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1  |  INTRODUC TION

Over	 300 million	 surgeries	 are	 performed	 annually,1,2 and anes-
thesia	is	used	worldwide	to	deal	with	these	painful	surgeries.2 The 
use	 of	 general	 anesthesia	 is	 characterized	 by	 amnesia,	 analgesia,	
unconsciousness,	 and	 immobility.3	 As	 a	 dissociative	 anesthetic,	
ketamine	 produces	 rapid-	onset	 effects	 while	 retaining	 conscious-
ness.4	However,	 the	psychological	 side	effects	of	ketamine	during	
the	 recovery	 period	 and	 the	 high	 potential	 of	 abuse	 prevent	 its	

clinical application.5,6	Recently,	a	subanaesthetic	dose	of	ketamine	
was	 found	 to	 generate	 rapid-	onset	 and	 long-	lasting	 antidepres-
sant	 effects.7,8	 Low	 concentrations	 of	 ketamine	 can	 induce	 rapid	
antidepressant	 effects	within	 1 h	 of	 a	 single	 infusion	 that	 last	 for	
over	1 week,	which	has	been	used	 for	 treatment-	resistant	depres-
sion (TRD).9,10	 Nonetheless,	 ketamine	 has	 the	 potential	 for	 abuse	
and	psychological	 side	effects,	 restricting	 its	clinical	use	 for	 treat-
ing	depression.	Therefore,	 investigating	the	molecular	mechanisms	
underlying	 the	 anesthetic	 and	 antidepressant	 effects	 of	 ketamine	
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Abstract
Background: As	a	phencyclidine	(PCP)	analog,	ketamine	can	generate	rapid-	onset	and	
substantial	anesthetic	effects.	Contrary	to	traditional	anesthetics,	ketamine	is	a	dis-
sociative	anesthetic	and	can	induce	loss	of	consciousness	 in	patients.	Recently,	the	
subanaesthetic	dose	of	ketamine	was	found	to	produce	rapid-	onset	and	lasting	anti-
depressant	effects.
Aim: However,	how	different	concentrations	of	ketamine	can	induce	diverse	actions	
remains	 unclear.	 Furthermore,	 the	molecular	mechanisms	 underlying	 the	NMDAR-	
mediated	anesthetic	and	antidepressant	effects	of	ketamine	are	not	fully	understood.
Method: In	this	review,	we	have	introduced	ketamine	and	its	metabolism,	summarized	
recent	advances	 in	 the	molecular	mechanisms	underlying	NMDAR	 inhibition	 in	 the	
anesthetic	and	antidepressant	effects	of	ketamine,	explored	the	possible	functions	of	
NMDAR	subunits	in	the	effects	of	ketamine,	and	discussed	the	future	directions	of	
ketamine- based anesthetic and antidepressant drugs.
Result: Both	the	anesthetic	and	antidepressant	effects	of	ketamine	were	thought	to	
be mediated by N- methyl- D-	aspartate	receptor	(NMDAR)	inhibition.
Conclusion: The	roles	of	NMDARs	have	been	extensively	studied	in	the	anaesthetic	
effects	of	ketamine.	However,	the	roles	of	NMDARs	in	antidepressant	effects	of	keta-
mine are complicated and controversial.
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would	benefit	 ketamine-	based	drug	discovery	 as	well	 as	 decrease	
the	abuse	potential	and	side	effects	of	ketamine.

Ketamine is an N-	methyl-	D-	aspartate	receptor	(NMDAR)	antag-
onist,	and	NMDAR	inhibition	is	assumed	to	mediate	the	anesthetic	
and	 antidepressant	 effects	 of	 ketamine.11– 13	 Accordingly,	 several	
NMDAR	antagonists,	such	as	nitrous	oxide	(N2O,	laughing	gas)	and	
MK-	801,	can	produce	effects	similar	 to	those	of	ketamine.11,14 Al-
though	 the	 antidepressant	 effects	 of	 ketamine	 are	 sustained	 for	
weeks,15,16	 the	 half-	life	 of	 ketamine	 is	 2–	4 h,	 and	 it	 metabolizes	
rapidly	 and	 extensively	 to	 norketamine	 (NK),	 hydroxynorketamine	
(HNK),	 and	 dehydronorketamine	 (DHNK).17,18	 Therefore,	 the	 me-
tabolites	 of	 ketamine	 are	 assumed	 to	 mediate	 its	 long-	term	 ef-
fects.	Moreover,	NK	 can	 induce	 anesthetic	 effects,	 and	HNK	 can	
produce	 antidepressant	 effects,	 indicating	 that	 the	metabolism	of	
ketamine	affects	its	pharmacology.	However,	in	a	later	study,	HNK	
was	 found	 to	 be	 inessential	 for	 the	 antidepressant	 effects	 of	 (R)-	
ketamine,19 suggesting that the molecular mechanisms underlying 
the	 ketamine-	induced	 anesthetic	 and	 antidepressant	 effects	 need	
further	investigation.

