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Abstract.  The physiological functions of the mammalian epididymis are typically regulated by the testes. In addition 
to sex steroids secreted by testicular Leydig cells, which act on the epididymis in an endocrine manner, there is a non-
sex-steroidal signaling pathway known as the lumicrine pathway. This lumicrine signaling pathway involves ligand 
proteins secreted from germ cells within the testicular seminiferous tubules traversing the male reproductive tract, 
which induce epithelial differentiation in the epididymis. These findings prompted an inquiry into whether treatments 
influencing testis physiology can disrupt epididymal function by interfering with testis-epididymis communication. 
Busulfan, an alkylating agent commonly used to deplete testicular germ cells in reproductive biology, has not 
been sufficiently explored because of its effects on the epididymis. This study investigated the effects of busulfan 
administration on the proximal epididymis using histological and transcriptomic analyses. Notably, busulfan, as 
opposed to the vehicle dimethyl sulfoxide (DMSO), altered the morphology of the initial segment of the epididymis, 
leading to a reduction in the cell height of the luminal epithelium. RNA sequencing identified 185 significantly 
downregulated genes in the proximal epididymis of busulfan-administered mice compared to DMSO-administered 
mice. Comparative transcriptome analyses revealed similarities between the epididymal transcriptome of busulfan-
administered mice and lumicrine-deficient mice, such as efferent-duct-ligated W/Wv and Nell2-/- mice. However, this 
differed from that of bilaterally orchidectomized mice, in which both the endocrine and lumicrine signaling pathways 
were simultaneously ablated. Collectively, these results suggested that the harmful effects of busulfan on the 
proximal epididymis are secondary consequences of the ablation of testis-epididymis lumicrine signaling.
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The epididymis, a highly coiled epithelial duct, is part of the sperm 
transport route. After production in the testis, morphologically 

complete, but functionally immature, testicular spermatozoa are 
transported through the efferent duct toward the epididymis, where 
they undergo further functional maturation necessary for their full 
fertilizing ability [1–4]. If spermatozoa are not properly matured by 
the epididymis, they will not be able to acquire the cellular func-
tions necessary for fertilization, eventually resulting in a significant 
decrease in male reproductive ability. Functional differentiation of 
the epididymis is influenced by extra-epididymal or testicular factors, 
involving both endocrine and non-endocrine mechanisms as signaling 
systems between the testis and epididymis. In endocrine regulation, 
sex steroids from the Leydig cells reach the epididymis through 
the bloodstream and bind to epididymal cell receptors [5–10]. In 
non-endocrine regulation, proteins secreted by testicular germ cells 
are transported to the epididymis via the reproductive tract and bind 
to receptors in the luminal epithelium [11–13]. This type of secretion 
signaling is known as “lumicrine” signaling [14].

Recent studies have revealed the molecular mechanisms underly-
ing lumicrine signaling [2, 13, 15–19]. In the testes, germ cells 
located inside seminiferous tubules secrete lumicrine factor proteins, 
such as neural epidermal growth factor–like like 2 (NELL2) and 
NELL2-interacting cofactor for lumicrine signaling (NICOL), into 
the seminiferous lumen. These lumicrine factors move from the testis 
through the efferent duct to the epididymis via luminal flow. In the 
proximal or initial segment (IS) of the epididymis, the lumicrine 
receptor ROS1 tyrosine kinase is activated upon ligand binding, 
which triggers epithelial differentiation and induces the expression 
of genes necessary for epididymal function. The unveiled molecular 
mechanism of lumicrine signaling suggests that abnormalities in 
the IS of the epididymis can arise not only from disruptions in 
the luminal connection between the testis and epididymis or the 
inactivation of lumicrine factor genes in the testis, but also from the 
depletion of testicular germ cells. Indeed, in Kit-mutant W/Wv mice, 
an azoospermic mouse line in which spermatogonial cells cannot 
enter meiosis, lumicrine signaling is ablated, and the epididymal IS 
does not differentiate [13].

