent models, which could be
widely used to investigate NDs and develop new therapies.

NHPs have long been used in preclinical drug safety and
toxicity testing (Phillips et al., 2014; Sasseville & Mansfield,
2010). The FDA Modernization Act 2.0, enacted in December
2022, has eliminated the mandatory requirement for animal
testing in new drug development (Han, 2023; Wadman, 2023).
This change reflects advancements in artificial intelligence and
organ-on-chip technologies (Joseph etal., 2022; Ma etal.,
2021). Despite these developments, NHP models of NDs
remain essential for enhancing translational success. Recent
studies involving genetically modified NHPs have shown that
they can more faithfully recapitulate the pathological changes
observed in human brains, highlighting their value in ND
research.
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