NMDAR	 inhibition	 is	 the	 primary	 presumptive	 molecular	
mechanism	underlying	the	effects	of	ketamine.13,20 Both ketamine 
and	its	metabolite	NK	bind	NMDARs	and	produce	anesthetic	ef-
fects.21	 However,	 the	 local	 anesthetic	 effects	 of	 ketamine	 may	
also be mediated by voltage- gated sodium channels.22,23 HNK 
can	 enhance	 the	 activation	 of	 alpha-	amino-	3-	hydroxy-	5-	methyl-	
4-	isoxazolepropionic	 acid	 receptors	 (AMPARs)	 and	 mediate	 the	
antidepressant	 effects	 of	 ketamine	 in	 an	 NMDAR-	independent	
manner.24– 26	 By	 contrast,	 although	HNK	can	bind	NMDARs,27 it 
does	 not	 produce	 antidepressant	 effects.19,28 The presumptive 
mechanisms	underlying	NMDAR	 inhibition	 in	 the	 effects	 of	 ket-
amine are controversial and much more complicated. In this re-
view,	 we	 have	 focused	 on	 the	 NMDAR-	induced	 anesthetic	 and	
antidepressant	effects	of	ketamine.	First,	we	have	introduced	ket-
amine	and	its	metabolites.	Then,	we	have	summarized	the	recent	
advances	in	the	NMDAR-	mediated	anesthetic	and	antidepressant	
effects	of	ketamine	and	have	surveyed	the	possible	roles	of	differ-
ent	NMDAR	subunits	in	the	effects	of	ketamine.	Finally,	we	have	
discussed	 the	 future	 perspectives	 on	 the	 clinical	 application	 of	
ketamine.

2  |  KETAMINE

Phencyclidine	 (PCP)	 was	 designed	 and	 synthesized	 for	 use	 as	 a	
dissociative	anesthetic	in	1958.29	However,	due	to	its	strong	psy-
chomotor,	rewarding,	and	reinforcing	properties,	PCP	and	its	ana-
logs	were	abused	worldwide	as	psychoactive	substances,	although	
their	 psychopharmacological	 properties	 have	 not	 yet	 been	 fully	
uncovered.30

Psychomimetic	adverse	effects	were	found	to	have	limited	the	
clinical	usefulness	of	PCP.	Since	then,	more	PCP	analogs	have	been	
designed to reduce these psychotomimetic and cognitive adverse 
effects.31	 Ketamine	 (Ci581)	 (2-	(O- chlorophenyl)- 2- methylamino 

cyclohexanone)	is	one	of	over	200	analogs	of	PCP	and	exhibits	prom-
ising	anesthetic	and	antidepressant	effects.32 Ketamine has two op-
tical isomers (enantiomers): S- (+)- ketamine and R-	(−)-	ketamine.33 In 
this	review,	ketamine	has	been	referred	to	as	a	racemic	mixture.	Ket-
amine,	or	“Special	K”	causes	a	dissociative	state	of	relaxed	well-	being	
and	hallucinogenic	effects	at	subanaesthetic	doses.34	Moreover,	the	
well-	known	 adverse	 psychological	 effects	 of	 ketamine	 would	 im-
pair	 cognition	and	memory,	which	have	not	yet	been	 solved.35 As 
a	 rapid-	acting	drug,	 the	half-	life	 of	 ketamine	 is	 2–	4 h.	Ketamine	 is	
catalyzed	through	N-	demethylation	by	cytochrome	P450	enzymes	
and	can	generate	the	 initial	metabolite	 (R,	S)-	(NK)	 (80%)	 in	human	
plasma.12	NK	is	metabolized	into	DHNK	through	dehydrogenation,	
and	ketamine	can	also	be	rapidly	metabolized	 into	HK	and	6-	HNK	
through	hydroxylation	and	N- demethylation.36–	38	To	further	under-
stand	the	metabolism	and	pharmacokinetics	of	ketamine,	please	see	
the relevant review.17

