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Abstract

Hepatitis B virus (HBV) is a hepatotropic DNA virus that replicates by reverse transcription. 

It chronically infects >296 million people worldwide including ~850,000 in the USA, and 

kills 820,000 annually world-wide. Current nucleos(t)ide analog (NA) or pegylated interferon 

α therapies do not eradicate the virus and would benefit from a complimentary antiviral drug. We 

performed a preliminary screen of 28 dispirotripiperazines against HBV, identifying 9 hits with 

EC50 of 0.7 - 25 μM. Compound 11826096 displays the most potent activity and represents a 

promising lead for future optimization. While the mechanism of action is unknown, preliminary 

assays limit possible targets to activities involved in RNA accumulation, translation, capsid 

assembly, and/or capsid stability. In addition, we built machine learning models to determine if 

they were able to predict the activity of this series of compounds. The novelty of these molecules 

indicated they were outside of the applicability domain of these models.
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Introduction

Hepatitis B is a contagious liver disease caused by the hepatitis B virus (HBV) which 

affects approximately 296 million people worldwide including ~850,000 in the USA, and 

it also kills about 852,000 globally annually 1, 2. HBV replication 3, 4 requires viral entry, 

formation of the viral covalently closed circular DNA (cccDNA), production of the 4 viral 

RNAs by transcription from the cccDNA, translation and processing of the 7 viral proteins, 

nucleocapsid assembly, reverse transcription within capsids, recycling of nucleocapsids into 

the nucleus to help maintain the cccDNA pool, envelopment of nucleocapsids after reverse 

transcription is complete, and secretion of virions. Blocking any one of these steps will 

prevent production of infectious virus, and hence they are all potential targets for novel 

anti-HBV agents. Current standard of care therapy employs either pegylated interferon α 
or nucleos(t)ide analog (NA) drugs that target the viral DNA polymerase, with the NAs 

dominating therapy due to their better safety profile. The NAs usually drive HBV to near 

or below the clinical detection limit. However, replication is not completely suppressed, 

and HBV titers rebound if the drugs are withdrawn, so NA therapy is usually life-long. 
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Nevertheless, treatment does cure ~6% of patients, so many more patients could be helped 

or cured by suppressing HBV further through the use of new drugs in combination5.It is 

therefore a high priority to develop next-generation therapies which would combine NAs 

with novel molecules that act on one or more targets and are under a different set of 

pharmacological constraints 6. These efforts include screening to identify novel replication 

inhibitors 7–14.

Dispirotripiperazines (DSTPs) are spirocyclic quaternary ammonium salts composed of 

piperazine or homopiperazine rings linked by shared nitrogen atoms. The DSTP ring system 

is commonly flanked by terminal N-acyl or N-heteroaryl groups, which can be varied to 

affect their physicochemical properties. They can be divided into three classes based on 

the relative number of 6- and 7- membered rings, with “6-6-6” DSTPs containing three 

piperazine rings, “7-6-6” containing two piperazine rings and one homopiperazine, and 

“7-6-7” containing one piperazine ring and two homopiperazine rings (Figure 1). The 

“7-7-7” DSTPs are highly unstable and therefore have not been investigated significantly.

The first DSTP, spirazidine, was discovered in 1963 during an antitumor study based on 

the 1,4-bis(2-chloroethyl)piperazine scaffold 15. In subsequent studies, spirazidine displayed 

a wide spectrum of anti-cancer activity and relatively low toxicity, garnering interest from 

a number of groups as a potential drug lead 16. To that end, DSTP derivatives developed 

by Mikhalev et al.14 such as prospidine and spirobromine are still used as antitumor drugs 

(Figure 2).

In recent years, DSTPs have been investigated as potential antiviral agents. This 

scaffold displays promising activity against a number of viruses, including herpesviruses 

(HSV),cytomegalovirus, papillomavirus (HPV), and certain immunodeficiency viruses such 

as HIV 17, 18. This antiviral activity is attributed to the ability of dispirotripiperazines to bind 

heparan sulfate proteoglycans (HSPGs)16. HSPGs are primary binding sites for many viral 

pathogens, meaning compounds which bind HSPGs could prevent infection by blocking 

viral entry in the cell 19. However, DSTPs failed to inhibit certain viruses including varicela 

zoster virus, Epstein-Barr virus, and some HIV strains 20, indicating their mechanism(s) of 

action may not result exclusively from viral binding inhibition. DSTPs represent attractive 

targets for further development of antiviral compounds including as anti-HBV therapies.

