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SUMMARY

Whole-brain connectome data characterize the connections among distributed neural populations
as a set of edges in a large network, and neuroscience research aims to systematically investigate
associations between brain connectome and clinical or experimental conditions as covariates. A
covariate is often related to a number of edges connecting multiple brain areas in an organized struc-
ture. However, in practice, neither the covariate-related edges nor the structure is known. Therefore,
the understanding of underlying neural mechanisms relies on statistical methods that are capable
of simultaneously identifying covariate-related connections and recognizing their network topo-
logical structures. The task can be challenging because of false-positive noise and almost infinite
possibilities of edges combining into subnetworks. To address these challenges, we propose a new
statistical approach to handle multivariate edge variables as outcomes and output covariate-related
subnetworks. We first study the graph properties of covariate-related subnetworks from a graph and
combinatorics perspective and accordingly bridge the inference for individual connectome edges and
covariate-related subnetworks. Next, we develop efficient algorithms to exact covariate-related sub-
networks from the whole-brain connectome data with an �0 norm penalty. We validate the proposed
methods based on an extensive simulation study, and we benchmark our performance against
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existing methods. Using our proposed method, we analyze two separate resting-state functional
magnetic resonance imaging data sets for schizophrenia research and obtain highly replicable
disease-related subnetworks.

Keywords: Brain connectome; Combinatorics; �0 shrinkage; Graph theory; Multivariate edge variables.

1. Introduction

Brain connectome analysis has attracted growing research interest in the field of neuroscience, aim-
ing at revealing systematic neurophysiological patterns associated with human behaviors, cognition,
and brain diseases (Simpson and others, 2013; Hu and others, 2022). In the past two decades, develop-
ments in neuroimaging techniques—including functional magnetic resonance imaging (fMRI) and
diffusion tensor imaging—have facilitated large-scale measurements of whole-brain functional and
structural connectivity (Bowman and others, 2012). In these experiments, brain neuroimaging data
are collected for each participant to form a brain connectivity network characterizing the wiring
among neural populations.

The brain connectome data can be encoded as a set of weighted networks on a common set of
nodes shared by all participants, where a node represents a brain area and a weighted edge delineates
the strength of the functional covariation or structural linkage between brain areas (Lukemire and
others, 2021; Xia and Li, 2017; Cai and others, 2019; Warnick and others, 2018). Participants with
different behavioral and clinical conditions tend to exhibit distinct brain connectivity patterns at
global and local levels. In these studies, statistical methods have played a central role in discovering
the systematic effects of a covariate (e.g., a clinical condition) on brain networks and have led to a
comprehensive understanding of the underlying neurophysiopathological mechanisms (Zhang and
others, 2017; Durante and others, 2018; Kundu and others, 2018; Cao and others, 2019; Wang and
others, 2019).

In the present research, we focus on statistical methods for modeling multivariate connectivity
edges constrained in a connectome adjacency matrix as outcomes and clinical and demographic
conditions as covariates (Simpson and others, 2019; Zhang and others, 2023). These methods are
alternatives to covariate-related connectivity network methods using principal component analy-
sis and independent component analysis techniques (e.g., Shi and Guo, 2016; Zhao and others,
2021) that take time series at multiple brain regions as the input connectome data for each
participant. Therefore, the two sets of methods can provide complementary perspectives to char-
acterize the connectome patterns associated with the covariate of interest. In the neuroimaging
literature, brain network analysis often refers to the analysis of prespecified “networks” (e.g.,
default mode network [DMN]), which boils down to assessing the association between the covari-
ate and the averaged connection strength of edges in the network (Craddock and others, 2013).
However, analysis of prespecified networks may miss the true covariate-related network while
introducing false-positive findings. Lastly, cluster-wise multivariate edge inference methods (e.g.,
network-based statistic [NBS]) have also been used widely with the control of family-wise error
rate (FWER) (Zalesky and others, 2010). The covariate-related networks in NBS are formed by
a three-step procedure: (i) performing statistical analysis on each edge and attaining correspond-
ing test statistics; (ii) applying a threshold to the test statistics of all edges and then searching
the maximally connected networks of suprathreshold edges in the whole-brain connectome; (iii)
conducting permutation tests for detected networks to control FWER. However, based on graph
theories, a small proportion of suprathreshold covariate-related edges based on a sound threshold
can almost surely connect all nodes in the connectome (Stepanov, 1970), and selecting subnet-
works as a set of covariate-related edges involving all brain areas is less biologically meaningful
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Fig. 1. The SICERS pipeline: (a) define brain regions as nodes and connectivity metrics between each pair
of nodes as edges; (b) and (c) calculate the connectivity matrix for each single subject in a study, where each
off-diagonal element in the matrix represents the connectivity strength between two nodes, then identify dif-
ferential connectivity patterns between clinical groups; (d) plot the edge-wise statistical inference, where each
off-diagonal element is a negatively logarithmically transformed p-value (e.g., two-sample-test p-value per edge
between clinical groups and a hotter point in the heatmap suggests larger group-wise difference); (e) reveal the
disease-related subnetwork detected by SICERS; (f) show the corresponding 3D (3D) brain image. Note that
(e) was obtained by reordering the nodes in (d) by listing the detected subnetwork first (i.e., these two graphs
are isomorphic).

(Craddock and others, 2013). Consequently, utilizing current methods for covariate-related network
analysis (e.g., NBS) can result in a subpar inferential accuracy due to the presence of false-positive
noise that hinders the extraction of subnetworks and the lack of statistical theory for testing
extracted subnetworks.