3  |  THE ANESTHETIC EFFEC TS OF 
KETAMINE

The	general	anesthetic	effects	of	ketamine	 include	amnesia,	 an-
algesia,	 unconsciousness,	 and	 immobility.3 As a dissociative an-
esthetic,	 ketamine	 causes	 loss	 of	 orthostatic	 reflexes	 but	 not	
consciousness,	 indicating	 that	 the	 patients	 remain	 awake	 with	
their eyes open.39,40	 As	 a	 PCP	 analog,	 ketamine	 exerts	 anes-
thetic	effects	in	a	dose-	dependent	manner	by	acting	on	the	cen-
tral	 nervous	 system.	 In	1965,	Edward	Domino	used	ketamine	as	
an	 anesthetic	 in	 humans,	 and	 the	 results	 showed	 that	 ketamine	
was	short-	acting	with	psychotropic	effects.41	Traditionally,	keta-
mine	 is	 administered	 in	 a	 dose	 of	 1–	4.5 mg/kg	 intravenously	 or	
6.5–	13 mg/kg	intramuscularly	to	induce	anesthetic	effects	in	hu-
mans,	depending	on	the	patient's	age	and	the	desired	clinical	ef-
fects.34,42	 Ketamine	 can	 disrupt	 frontal–	parietal	 communication	
and	induce	anesthetic	effects.43– 46	Ketamine	also	affects	the	car-
diovascular system by acting on the sympathetic nervous system. 
The	anesthetic	effects	of	ketamine	are	dose-	dependent.	However,	
repeated administration can result in ketamine resistance.47 S- (+)- 
ketamine	 is	more	 effective	 and	 long-	lasting	 than	 a	 racemic	mix-
ture	of	S-		and	R-	enantiomers.	Both	 (R, S)- ketamine and its initial 
metabolite (R, S)-	NK	 penetrate	 the	 blood–	brain	 barrier,	 thereby	
producing	anesthetic	effects.	However,	the	other	metabolite	(2R,	
6R;	2S,	 6S)-	HNK	can	 also	penetrate	 the	blood–	brain	barrier	 but	
does	not	induce	any	anesthetic	effects.48

Although ketamine can block voltage- gated sodium channels 
and	 induce	 local	anesthetic	effects,22,23	 the	general	anesthetic	ef-
fects	of	ketamine	are	 supposedly	mediated	by	NMDAR	 inhibition.	
Accordingly,	HNK	without	 any	 anesthetic	 effects	 showed	 a	 lower	
binding	affinity	for	NMDARs	compared	with	ketamine	and	NK.26,49 
The	 anesthetic	 dose	 of	 ketamine	 caused	 neuronal	 apoptosis	 and	
cognitive	 deficits	 in	 rodents	 and	 rhesus	 monkeys,50– 53 suggest-
ing	that	the	use	of	ketamine	as	a	dissociative	anesthetic	should	be	
strictly	scrutinized.