The synthesis and SAR of spirobromine and similar DSTP analogs have been well studied 

for activity against select viruses such as HSV and HPV. We have previously disclosed 

a detailed review of these studies 21, which is summarized in Figure 3. In general, 

the DSTP ring system is the central pharmacophore which can bear alkyl, acyl, and 

heteroaryl groups on the terminal nitrogen atoms. Schmidtke et al. demonstrated in 2002 that 

nitropyrimidine derivatives had stronger antiviral activity, with 2-methyl-5-nitropyrimidine 

derivatives being optimal 22. Furthermore, attaching two DSTP ring systems to a central 

2-methyl-5-nitropyrimidine resulted in a metabolically stable derivative with potent activity 

for subsequent biological evaluation 23. We have now also used the public data for HBV 

inhibition to generate machine learning models and predict the activity of the DSTP analogs.
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Results

DSTP synthesis

While the existing SAR for 6-6-6 DSTPs has been well described for HSV, activity 

against HBV has been largely unexplored despite a recognized need for HBV antiviral 

drugs. Moreover, while DSTPs containing 6-7-6 and 7-6-7 have been studied for anticancer 

properties, their antiviral activity has not been reported. With these considerations in mind, a 

panel of 6-6-6, 6-7-6, and 7-6-7 DSTP analogs with different heteroarenes were synthesized 

and tested for anti-HBV activity as well as cytotoxicity. Given that 5-nitropyrimidine 

displayed antiviral activity in previous studies, we wanted to explore other electron-deficient 

heterocycles such as triazines and pyridines. These analogs can be divided into two groups 

which contain either 1) a DSTP ring system between two heteroarenes or 2) two DSTP ring 

systems attached to a single heteroarene. The DSTP rings were synthesized according to a 

literature procedure24 starting from the respective cyclic diamine (Scheme 1).

Synthesis of the 6-6-6 DSTPs commenced with the benzoyl protection of 1-

formylpiperazine (1), followed by removal of the formyl group with aqueous HCl. 

Alkylation of the free nitrogen with 2-chloroethanol followed by treatment with thionyl 

chloride afforded primary chloride 2. Finally, base-promoted cyclization followed by acidic 

cleavage of the benzoyl group afforded 6-6-6 DSTP 3. Synthesis of the 6-7-6 DSTPs 

started by reacting 1-benzoylpiperazine (4) with 1,3-dibromopropane to give diamine 5. 

Alkylation with 1,2-dibromoethane followed by acidic cleavage of the benzoyl groups 

afforded 6-7-6- DSTP 6. Synthesis of the 7-6-7 DSTPs started with the benzoyl protection 

of homopiperazine (7) followed by alkylation with 1,2-dibromoethane to give diamine 8. 

Subsequent alkylation in neat 1,2-dibromoethane followed by benzoyl deprotection afforded 

7-6-7 DSTP 9.

The desired 6-6-6, 6-7-6, or 7-6-7 DSTPs were then reacted with mono- or dichloroarenes in 

the presence of triethylamine to yield a panel of mono- or bis-DSTP derivatives, respectively 

(Scheme 2).

DSTP HBV testing

With the desired DSTP compounds in hand, the panel was tested for anti-HBV 

activity in a tissue culture HBV replication inhibition assay using a stably transfected, 

tetracycline-repressible cell line (HepDES19) in which HBV replication is launched by 

removing tetracycline from the medium 25. Unfortunately, none of the synthesized mono-

DSTP derivatives displayed activity against HBV (Table S1). However, a number of 

bis-DSTP compounds displayed promising antiviral activity (Table 1), several of which 

we independently tested in HepG2 2.2.15 cells (Table 2). 5-nitropyrimidine derivatives 

displayed activity against HBV with both 7-6-7 and 6-7-6 ring systems, which is consistent 

with their activity against HSV and other HSPG-binding viruses. Excitingly, compound 