To fill this gap, we propose a procedure called Statistical Inference for Covariate-Related
Subnetworks (SICERS). We first define a covariate-related subnetwork as a set of edges associated
with the covariate of interest that constitute an organized graph structure (e.g., a community and
interconnected communities). Evaluating the network-level effect of a covariate on the whole-brain
connectome requires (i) identifying subnetworks concentrated with covariate-related edges and (ii)
allocating a large proportion of covariate-related edges into covariate-related subnetworks. We first
show that given no network-level effect of a covariate, the chance of discovering a moderate-sized
subnetwork concentrated with covariate-related edges is close to zero (by Lemma 2.1). In other
words, detecting a reasonably sized and dense covariate-related subnetwork suggests the true effect
on a brain network. This property is critical and motivates our method developments for subnetwork
extraction and network-level inference. We demonstrate the SICERS procedure in Figure 1.

The article makes several contributions. First, our method provides a new tool for handling mul-
tivariate edge variables in brain connectome data for covariate-related subnetwork analysis. We
develop a strategy to consolidate edge- and network-level analysis from a graph and combinatorics
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perspective, and propose an inference approach that is designed to test data-driven subnetworks
(i.e., not prespecified) using a graph probabilistic model. Second, we develop an efficient algorithm
to optimize the objective function for covariate-related subnetwork detection, which integrates dense
subgraph extraction and community detection by imposing an �0 penalty on network edges. The �0

shrinkage term can effectively reduce the impact of false-positive noise and thus minimizes false-
positive subnetwork detection. Our algorithm is also compatible with computationally intensive
inference methods (e.g., permutation tests). Lastly, our findings in the data example reveal a novel
schizophrenia-disrupted brain connectivity network that links three primary disease-related subnet-
works including the DMN, salience network (SN), and central executive network (CEN) (Manoliu
and others, 2014).

2. Methods

2.1. Background: brain connectome data and edge-wise inference

We denote Y s
n×T as the region-level fMRI time series for a participant s = 1, …, S, where n is the

number of regions of interest, and T is the length of time series. We assume that fMRI data are
registered into a common template and thus brain regions are identical across participants (e.g., the
Brainnetome Atlas by Fan and others, 2016). Let as

ij denote the connection strength between a pair
of regions 1 ≤ i < j ≤ n, which can be calculated by the correlation (or partial correlation/spectral
coherence) between the two corresponding region-wise time series. A weighted n × n adjacency
matrix As = {as

ij} records all n(n − 1)/2 pair-wise connectivity measures for participant s. As} maps
to a population-level brain connectome structural graph G = {V , E}, where the node set V (|V | = n)
represents regions of interest, the edge set E = {eij} indicates the functional connections between
regions. V and E are identical across participants because we assume that the neurobiological defi-
nitions of brain regions and connectivity are shared across participants (Simpson and others, 2013).
As are multivariate random variables capturing the connection strengths of an individual, and thus
outcomes. In addition, for each participant, we observe a vector of profiling covariates (e.g., the
clinical status and demographic variables), denoted by xs = (xs,1, …, xs,L)T .

Our goal is to assess the associations between As and xs, revealing the underlying covariate-related
neural connectomic mechanisms. Naturally, one can apply commonly used multivariate statistical
models (e.g., multiple testing, regularized correction, and low-rank regression models) to identify a
set of edges associated with covariates of interest. Consider a generalized linear model (Zhang and
others, 2023):

g(E(As
)) = B0 +

L∑
l=1

xs,lBl . (2.1)

Without loss of generality, we focus on one covariate of interest (e.g., clinical diagnosis) while adjust-
ing for other confounding variables. Because subnetworks can vary among different covariates, we
can perform covariate-specific subnetwork analysis and apply the procedure for each covariate of
interest or interaction. Let B = {βij} be the associated matrix of regression coefficients of interest.
Then, the corresponding edge-wise hypotheses are

H(i,j);0: βij = 0 vs. H(i,j);a: βij �= 0. (2.2)

As our interest is to identify covariate-related subnetworks instead of individual parameters that
βij �= 0, we present {βij} in a binary graph Gβ = {V , Eβ}, where eβ

ij = 1 if βij �= 0 otherwise 0.
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In practice, we note that covariate-related edges {βij �= 0} only contribute a small proportion of
edges in the brain connectome (Chen and others, 2016), and more importantly their appearance
in the network is concentrated in a few block-structured subnetworks (i.e., Gβ is not random). Our
proposed SICERS method will provide novel procedures for estimation and inference on these latent
covariate-related subnetworks to answer the fundamental scientific problem of how a covariate of
interest systematically affects the brain connectome.

2.2. The general model

As a starting point, we propose a general graph model that decomposes the population brain con-
nectome structural graph into subnetworks related to the covariate and a subgraph that is not related
to the covariate:

G = (∪C
c=1Gc

) ∪ G0, (2.3)

where each Gc = {Vc, Ec} is a covariate-related subnetwork, C is the number of subnetworks (neural
subsystems) altered by the covariate, and G0 = {V0, E0} is the remainder of G (i.e., covariate irrel-
evant). Specifically, V = ∪C

c=1Vc ∪ V0 , Vc ∩ Vc′ = ∅, and E = ∪C
c=1Ec ∪ E0. In other words, G is

formed by the union of C mutually disjoint covariate-related subnetworks G1, …, GC and singleton
nodes that do not belong to any subnetwork. G0 is defined as a union of singleton nodes and edges
not in

(∪C
c=1Gc

)
. Gc distinguishes itself from G0 as the density of covariate-related edges is higher in

Gc than G0, that is,
∑

i,j∈Gc
I(βij �= 0)/|Ec| >

∑
i,j∈G0

I(βij �= 0)/(|E| − ∑C
c=1 |Ec|). We further define

�0 as the graph norm that measures the number of edges of a covariate-related subnetwork of Gc,
that is, ‖Gc‖0 = |Ec|. Consequently, ‖G0‖0 = 0 and

∑C
c=1 |Ec| < n(n − 1)/2 assuming that

(∪C
c=1Gc

)
covers all nonisolated covariate-related edges.