    |  3 of 11ZHOU and DUAN

4  |  ANTIDEPRESSANT EFFEC TS OF 
KETAMINE

Similar	 to	PCP,	 the	subanaesthetic	doses	of	ketamine	produce	an-
tidepressant	 effects.	 Seven	 patients	 with	 major	 depression	 were	
intravenously	 administered	 0.5 mg/kg	 ketamine	 at	 Yale	University	
in	2000,7 the results showed that the depressive symptoms were 
significantly	 improved	 within	 the	 next	 2	 test	 days.	 This	 was	 the	
first	clinical	trial	of	ketamine	for	major	depression.7,34 Some studies 
also indicated that ketamine could improve bipolar depression and 
TRD.54,55	Patients	with	TRD	do	not	respond	to	the	currently	avail-
able	antidepressant	pharmacological	therapies,	and	this	might	result	
in	 a	 high	 risk	 of	 suicidal	 behaviors.56	 Thus,	 novel	 rapid-	response	
antidepressant	 drugs	 are	 needed	 for	 these	 patients.	 The	previous	
pilot studies indicated that R-	(−)-	ketamine	produces	 rapid	and	sig-
nificant	effects	in	the	treatment	of	TRD	and	bipolar	depression.57,58 
The	 response	 rates	 of	 patients	 with	 bipolar	 depression	 and	 TRD	
to	ketamine	at	4 h	were	>50%.59,60	Ketamine	 can	affect	 the	 func-
tional	 connectivity	between	 the	 cortex	 and	 striatum	 in	depressed	
individuals	and	thereby	produce	antidepressant	effects,61 although 
some contradictory results have been reported.62	Interestingly,	pa-
tients	with	depression	with	dissociative	effects	were	found	to	have	
experienced	 greater	 improvements	 in	 their	 depressive	 symptoms	
upon	ketamine	 treatment,63,64 indicating that the dissociative side 
effects	could	help	predict	the	antidepressant	efficacy	of	ketamine	in	
these	patients.	However,	subsequent	analysis	and	studies	suggested	
no	relationship	between	the	dissociative	side	effects	and	the	anti-
depressant	 effects	 of	 ketamine.10,65	 Furthermore,	 the	 dissociative	
side	effects	of	ketamine	are	acute	and	dissipate	in	80 min,	and	the	
antidepressant	effects	occur	within	110 min	and	last	for	1 week,66,67 
suggesting	that	the	ketamine-	mediated	dissociative	side	effects	and	
antidepressant	effects	depend	on	diverse	signaling	pathways.	The	
elimination	half-	life	of	ketamine	is	2–	4 h,12,68,69 and the antidepres-
sant	effects	of	ketamine	can	 last	 for	up	 to	1 week.	Therefore,	 the	
molecular mechanisms underlying the long- lasting antidepressant 
effects	of	ketamine	need	further	exploration.

Besides,	 the	 antidepressant	 effects	 of	 ketamine	 are	 dose-	
dependent.	There	is	clear	evidence	of	the	efficacy	of	0.5	and	1.0 mg/
kg	 intravenously	 administered	 subanaesthetic	 doses	 of	 ketamine	
in	 TRD,	 whereas	 0.1 mg/kg	 intravenously	 administered	 doses	 of	
ketamine	 cannot	 significantly	 improve	 the	 health	 of	 patients	with	
TRD.70,71 The molecular mechanisms underlying the dose- dependent 
antidepressant	effects	of	ketamine	remain	elusive.

5  |  THE BLOCK AGE EFFEC TS OF 
KETAMINE ON NMDARs

As	 a	 non-	competitive	NMDAR	 antagonist,	 ketamine	 can	 bind	 the	
PCP-	binding	region	of	NMDARs	in	the	Ca2+	channel	pore,	resulting	
in	the	deactivation	of	eukaryotic	elongation	factor	2	(eEF2)	kinase	
(CaMK	III),	thereby	inducing	protein	synthesis	through	mTORC1	and	
executing	antidepressant	effects	(Figure 1).72	In	line	with	this,	some	
non-	ketamine	 NMDAR	 antagonists	 such	 as	 MK-	801	 (dizocilpine),	
N2O	 (laughing	 gas)	 and	 CPP	 (3-	(2-	carboxypiperazin-	4-	yl)	 propyl-	
1-	phosponic	 acid)	 can	 also	 produce	 fast-	acting	 antidepressant	
effects.11,72–	74	 However,	 some	 non-	ketamine	 NMDAR	 antagonists	
such	 as	 memantine,	 lanicemine	 (AZD6765),	 and	MK-	0657	 (CERC-	
301)	do	not	produce	robust	antidepressant	effects.75,76	Furthermore,	
the	antidepressant	effects	of	NMDAR	antagonists	are	species-		and	
dose- dependent.75– 77	Taken	together,	these	findings	suggested	that	
the	roles	of	NMDARs	in	ketamine-	mediated	antidepressant	effects	
are	complicated.	Interestingly,	the	anesthetic	doses	of	ketamine	do	
not	 induce	antidepressant	effects,	of	which	the	NMDARs	are	fully	
blocked	 by	 the	 high	 concentrations	 of	 ketamine.78 The subanaes-
thetic	doses	of	ketamine	can	partially	block	the	NMDARs,	and	over	
50%	of	NMDARs	are	unblocked,79,80 which may contribute to the 
psychiatric	side	effects	of	ketamine.