11826096 displayed the most potent antiviral activity while exhibiting low cytotoxicity, 

suggesting that analogs of this heterocycle could be a potential antiviral drug lead. Overall, 

these studies suggest that antiviral activity is heavily dependent upon the identity of the 

heterocycle and the DSTP ring system (e.g. 7-6-7 vs 6-7-6).
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Mechanism of action studies

The mechanism of action for DSTPs against HBV is currently unknown. The 

dispirotripiperazines suppress both “+” and “−“ DNA strands similarly, eliminating 

the HBV ribonuclease H (RNaseH) activity as the target because RNaseH inhibition 

preferentially suppresses the viral plus-polarity DNA 14. DNA chain elongation inhibitors 

such as the NAs also preferentially suppress plus-polarity DNA because synthesis of 

the 2 strands is sequential, with minus-polarity DNA templating plus-DNA synthesis. 

Therefore, equal suppression of both strands eliminates DNA chain elongation as a 

target. Capsid accumulation was measured for 11826093 and 11826095 (promising hits) 

by measuring accumulation of intracellular HBV capsids by capsid blotting 26, which 

resolves assembled capsid particles from free capsid monomers in cells. Capsid blotting 

entails lysing cells replicating HBV and resolving the cytoplasmic extracts by agarose 

gel electrophoresis. The resolved proteins are transferred to a membrane and detected 

with an anti-capsid protein primary antibody, horseradish peroxidase-labeled secondary 

antibody, and chemiluminescence. 11826095 suppressed capsid accumulation (Figure 4), 

as did 11826091 in a separate assay, but to a lesser extent than anticipated based on the 

compound concentration used. Steps involved in virion secretion are eliminated in our 

studies as possible targets because our viral replication inhibition assays employ a viral 

genome in which the viral surface glycoproteins have been genetically ablated for biosafety 

reasons, eliminating envelopment and virion secretion. Our preliminary data limits possible 

targets for the DSTPs against HBV to activities involved in accumulation of viral RNA, 

protein, capsids, and/or encapsidation of the viral RNA.

Machine learning

Training sets for HBV inhibition from ChEMBL varied between 1830 – 2567 unique 

compounds. Cross-validation statistics were excellent for both 1 and 10μM thresholds 

(Figure S1, S2), with Support vector classification (SVC) performing among the best. 

Regression models also showed good cross-validation statistics (Figure S3), with support 

vector regression (SVR) outperforming the other tested algorithms (Figure 5). Using the 

DSTP series as an external validation set for these models showed poor predictivity (Figure 

5A). This is likely attributed to poor structural similarity overlap with the training data. 

This overlap can be visualized using a t-SNE plot, which compresses molecular descriptors 

(ECFP6) to a lower dimensional space giving a representation of the chemical property 

space covered (Figure 5B). The DSTP series is distinctively different from the compounds 

used for model training, suggesting that these molecules are indeed too chemically different 

to be predicted correctly by these models and are likely outside the applicability domain of 

the models. Based on this we built a model using the DSTP compounds alone to assess if 

this would have the potential to predict novel, more potent DSTP compounds. While small, 

this model does have reasonable cross-validation statistics (Figure S4) suggesting it may be 

more helpful in the selection process for future compounds in this class.

Discussion and Conclusions

HBV treatment is dominated by monotherapy with NAs (lamivudine, adefovir, telbivudine, 

entecavir, and two prodrug forms of tenofovir), with entecavir and tenofovir dominating 

Jones et al. Page 5

J Med Chem. Author manuscript; available in PMC 2024 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the market. They suppress HBV replication by 4-5 log10 in 70-90% of patients, usually to 

below the clinical detection limit 27–31. Therapy also reduces levels of HBV’s transcriptional 

template, the cccDNA by ~1 log10 after 1-2 years 32–34. However, resistance readily 

develops to the cheaper, older drugs such as lamivudine 35, and HBV is cleared in only 

3-6% of patients 29–31, 36. Furthermore, NAs reduce chances of death from liver failure or 

hepatocellular carcinoma by just ~2–4-fold after 10 years 37–40. The costs of this partial 

suppression of disease progression are indefinite drug administration 28 and potential side 

effects from decades of drug exposure. Additionally, the nucleo(s)tide analogs are not fully 

benign. For example, Baraclude® (Entecavir, the dominant anti-HBV drug in the USA), can 

cause lactic acidosis and hepatomegaly with steatosis [Boxed Warning; Baraclude® packet 

insert (2015)].