Butane-1,4-diyl dimethanesulfonate (busulfan) is a chemotherapeu-
tic drug used in the treatment of specific cancer types, notably leukemia 
and other blood disorders. It falls within the class of alkylating agents, 
operating its effects by disrupting DNA in cancer cells and hindering 
their growth and division. In reproductive biology, busulfan is often 
used to create an azoospermic testicular environment conducive to 
the transplantation of exogenous spermatogonial cells by depleting 
endogenous germ cells [20–23]. Based on the molecular mechanism 
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of lumicrine signaling described above, there is a possibility that 
the busulfan-induced depletion of testicular germ cells may inhibit 
lumicrine-singaling-induced epididymal IS differentiation. However, 
the details of these interactions have not yet been explored. In the 
present study, the effects of busulfan on the proximal epididymis were 
investigated by analyzing the epididymal histology and transcriptome 
of busulfan-administered animals and comparing them with those 
of lumicrine- and endocrine-deficient animal models.

Materials and Methods

Animals
Male B6D2F1 and W/Wv mice were purchased from Japan 

SLC (Hamamatsu, Japan). Nell2-knockout mice were generated 
as previously described [13]. The animals were analyzed at the age 
of 14 weeks. Eight-week-old wild-type (WT) B6D2F1 males were 
administered dimethyl sulfoxide (DMSO) (Nacalai Tesque, Kyoto, 
Japan) or busulfan (Merck, Darmstadt, Germany) dissolved in DMSO 
(5 mg/ml) via intraperitoneal injection (40 mg busulfan/kg body 
weight, n = 3) and subjected to analyses 4 weeks after administration. 
Efferent duct ligation (EDL) was performed as described previously 
[24]. Briefly, the efferent ducts of 10-week-old B6D2F1 males were 
ligated unilaterally under anesthesia and the animals were analyzed 4 
weeks after ligation. Bilateral orchidectomy or a sham operation was 
performed under anesthesia on 8-week-old WT B6D2F1 males, and 
the animals were subjected to analyses 4 weeks after the operation. 
For transcript and protein expression analyses, the IS was dissected 
together with the caput, and tissue dissection was performed as 
previously described [16,24]. This dissection method was used 
due to the difficulty in separately dissecting the IS from the caput 
epididymis, especially in mice in which IS differentiation is ablated. 
All experiments involving animals were approved by the Institutional 
Animal Care and Use Committee of Osaka University (approval 
number: Dou-Bi-R03-01-2) and were conducted in compliance with 
the university guidelines and regulations for animal experimentation.

Histology
Epididymal tissues were dissected, fixed with 4% formaldehyde 

(Electron Microscopy Sciences, Hatfield, England) in phosphate-
buffered saline at 4°C overnight, dehydrated, and immersed in 
paraffin. The paraffin-embedded tissues were sectioned at 5 μm 
using a microtome (HM325; Microm, Walldorf, Germany). The 
sections were stained with hematoxylin and eosin and photographed 
using a system microscope (BX53; Olympus Tokyo, Japan). The 
height of the epithelial cells was measured (one measurement per 
epididymis) from the captured images.

Transcriptome analyses
Total RNA was isolated from the IS-caput of epididymides using 

an RNeasy Mini Kit (#74104; Qiagen, Hilden, Germany). On-column 
DNase treatment was performed during RNA purification using an 
RNase-free DNase set (#79254; Qiagen). The amount of RNA was 
determined by measuring the absorbance at 260 nm. RNA sequencing 
(RNA-seq) of epididymal transcripts was performed as follows. 
Libraries for sequencing were prepared from isolated RNA using 
a TruSeq stranded mRNA sample prep kit (#20020594; Illumina, 
San Diego, CA, USA) and sequenced on a NovaSeq6000 instrument 
(Illumina) using a 101 bp single-end mode. The obtained sequence 
reads were mapped to a mouse reference genome (mm10) using 
TopHat ver. 2.1.1 [25]. Cufflinks ver. 2.2.1 was used to calculate 
the fragments per kilobase of exon per million mapped reads values 

for each gene [26]. The RNA-seq data obtained were deposited in 
the NCBI Gene Expression Omnibus database under accession code 
GSE247820. The obtained IS-caput epididymal transcriptomes of 
DMSO- or busulfan-administered mice were compared with those of 
W/Wv and Nell2-/- mice and mice with EDL or bilateral orchidectomy, 
which are available from the NCBI Gene Expression Omnibus 
database under accession numbers GSE232898 and GSE247764. 
Plots and heat map representations of gene expression levels were 
generated using Microsoft Excel 2019 (Microsoft Corporation, 
Redmond, WA, USA).