The	 binding	 affinity	 of	 S- (+)-	ketamine	 to	NMDARs	 is	 fourfold	
greater	 than	 that	 of	 the	 other	 enantiomer	R-	(−)-	ketamine,	 indicat-
ing that S- (+)-	ketamine	has	greater	potency	in	anesthetic	effects,81 
although	 it	 is	 more	 expensive	 than	 racemic	 ketamine.32 The 

F I G U R E  1 Ketamine	and	its	metabolites	inhibit	NMDARs.	The	inhibition	of	NMDARs	by	ketamine	and	its	metabolites	affects	protein	
synthesis	through	the	actions	of	BDNF,	mTORC1,	and	ERK.
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psychomimetic	side	effects	of	R-	(−)-	ketamine	were	mild	as	compared	
with	those	of	S- (+)- ketamine in depressed mice.82	However,	the	psy-
chomimetic	 side	 effects	 of	S- (+)- ketamine were mostly mild com-
pared	with	the	racemic	mixture	ketamine	in	the	patients	with	major	
TRD.83	These	inconsistent	data	from	mouse	and	small-	scale	human	
clinical	trials	suggest	that	the	psychopharmacological	properties	of	
ketamine	may	be	different	in	different	species.	Thus,	the	molecular	
mechanisms	underlying	the	anesthetic	and	antidepressant	effects	of	
ketamine	are	complex	and	need	further	investigation.

5.1  |  N- methyl- D- aspartate receptor

Typically,	NMDARs	are	composed	of	two	GluN1	and	two	identical	
GluN2 (2A- D)/GluN3 (A- B) subunits and assemble as di- heteromeric 
complexes.84,85	However,	NMDARs	can	also	consist	of	 two	GluN1	
and	two	different	GluN2/GluN3	subunits,	which	are	tri-	heteromeric	
complexes.85,86	The	developmental	switch	from	GluN2B-		to	GluN2A-	
containing	 NMDARs	 at	 the	 hippocampal	 synapses	 suggests	 that	
NMDAR	subunits	change	during	development.87,88	All	the	NMDAR	
subunits	consist	of	four	domains:	the	NTD	(N-	terminal	domain)	is	a	
clamshell-	like	structure,	and	the	ABD	(agonist	D-	serine/glycine	and	
glutamate- binding domain) can bind D- serine/glycine (GluN1 and 
GluN3)	and	glutamate	 (GluN2),	 the	TMD	 (transmembrane	domain)	
can	form	the	ion	channel,	and	the	CTD	(C-	Terminal	Domain)	medi-
ates	the	synaptic	localization	of	NMDARs	and	the	downstream	Ca2+ 
signaling transduction.89,90	These	agonists	are	required	but	are	not	
efficient	in	the	activation	of	NMDARs	because	of	Mg2+ blockage in 
the	NMDARs	at	rest	membrane	potential.91 Once the postsynaptic 
membranes	are	depolarised,	Mg2+	is	released,	leading	to	the	opening	
and	activation	of	NMDARs	required	for	 learning	and	memory.92– 95 
Ketamine	can	bind	 the	PCP	site	 in	 the	pore	of	NMDARs,	which	 is	
partially	overlapped	with	the	Mg2+- binding site.12	Therefore,	keta-
mine	 only	 blocks	 the	 Mg2+-	released	 open	 NMDARs	 but	 not	 the	
closed	NMDARs	with	Mg2+ blockage.96