HBV replication persists even when NAs have suppressed viral titers to undetectable 

levels. This is revealed by sequential accumulation of resistance mutations to NAs in the 

absence of detectable viremia 41–43, and is confirmed by analyses of viral DNA in the liver 

showing replenishment of the cccDNA via reverse transcription in the absence of detectable 

viremia 44. Therefore, failure to clear HBV in the absence of viremia is in part due to 

incomplete inhibition of viral replication. This means that further inhibiting replication 

through combination therapies will improve success rates for therapy, possibly leading to a 

clinical cure of HBV infections when drugs with different mechanisms of action are used in 

combination 45.

Machine learning models built using HBV inhibition data from ChEMBL showed excellent 

cross-validation statistics, suggesting that these may be potentially useful to assist in finding 

new inhibitors (Figure 5). Unfortunately, likely due to poor representation in the training 

set, the activity of the DSTP series was unable to be predicted accurately by these models. 

Following this, we therefore built models on the DSTP data alone and these had reasonable 

cross-validation statistics (Figure 6). These models can be externally tested in future with 

additional compounds.

We have described the synthesis and anti-HBV evaluation of a small panel of mono- and bis- 

6-6-6, 6-7-6, and 7-6-7 DSTPs containing heteroaryl groups with various substituents. While 

none of the synthesized mono-DSTP derivatives had activity against HBV, some bis-DSTP 

derivatives displayed low micromolar activity against HBV, with compound 11826096 

displaying the most potent activity. Additionally, the low cytotoxicity associated with the 

compounds in cell culture supports the further investigation of DSTPs as antiviral drug 

leads. While this report provides largely preliminary in vitro activity, we hope that small 

molecules such as DSTPs could eventually be used in combination with NAs or other new 

anti-HBV agents to treat HBV.

The mechanism of action for these DSTPs against HBV replication is unknown at this early 

stage of development. However, the screening system employed (HepDES19 cells) limits 

the parts of the viral replication cycle that may be targeted. Screening with HepDES19 

cells involves induction of HBV replication from a tetracycline-repressible transgene that 

carries mutations blocking production of the viral surface glycoproteins. Therefore, this 

system eliminates stages of the viral replication cycle upstream of transcription of the 
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viral pregenomic RNA, viral envelopment, and virion secretion as potential targets of the 

DSTPs. The simultaneous suppression of the HBV plus- and minus-polarity DNA strands 

eliminates inhibition of viral DNA elongation and ribonuclease H activity as targets because 

inhibiting these steps preferentially suppresses the plus polarity DNA strand. Finally, capsid 

blotting (Figure. 4) reveals a modest suppression of capsid accumulation that is insufficient 

to account for the magnitude of reduction in viral DNA synthesis. Consequently, candidate 

targets for the DSTPs include encapsidation of the pregenomic RNA, protein-priming of 

DNA replication, and preferential destabilization of DNA-containing intracellular capsids 

(many capsids are empty in this cell system).

Future work on DSTPs could focus on the further elucidation of the mechanism of action 

and combination studies to assess for synergy with other HBV inhibitors. In the short 

term, we hope to expand upon our SAR with more DSTP analogs and define the stage of 

HBV replication targeted by DSTPs. The chemistry and purification we describe for the 

DSTPs is relatively complicated and may need to be simplified for future commercial utility. 

Alternatively, this complex chemistry could be commercially desirable as it represents a 

barrier for competitors for this class of compounds.