Our model is closely related to but distinct from classical network models. When C = 0, the model
can be viewed as an Erdős–Renyi graph. In the general scenarios where C > 0, our model differs
from the traditional block structure in clustering and community-detection algorithms because our
focus is on covariate-related subnetworks

(∪C
c=1Gc

)
while treating G0 as irrelevant information. G0

consists exclusively of singletons and has |V0| = ∑n
i I(i ∈ G0) and ‖G0‖0 = 0, which resembles

the nondense component of the dense subgraph model (Wu and others). On the other hand, our
method differs from dense subgraph discovery models because we simultaneously consider multiple
subnetworks G1, …, GC . Therefore, our model is a combination of a dense subgraph model and a
block structure model.

2.3. Statistical inference for covariate-related subnetworks

The statistical inference for covariate-related subnetworks {Gc} is distinct from the classical statistical
inference on a single well-defined parameter (e.g., βij). In the context of graph models, the inference
of Gc is naturally linked with graph theory and combinatorics. We propose a statistical inference
framework to test covariate-related subnetworks when neither {Gc} nor C is known in (2.3). We
consider the following test for the existence of the subnetwork structure:

HG;0 : C = 0, that no covariate-related subnetwork exists;

HG;a : C > 0, that at least one covariate-related subnetwork exists.
(2.4)



546 S. Chen and others

Here, C = 0 means
∑C

c=1 |Ec| = 0, that is, no covariate-related subnetwork exists. We propose the
following lemma (2.1) as a graph–combinatorics-based procedure, to determine the rejection region
for (2.4) based on the graph properties of subnetworks (i.e., the size and density of a subnetwork).

Specifically, we derive lemma (2.1) for network-level inference in the context of association param-
eter binary graph Gβ and covariate-related subnetworks defined by the general model of population
connectome structural graph G = (∪C

c=1Gc

) ∪ G0. Without loss of generality, we define the densities
of G and covariate-related subnetworks subgraph by

p =
∑
i,j∈V

I(βij �= 0)/|E| and q =
∑

i,j∈Vc

I(βij �= 0)/|Ec|. (2.5)

Directly developing inference method for covariate-related subnetworks is challenging, because
Ĝc is unknown before analyzing the sample data. We adopt the concept of “maximum quasiclique”
in graph theory as an alternative to develop the inference theory while alleviating the required prior
knowledge of Gc. In Gβ , for any γ ∈ (p, 1), we call a subnetwork of this binary network a “γ -quasi
clique” if its observed edge density is at least γ . Define a maximum γ quasiclique Gβ[γ ] to be the
largest-in-size γ -quasi clique in Gβ , and let |Gβ[γ ]| be the number of nodes in Gβ[γ ]. Gβ[γ ] can be
detected using computationally efficient procedures in the existing literature; see Wu and Hao (2015)
for a comprehensive review. Under the null hypothesis HG;0, the graph Gβ becomes an Erdős–Renyi
graph with p = q. Next, we derive the probability bounds for the size given density for Gβ[γ ] under
HG;0 and HG;1.

LEMMA 2.1 In a binary graph Gβ ,

• when HG;0 : C = 0 is true, that is, p = q, assume that for any γ ∈ (p, 1), v0 = ω(
√

n)

where ω denotes a loose lower bound, and n large enough such that {4/(γ − p)2 +
4/[3(γ − p)]}−1v0 ≥ log n. Then, we have

P
(|Gβ[γ ]| ≥ v0|HG;0

) ≤ 2n · exp

(
−

{
4

(γ − p)2
+ 4

3(γ − p)

}−1

· v2
0

)
.

• when HG;a : C ≥ 1 is true, assume that all subnetworks satisfy |Gc| > ω(
√

n) and set v0 =
c0

√
n for a small enough constant c0 > 0, such that minc=1,…,C |Gc| ≥ v0. Then, we have

P
(|Gβ[γ ]| ≥ v0|HG;a

) ≥ 1 − exp
{
− (q − γ )2v0(v0 − 1)/4

1 + (q − γ )/3

}
.

Intuitively, Lemma 2.1 states that (i) the probability of a nonsmall and dense subnetwork exist-
ing under HG;0 is almost zero, whereas (ii) the probability of a nonsmall and dense subnetwork
existing under HG;1 approaches 1. Therefore, the probability bounds in Lemma 2.1 can be used
to calculate both the type I error rate of an observed Ĝc and the strength of Ĝc associated with
the covariate. Under simple scenarios where there is only one subnetwork present in G, we can

directly calculate the type I error of Ĝc by 2n · exp
(

−
{

4
(γ−p)2 + 4

3(γ−p)

}−1 · |Ĝc|2
)

, and then reject

HG;0 if the type I error is less than the significance level α. However, the inference procedure in
our application is more complex as multiple covariate-related subnetworks may exist. In the field of
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neuroimaging statistics, a widely used statistical inference method for simultaneously testing mul-
tiple covariate-related subnetworks Ĝ1, …, ĜC is the family-wise error control (FWER) strategy
(e.g., permutation tests), which requires comparing subnetworks with different densities and sizes.
For example, Gc and G′

c are subnetworks with densities and sizes (γ , v0) and (γ ′, v′
0) respectively.

Lemma 2.1 provides a viable solution for the comparison by calculating two probability bounds

2n · exp
(

−
{

4
(γ−p)2 + 4

3(γ−p)

}−1 · v2
0

)
versus 2n · exp

(
−

{
4

(γ ′−p)2 + 4
3(γ ′−p)

}−1 · v′2
0

)
. The subnetwork

with a lower probability bound is considered to have a stronger association with the covariate, as it
is less likely to occur under HG;0 (see details in Section 2.5).