Antibodies
The following commercially available antibodies were used: rabbit 

polyclonal anti-a disintegrin and metalloproteinase domain-containing 
protein 28 (ADAM28) (#22234-1-AP; Proteintech, Rosemont, IL, 
USA), mouse monoclonal anti-glutathione peroxidase 5 (GPX5) 
(sc-376877; Santa Cruz Biotechnology, Dallas, TX, USA), mouse 
monoclonal anti-glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) (#s sc-32233, Santa Cruz Biotechnology), and rabbit 
polyclonal anti-ribonuclease 10 (RNASE10) (#PA5-62646; Thermo 
Fisher Scientific, Waltham, MA, USA) as primary antibodies, and 
peroxidase-conjugated goat polyclonal anti-rabbit IgG (#111-036-
045, Jackson Immunoresearch, West Grove, PA, USA) and goat 
polyclonal anti-mouse IgG (#115-036-062, Jackson Immunoresearch) 
as secondary antibodies. A rabbit polyclonal antibody against 
ovochymase 2 (OVCH2) was obtained as previously described 
[13]. An anti-sperm-associated antigen 11 B (SPAG11B) antibody 
was raised in rabbits by immunization with the synthetic peptide, 
Ac-KDEFPARGVNGSQLLHHRVKRC-NH2, which corresponds 
to amino acid residues 40–60 of mouse SPAG11B, followed by an 
additional Cys residue conjugated with keyhole limpet hemocyanin. 
The raised antibody was affinity purified using SulfoLink Coupling 
Resin (#20401, Thermo Fisher Scientific), to which the antigen 
peptide was covalently conjugated. The dilution conditions for the 
antibodies are summarized in Supplementary Table 1.

Protein expression analyses
Dissected mouse tissues were homogenized in lysis buffer (20 mM 

Tris-HCl pH 7.4, 150 mM NaCl, and 1% Triton X-100) containing 
a protease inhibitor cocktail (#25955-24; Nacalai Tesque) and a 
phosphatase inhibitor cocktail (#07575-51, Nacalai Tesque). The 
homogenates were centrifuged at 12,000 × g at 4°C for 15 min, and 
the resulting supernatants were recovered as crude tissue protein 
extracts. The protein concentrations of the crude tissue protein extracts 
were determined using a Pierce BCA protein assay kit (#23227, 
Thermo Fisher Scientific). Twenty micrograms of the extracted 
proteins was separated by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis under reducing conditions using an e-PAGEL precast 
gel (#E-T/R/D520L; Atto, Tokyo, Japan). Precision Plus Protein 
Dual Color Standards (#1610374; Bio-Rad, Hercules, CA, USA) 
were used as molecular weight standards. The separated proteins 
were electrotransferred onto polyvinylidene difluoride membranes 
using the Trans-Blot Turbo transfer system (#1704150J1, Bio-Rad) 
and a Trans-Blot Turbo Mini apparatus (#1704156, Bio-Rad). The 
membranes were then blocked with 3% bovine serum albumin 
(#01859-47, Nacalai Tesque) and 0.05% (w/v) Tween20 (#35624-
02, Nacalai Tesque) in Tris-buffered saline at room temperature 
for 30 min and incubated with primary antibodies at the indicated 
dilutions at 4°C overnight. The bound antibodies were detected by 
incubation with peroxidase-conjugated secondary antibodies and 
chemiluminescence using Chemi-Lumi One Super (#02230, Nacalai 
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Tesque). Chemiluminescent signals were detected and imaged using 
an Amersham ImageQuant 800 system (Cytiva, Tokyo, Japan).

Statistical analyses
Epithelial cell height was evaluated using a one-way analysis of 

variance and two-tailed Student’s t-tests under the assumption of 
unequal variance using Microsoft Excel 2019. The transcript levels 
of each gene were evaluated using two-tailed Student’s t-tests under 
the assumption of unequal variance using Microsoft Excel 2019.

Results

Busulfan administration altered the histology of the IS of the 
mouse epididymis

Busulfan (40 mg/kg body weight) dissolved in DMSO or DMSO 
alone was intraperitoneally administered once to 8-week-old mice, 
and the IS-caput of the epididymides were isolated after 4 weeks. 
The isolated tissues were embedded in paraffin and sectioned for 
histological analyses. A tall luminal epithelium was prominent in 
the IS of the WT mouse epididymis (Fig. 1A). The height of the IS 
luminal epithelium was unaffected in the DMSO-treated mice (Fig. 
1B). In contrast, the IS luminal epithelial height was reduced by 

busulfan administration (Fig. 1C). These observations indicated that 
busulfan affects the histology of the IS of the epididymis.