5.2  |  NMDARs mediated the anesthetic 
effects of ketamine

Ketamine	and	its	principal	metabolite	NK	are	active	agents,	whereas	
the other metabolites are inactive compounds.21,97	 However,	 the	
anesthetic	effects	of	NK	were	significantly	decreased	as	compared	
with	 those	 of	 ketamine,	 which	 indicated	 that	 the	 metabolism	 of	
ketamine	to	NK	attenuated	the	anesthetic	effects.21	Nevertheless,	
NK	has	a	lower	potential	for	abuse	and	side	effects	than	ketamine,	
especially the S(+) enantiomer.98	 Interestingly,	 ketamine's	 other	
principal	metabolite	HNK	did	not	generate	any	anesthetic	effects.21 
Given	that	NMDAR	inhibition	is	the	major	mechanism	underlying	the	
anesthetic	effects	of	ketamine,	the	binding	affinity	of	NMDARs	to	
ketamine	(Ki = 530 nM)	should	be	greater	than	that	to	NK	and	HNK.	
Furthermore,	S-	ketamine	and	its	metabolite	S-	NK	contain	five	times	
and	eight	times	higher	affinity	for	NMDARs	than	the	R-	enantiomers,	

respectively.99	 Therefore,	 these	 S-	enantiomers	 have	 more	 po-
tency	in	their	anesthetic	effects	compared	with	the	R-	enantiomers.	
Mechanistically,	ketamine	binds	the	PCP	site	in	the	NMDAR	chan-
nel	and	then	inhibits	the	activation	of	NMDARs,	which	is	assumed	
to be the molecular mechanisms through which ketamine induces 
the	anesthetic	effects.	In	line	with	this,	the	anesthetic	gases	xenon	
and	isoflurane	can	bind	the	glycine	site	of	NMDARs	and	inhibit	the	
activation	of	NMDARs,100– 102	indicating	that	NMDAR	inhibition	pro-
duces	anesthetic	effects.	In	terms	of	the	NMDAR	subunits,	GluN1	
is	an	obligatory	subunit,	and	 is	expressed	ubiquitously	 throughout	
the brain.85 The GluN2A and GluN2B subunits are abundant in the 
central	nervous	system.	However,	the	GluN2C	and	GluN2D	subunits	
are	restrictedly	expressed	in	the	cerebellum.85 GluN3 subunits are 
not	required	for	anesthetic	activity.103	Therefore,	the	NMDAR	subu-
nits	GluN1	and	GluN2A-	2B	may	meet	 the	 three	criteria	of	 targets	
relevant to anesthetic action.104 Both GluN1 and GluN2B knockout 
mice	die	shortly	during	the	postnatal	period,	so	the	GluN2A knock-
out mice are the only global knockout mice to prove the essential 
role	of	NMDARs	in	the	anesthetic	effect	of	ketamine.105 Given that 
the	 GluN1,	 GluN2A,	 and	GluN2B	 subunits	were	 found	 to	 be	 lost	
in	anti-	NMDA	encephalitis,106–	108 such patients should be avoided 
when	using	ketamine	to	induce	general	anesthesia	in	the	future.109