2.4. Extracting covariate-related subnetworks via �0 graph norm penalty

We aim to extract covariate-related subnetworks {Gc} from the dependent variables and covariates
{As, xs}S

s=1. We first estimate and test {βij} by (2.1). For a continuous brain connectivity measure (e.g.,
Fisher’s Z transformed correlation coefficients), both classic general linear model and autoregressive
multivariate model accounting for the dependence can be applied (Bowman, 2005; Chen and others,
2020). Although the latter provides a more accurate inference (particularly for a small sample), the
computational cost is much higher. In practice, for a sample of hundreds of participants, we adopt
the general linear model because the statistical inference results of these two methods show little
difference. The statistical inferential results for {βij} (e.g., the test statistics or p-values) can be stored
in a matrix W = {wij} (e.g., wij = − log(pij)), which will be used as the input to extract covariate-
related subnetworks. We adopt p-values (and − log(pij)) due to its popularity in high-dimensional
data analysis [e.g., false-discovery rate (FDR) and Manhattan plot] and capability to discern βij �= 0
versus βij = 0. Nevertheless, our method is applicable to W generated from any valid statistical
model.

Our goal is to cover covariate-related edges using a set of well-organized subgraphs with minimal
(edge) sizes to achieve inference efficiency and accuracy in accordance with Lemma 2.1. We constrain
subnetworks {Gc} in a plausible network structure, where G = (∪C

c=1Gc

) ∪ G0, for the reasons stated
in Section 2.2. Therefore, our model resembles but is distinct from the stochastic block model, where
all nodes are assigned to a few communities, and the submatrix model, which only covers C = 1.
This graph structure—with several small communities and a majority of singleton nodes—poses a
unique challenge for estimation. This is determined by the fact that a small proportion of edges are
associated with the covariate.

As a highlight of our method, while most conventional community-detection techniques for
stochastic block models typically demand relatively balanced community sizes |V1|, …, |Vc| that
would contain most nodes |V1| + · · · + |VC| = n or ≈ n, our method addresses the case where
all the blocks |Vc| put together could constitute only a small portion of the whole graph, that
is,

∑C
c=1 |Vc| � n. Therefore, our approach can be considered as a tool for informative subnet-

work extraction rather than clustering or community detection. As illustrated in Figure 2, several
conventional community-detection techniques may encounter difficulties in extracting meaningful
subnetworks from the inference matrix W of an rs-fMRI brain connectome study (Adhikari and
others, 2019).

To extract covariate-related subnetworks based on W appears a conceptually straightforward
approach by optimizing a valid objective function (e.g., likelihood function) in the conventional
network community-detection literature (Bickel and Chen, 2009; Zhao and others, 2012). However,
the results of these methods tend to yield subnetworks with a small proportion of covariate-related
edges due to the false-positive noise. Instead, we resort to an �0 graph norm penalty-based objective
function to extract covariate-related subnetworks from W , where most edges are associated with
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Fig. 2. Subnetwork extraction by SICERS versus classical community-detection algorithms on a W matrix
with a structure of G = (∪C

c=1Gc
) ∪ G0: (a) spectral clustering with 10 communities in Von Luxburg (2007); (b)

Louvain method by Blondel and others (2008); (c) INFOMAP algorithm by Rosvall and Bergstrom (2008); (d)
SICERS community detection.

the covariate. Our objective function is inspired by Lemma 2.1 and is thus specifically tailored for
subnetwork-wise inference. The idea is very simple: for any detected subnetwork Ĝc, we reward edge
weights within this subnetwork while penalizing based on its size (i.e., increasing density and size).
This objective function can lead to the discovery of a set of subnetworks with the maximal density
and number of covariate-related edges. As shown in Lemma 2.1, the probability of observing a
certain-sized covariate-related subnetwork (a γ -quasi clique) is slim with a high density γ . Similar
ideas have been adopted in some network community-detection methods (Zhang and others, 2016).
Specifically, we define

U = W ∗ �, that is, uij = wij · δij, (2.6)

where “∗” denotes the Hadamard (element-wise) matrix product and δij = 1 if i, j ∈ ∀Gc and 0
otherwise. Clearly, U depends on the specified structure of the underlying graph G = (δij)i,j. Define
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‖U‖1 = ∑
i,j |uij| and ‖U‖0 = ∑

i,j I(|uij| > 0), where ‖ ‖1 and ‖ ‖0 are matrix-element-wise �1 and

�0 norms. ‖U‖0 is equivalent to the �0 graph norm, because we define ‖G‖0 = ∑C
c

∑
eij∈Gc

I(δij = 1)

in Section 2.2. Our core proposal is the following �0 graph norm shrinkage criterion:

arg max
∪Gc,C

log ||U||1 − λ0 log ||U||0, (2.7)

where λ0 is a tuning parameter.
Optimizing the objective function (2.7) simultaneously estimates the number of subnetworks and

the subnetwork memberships of all nodes in G = ∪C
c=1Gc∪G0. Here, we consider a singleton as a sub-

network. The objective function (2.7) maximizes the edge weights with minimally sized subnetworks,
which is mathematically equivalent to extracting maximally sized subnetworks (quasicliques) sizes
while maximizing the density. Therefore, the optimization of (2.7) is governed by two goals: cov-
ering high-weight informative edges and using minimally sized subnetworks. Maximizing the first
term ‖U‖1 can increase sensitivity by allocating a maximal number of high-weight edges to sub-
networks, which promotes larger subnetworks; this is concordant with our aforementioned views in
Section 2.3. In that, prespecifying density γ in Lemma (2.1) is not required because 2.7 automati-
cally maximizes subnetwork density and size. We also penalize the �0 graph norm for maximizing
the density of subnetworks. The second term can also suppress false-positive noise, because false-
positive edges tend to be distributed in a random pattern in G rather than in an organized subgraph
(Chen and others, 2015).