A reduced cell height of the IS luminal epithelium has been observed 
in various experimental animal models in which the action of the 
testis on the epididymis is inhibited. In W/Wv and Nell2-/- mice 
and mice with EDL, where testis-epididymis lumicrine signaling is 
experimentally or genetically impaired, the IS luminal epithelium 
cell height was reduced (Figs. 1D–F), as previously observed [13, 
16]. Similarly, in bilaterally orchidectomized mice, where both 
testis-derived lumicrine and endocrine signaling are impaired, the IS 
luminal epithelium cell height was reduced (Fig. 1G). Collectively, 
these observations suggested that the histological abnormalities 
caused by busulfan administration may arise as a consequence of 
lumicrine and/or endocrine singaling deficiency.

Busulfan administration altered the IS-caput epididymal 
transcriptome

The effect of busulfan administration on epididymal gene expression 
was investigated using transcriptome analysis. The IS-caput of the 
epididymides were dissected from WT, DMSO-administered, and 
busulfan-administered mice and total tissue RNA was subjected to 
RNA-seq analyses. The results are summarized in Supplementary 

Fig. 1. Histology of the initial segment of the epididymis of busulfan-treated mice. A–G, Hematoxylin and eosin (HE)-stained sections of IS-caput of 
the epididymides from wild-type (WT) (A), dimethylsulfoxide (DMSO)-treated (B), and busulfan-treated (C) mice with efferent duct ligation 
(EDL) (D), W/Wv mice (E), Nell2-/- mice (F), and bilaterally orchidectomized mice (G). L, luminal epithelium; I, interstitial tissue. Bars, 100 μm. 
(H) Average cell height of the initial segment (IS) of the luminal epithelium. All values are shown as the mean ± standard error of the mean (n = 
3). The results of one-way analysis of variance were: F(6, 14) = [36.797], P = 8.67E-08. The P values of the two-tailed Student’s t-test are also 
shown. BOD, bilateral orchidectomy. N.S., not significant.
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Data File 1. A comparison of IS-caput epididymal gene expression 
between WT and busulfan-administered mice revealed the significant 
downregulation of many genes (Fig. 2A). In busulfan-treated mice, 
235 genes exhibited a significant reduction in expression levels of 
< 1/10 (Table 1). In contrast, no prominent differences were observed 
between WT and DMSO-administered mice (Fig. 2B). Only six genes 
were significantly reduced to less than 1/10 in DMSO-administered 
mice (Table 1), suggesting that the amount of DMSO used had a subtle 
effect on IS-caput gene expression, making DMSO-administered 
animals a suitable experimental negative control (Fig. 2C). A heatmap 
representation of the fold changes in gene expression in IS-caput of the 
epididymides from DMSO-administered and busulfan-administered 
mice (n = 3) visually highlighted the reproducible downregulation of 
many genes by busulfan injection (Fig. 2D). These results underscore 
the critical impact of busulfan injection on IS-caput epididymal gene 
expression. In subsequent transcriptome analyses, DMSO-treated 
animals served as negative controls for busulfan-treated animals.

Gene expression patterns in the IS-caput of the epididymis 
following busulfan administration resembled lumicrine-
deficient phenotypes

There are two mechanisms that regulate IS epididymal cell dif-
ferentiation and gene expression: an endocrine mechanism involving 
testis-derived sex steroids and a lumicrine mechanism involving 
secretory proteins transported through the lumen of the reproductive 
tract from the testis to the epididymis. Hence, the IS-caput epididymal 
transcriptome of busulfan-administered mice was characterized by 
comparisons with those of W/Wv, Nell2-/-, and bilaterally orchidec-
tomized mice and mice with EDL (Fig. 3). Gene downregulation in 
the IS-caput of the epididymis from busulfan-administered mouse 
resembled that of W/Wv and Nell2-/- mice and mice with EDL, sug-
gesting a common mechanism of gene downregulation among these 
experimental groups. The expression levels of genes such as Defb41, 
Eppin, Gm1110, Gpx5, Lcn12, Lypd8, Rhcg, and Teddm1b [27–34], 
which were abundant in the DMSO-administered control IS-caput, 
were not critically affected by busulfan or other treatments interfering 
with lumicrine signaling, but were significantly downregulated 
by bilateral orchidectomy (see also Fig. 3). Thus, not all genes 