5.3  |  NMDARs were involved in the antidepressant 
effects of ketamine

The	expression	of	the	GluN2A	and	GluN2B	subunits	was	reduced	
in	the	major	depression,110	the	regulation	of	ellagic	acid	on	the	ex-
pression	of	the	GluN2A	and	GluN2B	subunits	might	have	affected	
antidepressant-	like	effects.111	Taken	together,	these	studies	sug-
gested	the	possible	regulation	of	NMDARs	on	major	depression.	
The	prevailing	hypothesis	 of	 the	 antidepressant	 effects	of	 keta-
mine	was	the	NMDAR	inhibition-	mediated	activation	of	AMPARs	
(α-	amino-	3-	hydroxy-	5-	methyl-	4-	isoxazolepropionic	 acid	 recep-
tors).112	 Therefore,	 metabolites	 with	 high	 affinity	 to	 NMDARs	
should	 have	 high-	antidepressant	 potency.	 However,	 the	 antide-
pressant	effects	of	(R-	)-	ketamine	were	greater	than	those	of	(S-	)-	
ketamine,82	although	 the	affinity	of	 (R-	)-	ketamine	 (Ki	=1340 nM)	
to	NMDARs	was	less	than	that	of	(S-	)-	ketamine	(Ki = 465 nM).113,114 
In	 line	with	 this,	 50 μM	ketamine	metabolite	 (2R,	 6R)-	HNK	 pro-
duced	 more	 rapid-	acting	 and	 reliable	 antidepressant	 effects	
than	 its	 enantiomer	 (2S,	 6S)-	HNK.24	 Furthermore,	 the	 NMDAR	
antagonist	MK-	801	 (Ki = 3.49 nM)	 exhibited	 a	 higher	 affinity	 for	
NMDARs	 compared	 with	 ketamine	 (Ki = 530 nM),	 and	 MK-	801	
did	not	exhibit	more	rapid	antidepressant	effects	than	ketamine.	
Taken	 together,	 these	 data	 suggest	 that	 the	 antidepressant	 ef-
fects	of	ketamine	might	be	NMDARs-	independent.	Furthermore,	
the	ketamine	metabolite	(2R,	6R;	2S,	6S)-	HNK	(Ki > 10,000 nM	for	
NMDARs)	could	rapidly	cross	the	blood–	brain	barrier.	Given	that	
(2R,	6R;	2S,	6S)-	HNK	could	generate	antidepressant	effects,	but	
not	 anesthetic	 effects,	NMDARs	might	mainly	 contribute	 to	 the	
anesthetic	effects	than	to	the	antidepressant	effects	of	ketamine.	
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Although	previous	studies	have	indicated	that	NMDAR	inhibition	
does not mediate the rapid and sustained antidepressant actions 
of	ketamine,24,25	NMDAR	inhibition	was	found	to	control	hyperlo-
comotion.24	Given	the	confounding	factor	of	hyperlocomotion	in	
the	depression	mice	models,115	NMDARs	might	play	a	role	in	the	
antidepressant	effects	of	ketamine.	In	line	with	this,	the	following	
study	indicated	that	the	50 μM	ketamine	metabolite	(2R,	6R)-	HNK	
could	 inhibit	NMDARs,	thereby	mediating	the	antidepressant	ef-
fects	of	ketamine.27	These	two	inconsistent	studies	used	different	
concentrations	 of	 (2R,	 6R)-	HNK	 to	 investigate	 NMDAR	 inhibi-
tion.24,25,27	Furthermore,	some	studies	showed	that	(2R,	6R)-	HNK	
did	not	mediate	the	antidepressant	effect	of	ketamine.19,116 These 
contradicting results highlight the complicated and controversial 
roles	of	NMDARs	in	the	anti-	depressant	effects	of	ketamine,	and	
the	underlying	molecular	mechanisms	need	to	be	further	investi-
gated.	Nevertheless,	the	AMPAR	upregulation,	brain-	derived	neu-
rotrophic	factor	(BDNF),	mammalian	target	of	rapamycin	(mTOR)	
signaling,	and	protein	synthesis	contributed	to	the	anti-	depressant	
effects	 of	 ketamine	 and	 its	 metabolite	 HNK	 (Figure 1).24,25,27,78 
Recently,	 it	has	been	reported	that	the	activation	of	NMDARs	 is	
required	for	the	anti-	depressant	effects	of	ketamine	and	HNK.117 
Therefore,	the	functions	of	the	ketamine	metabolite	(2R,	6R)-	HNK	
in	NMDAR	inhibition	and	its	antidepressant	effects	are	still	con-
troversial.19,28	 The	 ketamine	 metabolites	 (2R,	 6R;	 2S,	 6S)-	HNK	
did	not	produce	anesthetic	effects,	which	 indicated	 that	 the	an-
esthetic	 and	 antidepressant	 effects	 of	 ketamine	were	mediated	
by	different	metabolites.	 In	 line	with	 this,	both	ketamine	and	 its	
metabolite	 NK	 induced	 anesthetic	 effects.21	 Moreover,	 if	 the	
dissociation	 side	 effects	were	 not	 related	 to	 the	 antidepressant	
effects	of	ketamine,65	and	NMDAR	inhibition	might	not	have	pri-
marily	 contributed	 to	 these	 antidepressant	 effects	 of	 ketamine,	
which	further	complicated	the	molecular	mechanisms	underlying	
the	anesthetic	and	antidepressant	effects	of	ketamine.