The conflicting nature of the two goals leads to a balance between the different goals that they
represent in the optimization procedure, thereby producing meaningful results. The balance between
them is tuned by λ0; specifically, λ0 = 0 would send all nodes to one subnetwork, whereas a large
λ0 prefers small communities and singletons (nodes not in any community, thus contributing zero
�0 graph norm) even to the true community structure. In our theoretical analysis, we specify the
range of tuning parameter λ0 (depending on μ0/μ1) in which our criterion provides a consistent
estimation of the community structure, thereby controlling well the rates of both types of errors in
the multiple testing procedure. In practice, select λ0 based on the likelihood function of the network
(see supplementary material available at Biostatistics online).

We optimize (2.7) and extract covariate-related subnetworks using Algorithm 1. Specifically, we
perform a grid search for C. For each value of C = C†, let Ĝ(C†) be the estimated network structure
by optimizing (2.7), and let UĜ(C†) be the corresponding matrix from Hadamard matrix multipli-
cation. Uc is the submatrix of U corresponding to Gc. The outcome provides a set of maximal
subnetworks with high density. In the supplementary material available at Biostatistics online, we
provide detailed implementation and theoretical results to guarantee the consistency and optimality
of Ĉ, (Ĝc)c=1,…,Ĉ .

Algorithm 1: Subnetwork estimation
Data: Input: W ; tuning parameter λ0

1. For C† = 2 to n − 1;

2. Optimize arg max
G(C†)

∑C†

c=1
‖Uc‖1

‖Uc‖λ0
0

(see details in the supplementary material available at

Biostatistics online);

3. Select Ĉ such that arg max
C†=2,…,n−1

log ‖UĜ(C†)‖1 − λ0 log ‖UĜ(C†)‖0;

Output: Ĉ, (Ĝc)c=1,…,Ĉ

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
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2.5. Testing covariate-related subnetworks

Given a set of estimated covariate-related subnetworks (Ĝc)c=1,…,Ĉ , our goal is to assess statistical
significance for each subnetwork. This is more general than the aforementioned hypothesis test (2.4)
because the subnetwork-wise inference is needed for more than one subnetwork. Note that the test-
ing hypothesis on a covariate-related subnetwork Ĝc is distinct from classical statistical hypothesis
tests because the parameters of the null hypothesis are based on an estimated Ĝc rather than pre-
specified parameters. Because a subnetwork Ĝc can be considered as a cluster of edges, we adopt
the commonly used permutation tests to examine the significance of Ĝc while controlling FWER
(Zalesky and others, 2010; Nichols, 2012; Chen and others, 2015). However, the test statistic in the
classic permutation tests is often trivial (e.g., using the number of supra-threshold edges in Ĝc as
the test statistic). Building on Lemma 2.1, we propose a new test statistic to reflect the combina-
torial probability for a covariate-related subnetwork with a given density and size under the null
hypothesis. We present the steps of our test in Algorithm 2.

Algorithm 2: Assess the significance of Ĝc

Data: Input: {As, xs}s=1,…,S, W , Ĉ > 0, {Ĝc}c=1,…,Ĉ , g(r), α

1. With a sound cut-off r̂, set the binarized graph G[r̂] : (G[r̂])ij = I(wij > r̂);
2. Estimate overall and within-subnetwork edge densities p̂ and q̂

p̂ :=
∑

1≤i<j≤n I(wij > r̂)(n
2

) , q̂ :=
∑

(i,j)∈Ĝc
I(wij > r̂)

‖Ĝc‖0

and set γ̂ := q̂;
3. Calculate (Lemma 2.1) p-value-based test statistic by integrating r on its distribution g(r):

T0(Ĝc) = ∫
2n · exp

{
−|Ĝc|2

{
2

(γ̂−p̂)2 + 2
3(γ̂−p̂)

}−1
}

g(r)dr;

4. Shuffle the group labels of the data and implement SICERS M times, and for each
simulation m = 1, …, M, store the maximal test statistic

Tm = supc=1,…,Ĉm

∫
2n · exp

{
−|Ĝm

c |2/
{

2
(γ̂m−p̂m)2 + 2

3(γ̂m−p̂m)

}−1
}

g(r)dr;

5. Calculate the percentile of T0 in {Tm} as the FWER q-value and reject the null hypothesis
if q < α;

Output: FWER significance values for {Ĝc}c=1,…,Ĉ

The above procedure can also be used to test the omnibus hypothesis (2.4) for C = 0 versus C > 0,
because any single reasonably sized and dense subnetwork Ĝc can lead to a small p-value. The null
distribution of the test statistic in (2.4) can be simulated well by the permutation procedure. There-
fore, the FWER can be controlled effectively by the above permutation test, yielding a corrected
p-value for each Ĝc (Nichols, 2012).

3. Simulations

In this section, we evaluate the performance of our method on synthetic data and compare it with
benchmarks. We assess the accuracy of SICERS on two levels: (i) subnetwork-level inference accu-
racy by tallying the false-positive and false-negative covariate-related subnetworks; (ii) edge-level
assessment to measure the quality of significant covariate-related subnetwork and overall perfor-
mance by comparing Ĝc with Gc and counting the false-positive and false-negative edges. The
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covariate-related subnetwork inference is satisfactory only if network- and edge-level inference are
both accurate.

First, we simulate brain connectome data A = {A1, ..., AS} in a common two-sample testing
setting, although we can easily extend it to the regression setting. We consider two cohorts of
participants with equal sample sizes. We denote healthy controls by s = 1, …, [S/2] and patients
by s = [S/2] + 1, …, S, where [ ] denotes the floor operator. The number of brain regions is
|V | = n = 200, and there are 19 000 edges correspondingly. We consider two disease-related
subnetworks G1 and G2 with |V1| = 25 and |V2| = 50. For a patient s ≥ [S/2] + 1, for all
(i, j) : i ∈ V1/V2, j ∈ V1/V2, we set as

ij ∼ N(η2, σ 2); for all other (s, i, j), we set as
ij ∼ N(η1, σ 2).