Experimental Section

Chemical Synthesis

General Procedure 1.—Mono-DSTPs were synthesized utilizing a modified procedure 

from Schmidtke et al.21 A solution of DSTP (1.0 equiv) in H2O was added to a suspension 

of chloroarene (2.15 equiv) in EtOH. Then, Et3N was added (2.05 equiv) and the reaction 

was allowed to proceed at room temperature for 4 hours. Then acetone was added, and 

the resulting precipitate was filtered and recrystallized from H2O/EtOH to yield the desired 

mono-DSTP. All compounds are >95% pure by HPLC.

General Procedure 2.—Bis-DSTPs were synthesized utilizing a modified procedure 

from Makarov et al.23 A solution of chloroarene (1.0 equiv) in EtOH was added to a solution 

of DSTP (2.0 equiv) in H2O and the reaction was heated to reflux for 2 hours. Then Et3N 

(4.0 equiv) was added and allowed to reflux for an additional 20 minutes. After cooling 

to room temperature, the solvent was evaporated under reduced pressure and MeOH was 

added. The resulting precipitate was filtered off and washed with MeOH and acetone to 

yield the desired bis-DSTP. All compounds are >95% pure by HPLC.

Activity against Hepatitis B Virus ayw1 in HepG2 2.2.15 cells

The anti-HBV assay was performed by NIAID as previously described 46, 47 with 

modifications to use real-time qPCR (TaqMan) to measure extracellular HBV DNA copy 

number associated with virions released from HepG2 2.2.15 cells. The HepG2 2.2.15 

cell line is a stable human hepatoblastoma cell line that contains two copies of the HBV 

wild-type strain ayw1 genome and constitutively produces high levels of HBV. Antiviral 

compounds blocking any late step of viral replication such as transcription, translation, 

pregenome encapsidation, reverse transcription, particle assembly and release can be 

identified and characterized using this cell line.
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Briefly, HepG2 2.2.15 cells are plated in 96-well microtiter plates at 1.5×104 cells/well 

in Dulbecco’s Modified Eagle’s Medium supplemented with 2% FBS, 380 μg/mL G418, 

2.0 mM L-Glutamine, 100 units/mL Penicillin, 100 μg/mL Streptomycin, and 0.1 mM 

non-essential amino acids. Only the interior wells are utilized to reduce “edge effects” 

observed during cell culture; the exterior wells are filled with complete medium to help 

minimize sample evaporation. After 16-24 hours the confluent monolayer of HepG2 2.2.15 

cells is washed, and the medium is replaced with complete medium containing various 

concentrations of a test compound in triplicate. lamivudine (3TC) is used as the positive 

control, while media alone is added to cells as a negative control (virus control, VC). Three 

days later the culture medium is replaced with fresh medium containing the appropriately 

diluted test compounds. Six days following the initial administration of the test compound, 

the cell culture supernatant is collected, treated with pronase and then used in a real-time 

quantitative TaqMan qPCR assay. The PCR-amplified HBV DNA is detected in real-time 

by monitoring increases in fluorescent signal that result from the exonucleolytic degradation 

of a quenched fluorescent probe molecule that hybridizes to the amplified HBV DNA. 

For each PCR amplification, a standard curve is simultaneously generated using dilutions 

of purified HBVDNA. Antiviral activity is calculated from the reduction in HBV DNA 

levels (EC50& EC90 values determined). A tetrazolium dye (MTS; 3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; CellTiter®96 Reagent, 

Promega) uptake assay is then employed to measure cell viability using the same assay 

plate, and the viability data is used to calculate compound cytotoxicity (CC50). The 

Selectivity Index (SI50) is calculated as CC50/EC50.

Activity against Hepatitis B Virus in HepDES19 cells.—HBV inhibition potential 

was measured in HepDES19 cells, a HepG2 derivative carrying a tetracycline-repressible 

HBV genomic expression cassette 25. Replication was detected after 3 days of compound 

exposure in cells induced to replicate HBV by tetracycline withdrawal using a strand-

preferential quantitative PCR assays described 48 to help define the steps during HBV 

replication that were possible targets of the DSTPs. Cytotoxicity was measured using an 

MTS assay as described previously 48.