Fig. 2. RNA sequencing analyses of the IS-caput of the 
epididymis of DMSO- or busulfan-treated mice. A–C, 
RNA sequencing of the IS-caput of the epididymis 
from untreated WT vs. DMSO-treated (A), untreated 
WT vs. busulfan-treated (B), and DMSO-treated vs. 
busulfan-treated (C) mice. Fragments per kilobase 
of exon per million mapped reads (FPKM) values 
are plotted. Statistically significantly downregulated 
(fold change < 0.1, and Student’s t-test P < 0.05) and 
upregulated (fold change > 10, and Student’s t-test P 
< 0.05) genes are represented in green and yellow, 
respectively. (D) The fold change in gene expression 
levels in DMSO-treated vs. untreated WT mice (n = 
3) and busulfan-treated vs. untreated WT mice (n = 
3). Green and magenta represent downregulation and 
upregulation, respectively.
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downregulated by bilateral orchidectomy were similarly affected 
by busulfan administration, indicating that endocrine regulation of 
epididymal gene expression by sex steroids was not significantly 
affected in busulfan-administered mice. In contrast, the number 
of genes upregulated by busulfan administration was very small 
compared to the number that was downregulated (Table 1), and 
the expression levels were still considerably low (Figs. 2A and C), 
indicating that busulfan administration had subtle effects on gene 
upregulation in the IS-caput of the epididymis.

Altered gene expression levels were analyzed by immunoblot-
ting analysis of IS-caput proteins. Secreted proteins ADAM28, 
OVCH2, and RNASE10 are expressed in the epididymal IS in a 
lumicrine-signaling-dependent manner [13, 35]. The expression 
levels of these secreted proteins were also significantly diminished 
in the IS-caput of the epididymis of busulfan-administered mice, as 
observed in lumicrine-signaling-deficient W/Wv and Nell2-/- mice and 
mice with EDL, and lumicrine- and endocrine-signaling-deficient 
bilaterally orchidectomized mice (Fig. 4). The expression of GPX5 
and SPAG11B, secreted proteins abundant in the epididymal IS, 
was regulated in a sex-steroid, endocrine-dependent, but lumicrine-
signaling independent manner (Fig. 4) [30]. The expression levels 
of these secreted proteins in the IS-caput were critically affected in 
bilaterally orchidectomized mice, but not in busulfan-administered 
or lumicrine-signaling-deficient W/Wv and Nell2-/- mice and mice 
with EDL (Fig. 4).

Collectively, these results indicated that the IS-caput epididymal 
gene expression patterns of busulfan-treated animals were similar 
to those of W/Wv and Nell2-/- mice and mice with EDL, but unlike 
those of bilaterally orchidectomized mice, at both the transcript 
and protein levels.

Discussion

It has been well established that a single dose of busulfan impedes 
the propagation of germ cells in the testes. Previous studies have 
reported the toxic effects of busulfan on the epididymis, revealing 
that a single intraperitoneal administration of busulfan in mice 
reduces epididymal epithelial thickness and alters the expression 
levels of several genes related to epithelial integrity [36]. Notably, 
the morphology and transcriptome of the IS have not been thoroughly 
examined in these studies. In the present study, the effect of busulfan 
administration on the IS of the epididymis was examined, with a 
focus on its relationship with lumicrine signaling.

Previous studies have shown that many genes are expressed 
in the epididymis and are regulated by testicular endocrine and/
or lumicrine signaling [6, 13, 16, 24, 31, 34, 37–210], providing 
an opportunity to perform comparative gene expression analyses. 
Notably, the IS of the epididymis in busulfan-administered mice 

Table 1. Summary of downregulated and upregulated genes in the IS-caput of the epididymis of mice 
after DMSO or busulfan administration

Treatment

Number of genes

Student’s t-test 
P < 0.05

Downregulated genes 
Fold change < 0.1 

Student’s t-test P < 0.05

Upregulated genes 
Fold change > 10 

Student’s t-test P < 0.05

DMSO vs. Untreated WT 6,335 6 14
Busulfan vs. Untreated WT 3,537 235 10
Busulfan vs. DMSO 5,828 185 16

DMSO, dimethylsulfoxide; IS, initial segment; WT, wild-type.