We vary θ = η2 − η1 and σ to emulate different effect sizes (i.e., signal-to-noise ratios). We set the
variance term σ = 0.5, 1, 2 given θ = 1, corresponding to values of Cohen’s d of 1.2, 0.8, and
0.5, respectively. Two sample sizes of S = 480 and S = 240 were used. For each combination of
parameters, we simulate 100 repeated data sets.

For each brain connectome data set A, we perform edge-wise two-sample tests on {a1
ij, …, a[S/2]

ij }
versus {a[S/2]+1

ij , …, aS
ij} and obtain the inference matrix W by wij = − log pij. We then apply SICERS

to W , estimating disease-related subnetworks and performing subnetwork-level statistical inference.
We benchmark our approach against the popular methods for brain connectivity analysis including
NBS and comparable subnetwork extraction methods by dense subgraph extraction algorithms (e.g.,
greedy) and community-detection algorithms (e.g., Louvain).

Subnetwork-level inference results. First, we evaluate the accuracy of SICERS at the network-
level. Correctly identifying a covariate-related subnetwork involves two aspects: (i) extracting a Ĝc

that is close to Gc and (ii) rejecting the null hypothesis for Ĝc. Therefore, we consider that our goal
of network-level inference is met if SICERS rejects the null hypothesis for an estimated subnetwork
Ĝc that is similar to Gc (e.g., the Jaccard index for edge sets of Ĝc and Gc is greater than 50%). We
denote an estimated subnetwork as a false-positive finding when we reject the null hypothesis and
the Jaccard index between Ĝc and Gc is less than 50%. We record a false-negative finding for Gc if
we fail to estimate Ĝc with a Jaccard index of greater than 50% in reference to Gc and reject the null
hypothesis. We calculate the power and false-positive rate (FPR) as the proportions of true-positive
and false-positive inference across the 100 repeated data sets with the corresponding standard errors.

The results for the network-level summarized statistics are presented in Table 1. Our network-level
inference is generally robust and accurate for both G1 and G2. The power and FPR of network-level
inference rely on the capability of subnetwork extraction because the power is 0 if no Ĝc is detected
and FPR is high if the significant Ĝc largely deviates from Gc. The subnetwork extracted by NBS
is often different from Gc due to the influence of noise, which leads to low power and high FPR.
The inference accuracy is also determined by the subnetwork size, effect size, sample size, and noise
level (results for a range of network sizes are in supplementary material available at Biostatistics
online). SICERS outperforms the comparable methods due to the superior performance of its �0

shrinkage-based subnetwork extraction and advanced inference approach (see Algorithm 2).
Edge-level inference results. Given significant covariate-related subnetworks, we further evaluate

the deviation of Ĝc from Gc by measuring the edge-level difference. The Ĝc versus Gc differ-
ences are measured at the edge-level with respect to sensitivity and FDR as follows: Sensitivity =∑

i<j I(eij∈Gc,eij∈Ĝc)∑
i<j I(eij∈Gc)

and FDR =
∑

i<j I(eij /∈Gc,eij∈Ĝc)∑
i<j I(eij∈Ĝc)

.

Table 2 summarizes the performance of all methods in all settings. In general, SICERS, network
detection, and dense algorithms can recover the covariate-related subnetworks. When the effect size
is smaller, network detection and subgraph extraction algorithms tend to cover a maximal number of
informative edges and thus also include false-positive edges in the estimated subnetworks; therefore,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
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Table 1. Network-level inference results across all settings. The power is calculated separately for
each of the two subnetworks (G1 |V1| = 25 and G2 |V2| = 50), while the FPR is based on the
aggregate false-positive findings. The means (standard deviations) of power and FPR are summa-
rized based on 100 repeated simulations. SICERS generally performs well for all settings, followed
by Louvain, Dense, and NBS. The Power and FPR largely rely on accurate subnetwork extraction
and inference. Large subnetwork size, effect size, and sample size can improve the accuracy of sub-
network extraction and yield greater test statistics, thus increase power and sensitivity. SICERS
outperforms the other methods because the �0 shrinkage and our new statistical inference methods
can better capture and characterize covariate-related subnetworks

S = 240 S = 120

Cohen’s d 1.2 0.8 0.5 1.2 0.8 0.5

SICERS
Power

G1 1(0) 0.98(0.14) 0.84(0.37) 1(0) 1(0) 0.86(0.35)
G2 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

FPR 0(0) 0.05(0.13) 0.03(0.09) 0(0) 0.03(0.09) 0.03(0.09)

Louvain
Power

G1 1(0) 0.92(0.27) 1(0) 1(0) 0.86(0.35) 1(0)
G2 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

FPR 0.08(0.17) 0.07(0.16) 0(0) 0.11(0.2) 0.09(0.19) 0.01(0.05)

Dense
Power

G1 1(0) 1(0) 0.36(0.48) 1(0) 1(0) 0.06(0.24)
G2 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

FPR 0(0) 0.33(0) 0.44(0.08) 0(0) 0.33(0) 0.49(0.04)

NBS
Power

G1 0.14(0.35) 0(0) 0(0) 0.26(0.44) 0(0) 0(0)
G2 1(0) 0(0) 0(0) 1(0) 0(0) 0(0)

FPR 0.1(0.21) 1(0) 1(0) 0.08(0.2) 1(0) 1(0)

the detected subnetworks may differ from the true network. SICERS is more robust to false-positive
noise for small effect size because it imposes an �0 penalty term on the objective function. NBS is
more sensitive to noise because the subnetwork detection extraction algorithm of NBS seeks maxi-
mally connected components. Lastly, we compare the network analysis method with the univariate
method BH-FDR (q = 0.05). Without the aid of graph information, the univariate inference method
tends to select a high proportion of false-positive edges and fails to recognize the network structure.