Capsid quantification.—HBV nucleocapsid levels were measured in HepDES19 cells 

replicating HBV after five days of compound treatment. Cells were lysed with core prep 

lysis buffer (10mM Tris pH 7.4, 1% Tween 20, 150mM NaCl) and 0.7 μL Protease Inhibitor 

Cocktail (Sigma-Aldrich, P8340). Lysates were centrifuged and a final concentration of 

10mM CaCl2 and 35 units of micrococcal nuclease (New England BioLabs M0247S) 

was added to destroy non-encapsidated nucleic acids. Protein levels were quantified via a 

Bradford assay (Bio-Rad) using the manufactures protocol. Protein normalized cytoplasmic 

lysates were resolved by native agarose gel electrophoresis, then transferred onto a 

nitrocellulose membrane (GE Amersham) by capillary transfer using 10x SSC buffer (1.5M 

NaCl and 150mM sodium citrate). Nucleocapsid levels were measured by incubation with 

Mouse anti-HBcAg primary antibody (Tokyo Future Style, T2221) and Anti-Mouse IgG, 

AP conjugated secondary antibody (Promega, S3721) and detected by using BCIP and NBT 

Color Development Substrate (Promega, S3771). Bands were quantified by densitometry.
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Data curation

Datasets for HBV inhibition (EC50/IC50 for target CHEMBL613497) were downloaded 

from the ChEMBL (version 32) database 49. Entries that defined either a numerical value 

for “EC50” or “IC50” value column were retained. Each dataset was sanitized using our 

proprietary software “E-Clean” which uses open-source RD-Kit tools in order to remove 

duplicate compounds and salts, as well as neutralize charges. For classification model 

training data, post compound standardization, a binary value was assigned based on defined 

threshold, AC50 value (converted to -logM) and qualifier (“=”,”>”,”<”). For duplicate 

compounds, as defined by InChIKey, a required 80% agreement was required to retain 

the compound. This was done to remove ambiguous compounds. As the % agreement was 

contingent on threshold, the total number of compounds per final dataset varied slightly. For 

regression model building, the compounds with a “=” qualifier and a value (−logM) were 

averaged together (geometric mean) and the rest of the compounds were discarded. Prior 

to model building, datasets were further standardized within the latest version of the Assay 

Central software which uses the Indigo Toolkit 50.

Machine learning

Our proprietary software Assay Central was used to generate multiple machine learning 

algorithms that are integrated to build classification and regression models that have been 

described in detail previously 51. The algorithms used included Bernoulli naïve Bayes, 

Linear Logistic Regression, AdaBoost Decision Tree, Random Forest, Support Vector 

Machine, Deep Neural Networks and XGBoost. Machine learning model validation was 

performed using a nested 5-fold cross validation. Nested 5-fold cross validation initially 

selects a random, stratified 20% hold out set that is removed from the training set prior 

to model building. The model is then built with the other 80% of the training data and 

the hyperparameters (if applicable) are optimized using a grid search using 5-fold dataset 

splits (20% validation sets). This optimized model is then used to predict the initial 20% 

hold out set and then repeated until all compounds have been in a hold-out set (total 20 

models trained). The final nested 5-fold cross validation scores are an average of each of 

the hold-out set metrics. Due to its high computational requirement deep learning (DL) uses 

a 20% leave out set instead. Models were built using ECFP6 descriptors only and metrics 

generated as described previously 51. The applicability domain was calculated based on the 

reliability-density neighborhood (RDN) method which considers the model overlap and the 

individual bias and precision of the overlapping fingerprints (Figure 5) 52.

t-SNE visualization

t-SNE 53 embeds data into a lower-dimensional space (Figure 6). 1024 ECFP6 fingerprints 

were generated for all compounds. The ECFP6 fingerprints were then embedded into a 

2-dimensional vector using t-SNE. All t-SNE values were generated using the scikit-learn 

library in python with default hyperparameters (n_components = 2, perplexity = 30, early 

exaggeration = 12.0, learning rate = 200, n_iter = 1000).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations Used