Fig. 3. Comparative representation of genes downregulated in IS-
caput of epididymides by busulfan treatment and other 
experimental treatments. Fold change in gene expression levels 
in the IS-caput of the epididymis compared between busulfan-
injected mice, mice with EDL, W/Wv mice, Nell2-/- mice, and 
bilaterally orchidectomized mice. Green and magenta represent 
downregulation and upregulation, respectively. BOD, bilateral 
orchidectomy.
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closely resembled lumicrine-deficient states in terms of both histology 
and gene expression patterns. However, it differed distinctly from 
the IS of the epididymis in bilaterally orchidectomized mice, in 
which both endocrine and lumicrine signaling are simultaneously 
abolished. These findings suggested that busulfan administration 
did not critically affect testicular sex steroidal endocrine activity 
in the IS of the epididymis. Detailed transcriptome analyses of 
bilaterally orchidectomized mouse epididymides will be performed 
in future studies.

Given that busulfan depletes testicular germ cells, any indirect effect 
on the IS of the epididymis likely stems from germ cell depletion in the 
testes. This situation parallels the lumicrine signaling ablation observed 
in germ-cell-deficient W/Wv mice, testicular-lumicrine-factor-deficient 
Nell2-/ mice, and mice with EDL in which luminal flow is impaired. 
These observations strongly suggest that the effects of busulfan on 
the epididymis, if secondary to testicular abnormalities, are due to 
lumicrine signaling insufficiency. It remains unclear whether the 
action of busulfan on the proximal epididymis is direct, indirect, or 
complex, as schematically summarized in Fig. 5.

An intriguing avenue for future research is to explore alterations in 
the IS of the epididymis when spermatogonial cells are transplanted 
into testes depleted of germ cells following busulfan administration. 
If such transplantation restores the IS of the epididymis to a normal 
state, it may be inferred that the effects of busulfan on the IS result 
from abnormal lumicrine signaling due to germ cell depletion in 
the testes.

Fig. 5. A scheme representing the possible mechanism of action of busulfan on the IS of the epididymis. Lumicrine signaling is interfered with indirectly 
by busulfan administration, as a secondary consequence of testicular germ cell ablation. The endocrine action by Leydig cells appears to be 
unaffected by busulfan administration. The direct action of busulfan on the IS of the epididymis is also possible, although it is currently uncertain 
whether such an action causes IS defects.

Fig. 4. Protein expression levels in the IS-caput of the epididymis 
of busulfan-treated and other experimentally treated mice. 
Immunoblot analyses of lumicrine-signaling-associated proteins 
ADAM28, OVCH2, and RNASE10 and endocrine-signaling-
associated proteins GPX5 and SPAG11B in IS-caput epididymal 
lysates from untreated WT mice, busulfan-treated mice, mice 
with EDL, W/Wv mice, and Nell2-/- mice, and bilaterally 
orchidectomized (BOD) mouse. GAPDH immunodetection is also 
shown as an internal control.
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The administration of busulfan has emerged as a practical experi-
mental approach to disrupt testis-epididymis lumicrine signaling. 
As demonstrated in this study, the histology and gene expression 
pattern in the IS of the epididymis of busulfan-treated mice closely 
resembled those of lumicrine-signaling-ablated animals. While other 
experimental strategies exist to interfere with testis-epididymis 
lumicrine signaling, accessibility to mutant animals, such as W/Wv, 
Nell2-/-, Nicol-/-, and Ros1-/- mice, may pose challenges for some 
researchers owing to limited bioavailability. EDL requires surgical 
skills and should be performed under appropriate anesthesia, making 
it less universally applicable. In contrast, busulfan treatment is more 
convenient, requiring only a single intraperitoneal injection, without 
surgery or anesthesia.

In conclusion, our study explored the effect of busulfan on the 
epididymis and revealed similarities to lumicrine-deficient states. 
Likely acting through germ cell depletion, the effects of busulfan 
mimic the lumicrine signaling disruptions observed in other models. 
A more in-depth understanding of the effect of busulfan on the 
IS of the epididymis may present it as an alternative method for 
investigating testis-epididymis communication.
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