The average computing time of SICERS is around 14 min (greedy: 6 min and Louvain: 3 min) on
a PC with Intel i7-9700K CPU and 16GB of RAM.

4. Applications to brain connectome data

4.1. Data background

We applied our SICERS method to rs-fMRI brain connectome analysis for schizophrenia research.
The data were collected at the School of Medicine of the University of Maryland to investigate the
associations of brain functional connectivity (Adhikari and others, 2019). The imaging acquisition
parameters, patient inclusion and exclusion criteria, and preprocessing steps are described in detail
in the supplementary material available at Biostatistics online.

To assess the replicability of brain connectome analysis, we used two independent data sets: a
primary set D1 and a validation set D2. The primary data set D1 contained 70 schizophrenia patients
(age = 40.80 ± 13.63 years) and 70 control subjects (age = 41.79 ± 13.44 years) matched by age

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
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Table 2. Edge-level inference results across all settings. The TPR and FDR are calculated separately
for each of the two subnetworks (G1 |V1| = 25 and G2 |V2| = 50). The means (standard deviations)
of TPR and FDR are summarized based on 100 repeated simulations. TPR is determined by the
proportion of edges in Gc that can be recovered by Ĝc, and FDR is the proportion of edges in Ĝc

are not in Gc. TPR = 1 and FDR = 0 suggest a perfect recovery of Gc by Ĝc. SICERS outperforms
the comparable methods because the objective function can maximize the signal while suppressing
noise, and thereby better recovers the underlying true Gc.

S = 240 S = 120

Cohen’s d 1.2 0.8 0.5 1.2 0.8 0.5

SICERS
TPR

G1 1(0) 0.87(0.2) 0.91(0.19) 1(0) 0.9(0.2) 0.88(0.2)
G2 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

FDR
G1 0(0) 0(0) 0(0.01) 0(0) 0.02(0.04) 0.02(0.04)
G2 0(0) 0.03(0.04) 0.09(0.21) 0(0) 0.04(0.05) 0.09(0.19)

Louvain
TPR

G1 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
G2 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

FDR
G1 0.21(0.1) 0.58(0.12) 0.44(0.11) 0.25(0.11) 0.58(0.12) 0.41(0.16)
G2 0.16(0.06) 0.03(0.03) 0.04(0.04) 0.16(0.05) 0.02(0.03) 0.03(0.03)

Dense
TPR

G1 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
G2 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

FDR
G1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
G2 0(0) 0(0) 0.35(0.27) 0(0) 0(0) 0.52(0.13)

NBS
TPR

G1 1(0) NA NA 1(0) NA NA
G2 1(0) NA NA 1(0) NA NA

FDR
G0 0.28(0.05) NA NA 0.21(0.1) NA NA
G2 0.59(0.16) NA NA 0.54(0.21) NA NA

BH-FDR
TPR 1(0) 0.95(0) 0.94(0) 1(0) 0.94(0.01) 0.75(0.01)
FDR 0.18(0.01) 0.5(0) 0.54(0) 0.18(0.01) 0.5(0) 0.54(0.01)

(t = 0.62, p = 0.54) and sex ratio (χ 2 = 0, p = 1). The validation data set D2 contained another 30
individuals with schizophrenia (age = 39.73±13.79 years) and 30 control subjects (age = 39.73±14.16
years) matched by age (t = 0.27, p = 0.78) and sex ratio (χ 2 = 0.09, p = 0.77). The primary and
validation data sets were randomly selected and shared recruitment procedures, inclusion and exclu-
sion criteria, and imaging acquisition and preprocessing steps. Nodes of the connectome graph G
were specified by the commonly used automated anatomical labeling (AAL). Time courses of all
voxels within a 10-mm sphere around the centroid of each region were preprocessed as region-wise
signals, followed by calculating 4005 Pearson correlation coefficients between the time courses of
the 90 AAL regions (i.e., n = 90 in all As). We used Fisher’s Z transformation and normalization to
obtain connectivity matrices. We performed statistical analysis on these data sets separately, identi-
fied the covariate-related subnetworks, and compared significant disease-related subnetworks for D1

and D2. We also compared the results obtained by SICERS with those of conventional edge-wise
inference and commonly used network methods.

4.2. Covariate-related subnetworks

For D1, we first conducted an edge-wise Wilcoxon rank sum test for each age and sex adjusted edge
Aij to obtain the p-value pij and the inference matrix W 1 with elements wij = − log(pij), although
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Fig. 3. Applying SICERS to clinical data D1 (a)–(c) and replication data D2 (d)–(f). (a) A heatmap of log(p)
of the first data set (D1); hotter pixels indicate more differential edges between cases and controls, and there is
no apparent topological pattern for these hot edges. (b) We then perform SICERS in D1 and find a significant
subnetwork [the bold square, which is magnified in (c)]. (c) The enlarged disease-relevant subnetwork in D1 with
region names. (d) A heatmap of log(p) of the second data set (D2). (e) The disease-relevant subnetwork was
detected by using D2 alone. (f) The enlarged network in D2 with region names. To save space here, versions of
the enlarged plots (c) and (f) with more-readable axis labels are included in the supplementary material available
at Biostatistics online.

regression models could also be applied. Then, we applied SICERS to W 1, and our method detected
one significant subnetwork Ĝ1

1 with an empirical subnetwork p-value of less than 0.001. This subnet-
work contained 22 nodes, including the left medial frontal cortex, bilateral insula, bilateral anterior
and middle cingulate cortices, bilateral Heschl gyrus and superior temporal cortices, bilateral para-
central and postcentral cortices, right precentral cortex, and precuneus (Figures 3(a)–(c)) (a full list
of region names is given in Table S1 of the supplementary material available at Biostatistics online).