ACC accuracy

AUC area under the curve

BCIP 5-bromo-4-chloro-3-indolyl phosphate

cccDNA covalently closed circular DNA

DSTP dispirotripiperazine

FBS fetal bovine serum

HSPG heparan sulfate proteoglycan

MAE mean of absolute value of errors

MCC Matthews correlation coefficient

MGD mean gamma deviance regression loss

MPD mean Poisson deviance regression loss

NBT nitro-blue tetrazolium

NIAID National Institute of Allergy and Infectious Diseases

NA nucleoside/nucleotide analog

qPCR quantitative polymerase chain reaction

RDN reliability-density neighborhood

RMSE root of the mean of the square of errors

RNaseH ribonuclease H

ROC receiver operating characteristic

SI selectivity index

SVC support vector machine classification

t-SNE t-distributed stochastic neighbor embedding
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Figure 1. 
General structures for 6-6-6 (left), 7-6-6 (center), and 7-6-7 (right) DSTPs.
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Figure 2. 
Structures of first generation 6-6-6 DSTPs.
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Figure 3. 
SAR of N-aryl DSTPs.
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Figure 4. Capsid blot revealing modest suppression of HBV capsid accumulation by 11826095 
(CP193) in HepDES19 cells.
A. Capsid blot. B. Quantification of data in A. 11826095 (CP193) was dissolved in DMSO 

and 11826093 (CP192) was dissolved in water.
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Figure 5. Machine learning models for HBV inhibition.
(A) Threshold or range, number of compounds, algorithm, and nested, 5-fold cross 

validation statistics for HBV inhibition modelsbuilt with training data from ChEMBL. (B) 

ROC plots for classification models (SVC) built with a 1μM or 10μM threshold (each 

line represents a single fold) and the predicted versus actual AC50 values (−logM) for a 

SVR regression model.(SVC=Support vector machine classification, SVR=Support vector 

machine regression, AUC=ROC “area under the curve”, F1= F1 score, ACC=Accuracy, 

MCC=Matthews Correlation Coefficient, RMSE= Root of the Mean of the Square of Errors, 

MAE=Mean of Absolute value of Errors, MGD=Mean Gamma deviance regression loss and 

MPD=Mean Poisson deviance regression loss)

Jones et al. Page 18

J Med Chem. Author manuscript; available in PMC 2024 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Dispirotripiperazine (DSTP) series used as an external test set for machine learning 
models for HBV inhibition.
(A) Truth tables, statistical analysis (classification) and correlational visualization 

(regression) for the tested DSTPs. (B) A t-SNE visualization showing the ChEMBL HBV 

inhibition training set, FDA approved drugs and the tested DSTPs.
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Scheme 1. 
Synthesis of 6-6-6 (3), 6-7-6 (6), and 7-6-7 (9) DSTPs. a) 1. BzCl, NaHCO3, CHCl3 2. HCl, 

MeOH 3. ClCH2CH2OH, KOH, EtOH 4. SOCl2, CHCl3 b) 1. NaOH, EtOH 2. aq. HCl 3. 

LiOH, H2O c) 1,3-dibromopropane, NaHCO3, EtOH d) 1. 1,2-dibromoethane 2. 10% aq. 
HBr 3. LiOH, H2O e) 1. BzCl, AcOH, then NaOH 2. 1,2-dibromoethane, NaHCO3 f) 1. 

1,2-dibromoethane 2. 10% aq. HBr 3. LiOH, H2O
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Scheme 2. 
Coupling of chloroarenes to yield mono- (top) and bis- (bottom) DSTP derivatives. g) Et3N, 

EtOH/H2O or dioxane/H2O
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Table 1.

HBV activity (EC50, μM) and cytotoxicity (CC50, μM) for bis-DSTP derivatives in HepDES19 cells.

*
Tested as dihydrochloride salt
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Table 2.

Activity against Hepatitis B Virus ayw1 in HepG2 2.2.15 cells (data from NIAID).

Compound EC50 (μM) EC90 (μM) CC50 (μM) SI50 SI90

11826096 1.86 15.67 >100.00 >54 >6

11826091 6.53 58.15 >100.00 >15 >2

11826097 22.04 78.12 >100.00 >5 >1

11826092 2.13 26.5 >100.00 >47 >4

3TC 0.01771 0.541 >2.00 >113 >4
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