We then applied the same steps of SICERS to D2 and also detected one significant subnetwork
Ĝ2

1 of 21 nodes, including the left medial superior frontal gyrus, bilateral insula, bilateral anterior
and middle cingulate cortices, bilateral Heschl gyrus, Rolandic operculums, supplementary motor
areas, paracentral lobules, postcentral lobules, and left precuneus (Figures 3(d) and (e)). In both Ĝ1

1

and Ĝ2
1, most edges showed reduced connectivity in patients with schizophrenia.

4.3. Replicability of disease-related subnetworks

A remarkable feature of our method is the high replicability of its network-level findings. Specifically,
we find that the disease-related subnetworks for D1 and D2 are almost identical (Ĝ2

1 ⊂ Ĝ1
1), which

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
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would occur with near-zero probability if significant H(i,j)’s were not organized as subnetworks but
rather scattered randomly. This demonstrates that the subnetwork structure detected by our method
reflects not randomness but significant patterns that emerge stably across different independently
collected data batches.

We also applied the NBS and univariate inference methods to input data (D1 and D2). Neither
NBS nor BH-FDR selected significant subnetworks/edges due to influence of noise. Rather, the
uncorrected p-value of 0.005—a commonly used threshold in the field of neuroimaging (Derado
and others, 2010)—was applied to W 1 and W 2; 430 and 22 suprathreshold edges, respectively, were
reported for the two data sets. However, among the two sets of suprathreshold edges, only two edges
overlapped. To summarize, for these data sets, none of the benchmark methods rejected any indi-
vidual H(i,j);0 and thus they all reported no pattern discovery, whereas our SICERS method—by
exploiting the network structure—detected significant subnetwork structure with good replicability.

4.4. Biological insights from the covariate-related subnetwork

The brain region constellation of the covariate-related subnetwork consists of inferior frontal, supe-
rior temporal, insula, cingulate, and paracentral areas (as shown in Figure S5 in supplementary
material available at Biostatistics online). These brain regions comprise three well-known networks:
the SN (bilateral), part of the DMN, and part of the CEN. A large body of literature on schizophre-
nia research has reported well-replicated findings in the neurobiology of schizophrenic disorders
pertaining to these three networks (Orliac and others, 2013). The consensus is that functional con-
nections within and between these networks are weaker in patients with schizophrenia than in healthy
controls (Lynall and others, 2010), although the potentially confounding effects of medications in
these studies have not been ruled out effectively. This is aligned well with our finding that all edges
in the disease-related subnetwork show decreased connectivity strengths in patients. Our findings
regarding disease-related subnetworks are novel because they provide an integrated understand-
ing of the intrinsic large-scale networks altered by the brain disorder. They reveal systematically
the disruption of high-level coordination between neural populations that is linked with clinical
symptoms of schizophrenia, including deficits in information processing or blunted reward (SN),
language (temporal gyri), and anhedonia (CEN), and—more importantly—the integrated function
formed by the interactions of these networks. In summary, our disease-related subnetwork analysis
provides a comprehensive investigation of disease-specific brain networks and thus can yield new
insights to understand the complex neurobiology of a brain disorder. We further demonstrate the
utility of our method by investigating the age- and sex (covariate)-related subnetworks based on
22 000 participants collected from UK Biobank in supplementary material available at Biostatistics
online.

5. Discussion

We have developed a new tool—SICERS—to identify covariate-related subnetworks in brain con-
nectome data. Our work represents a new strategy for handling multivariate edge variables as
outcomes constrained in an adjacency matrix. In practice, a covariate may influence a small pro-
portion of edge outcomes that may reside in organized subgraphs/subnetworks. Like the popular
cluster-wise inference for brain activity analysis, SICERS aims to extract covariate-related subnet-
works as clusters of covariate-related edges for connectome analysis. However, extracting latent
covariate-related subnetworks is more challenging than extracting activity clusters of spatially adja-
cent voxels. A small proportion of selected edges can almost surely connect nodes into a subnetwork
including all nodes, and a covariate-related subnetwork involving all nodes is neither biologically

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad007#supplementary-data
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sound nor statistically accurate. To address this challenge, we define a covariate-related subnetwork
as a subgraph of an organized structure (e.g., a community) and concentrated with covariate-related
edges. Lemma 1 demonstrates that the chance of a false-positive, nontrivial, and dense subnetwork
is close to zero. Using both theoretical and numerical results in Sections 3 and 4, we further show
that by leveraging this property, our subnetwork-level analysis can improve both network-level and
edge-level sensitivity while controlling the false-positive findings.

We implement computationally efficient algorithms for SICERS to extract subnetworks cover-
ing maximal covariate-related edges (high sensitivity) with �0 penalty on subnetwork size. The �0

penalty ensures that the selected subnetworks are dense and suppresses false-positive edges (i.e.,
fewer nodes are included). Our algorithm differs from dense subgraph extraction algorithms because
SICERS can reveal multiple subnetworks more effectively (as seen in the simulations). Our algorithm
also suggests that implementing the �0 penalty for multivariate edge variables can be less computa-
tionally expensive than the �0 penalty for the traditional variable selection setting of a vector of
variables. In addition, we perform the network-level statistical inference by the permutation test
to control the FWER (Eklund and others, 2016) with tailored subnetwork-level test statistics. Since
SICERS focuses on network-level inference, it cannot capture individual covariate-related edges that
are not part of subnetworks. An alternative approach is to use edge-level inference with FWER/FDR
correction to identify individual covariate-related edges.

SICERS is generally applicable to multivariate edge variables, for example, structural and func-
tional brain connectome data. Although we focus on a single covariate in SICERS, we can extend
the method straightforwardly to a contrast of parameters combining multiple covariates or a dom-
inating factor of multiple covariates by dimension–reduction techniques. The software package for
SICERS is at https://github.com/shuochenstats/SICERS.

Supplementary material

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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