Mechanistically,	 the	 activation	of	AMPARs,	 ERK–	BDNF	 signal-
ing,	mTOR	signaling,	increased	protein	synthesis,	and	increased	syn-
aptic	density	contributed	to	the	long-	lasting	antidepressant	effects	
of	ketamine.78,118–	121 Although both ERK and mTOR signaling reg-
ulated	protein	synthesis,	 the	mTOR	signaling	might	have	mediated	
the	antidepressant	effects	of	(S-	)-	ketamine,	and	the	antidepressant	
effects	of	 (R-	)-	ketamine	might	have	been	mediated	by	ERK	signal-
ing (Figure 1).122,123	 Microglial	 transforming	 growth	 factor-	beta1	
was	also	essential	for	the	antidepressant	effects	of	(R-	)-	ketamine.124 
Given	that	the	partial	blockage	of	NMDARs	by	subanaesthetic	doses	
of	ketamine	 induces	antidepressant	effects,	 the	different	subunits	
of	 NMDARs	 may	 affect	 the	 antidepressant	 effects	 of	 ketamine.	
Accordingly,	 a	 previous	 study	 has	 shown	 that	 GluN2B	 selective	
NMDAR	 antagonists	 could	 induce	 antidepressant	 effects,125 and 
that	GluN2B-	containing	NMDARs	mediated	the	antidepressant	ef-
fects	of	ketamine.119,126	Furthermore,	the	GluN2B	in	γ- aminobutyric 
acid	 (GABA)ergic	 interneurons,	 and	 not	 the	 glutamatergic	 neu-
rons	 contributed	 to	 the	 antidepressant	 effects	 of	 ketamine,127,128 
which	 suggested	 that	 the	 partial	 blockage	 of	 NMDARs	 induced	
the	 antidepressant	 effects	 of	 ketamine.128–	131	 Mechanistically,	

GluN2B-	containing	NMDAR	 inhibition	 by	 ketamine	 could	 activate	
mTORC1,	 and	 subsequently	 increase	 the	 synaptic	 protein	 synthe-
sis	and	spine	number,	therefore	producing	rapid	antidepressant	ef-
fects.78	However,	small-	scale	human	clinical	trials	showed	that	the	
mTOR inhibitor rapamycin did not block but rather enhanced the 
antidepressant	 effects	 of	 ketamine,132 which suggested that the 
molecular	mechanistic	explanation	for	the	antidepressant	effects	of	
ketamine	in	humans	and	animals	should	be	further	investigated.

5.4  |  NMDAR- mediated excitatory/inhibitory 
balance contributed to the ketamine activity

Typically,	 primary	 ionotropic	 glutamate	 receptors	 such	 as	 NM-
DARs	 and	 AMPARs,	 in	 the	 glutamatergic	 excitatory	 pyramidal	
neurons	 generated	 excitatory	 synaptic	 transmissions,	 and	 the	
gamma- aminobutyric acid type A receptors (GABAARs)	 exhibit	 in-
hibitory synaptic transmission through GABAergic inhibitory in-
terneurons.133	 The	 excitatory/inhibitory	 (E/I)	 balance	 is	 essential	
for	the	processing	of	cortical	information.134 The E/I imbalance has 
been	a	prominent	hypothesis	in	psychiatric	diseases,	such	as	schizo-
phrenia and autism.135	Subanaesthetic	doses	of	ketamine	could	be	
used	 to	 generate	 a	 pharmacological	 animal	 model	 of	 schizophre-
nia,136,137 suggesting that the E/I balance is related to ketamine ac-
tions.	However,	interneurons	comprise	only	10%–	15%	of	all	cortical	
neurones	 in	 rodents,	and	are	 required	 for	E/I	balance	and	cortical	
functions.138,139	 Pyramidal	 neurones	 mediate	 excitatory	 synaptic	
transmission. The interneurons innervate almost every local py-
ramidal	neurone	and	provide	 feedforward	and	 feedback	 inhibition	
on	 the	 excitatory	 neurones.140	 Subanaesthetic	 doses	 of	 ketamine	
blocked	 the	 GluN2B-	containing	 NMDARs	 in	 interneurons,128 and 
then reduced the synaptic GABAergic inhibitory synaptic transmis-
sion,	therefore	resulting	in	the	disinhibition	of	excitatory	pyramidal	
neurons	and	producing	the	antidepressant	effects.128,141 Taken to-
gether,	 these	studies	demonstrated	that	the	 low	dose	of	ketamine	
shifted	 the	 E/I	 balance	 towards	 excitation,	 thereby	 reducing	 the	
long-	lasting	antidepressant	effects	(Figure 2).

NMDARs	 can	 regulate	 the	 synaptic	 localization	 and	 functions	
of	AMPARs	and	GABAARs,

130,142 thereby playing crucial roles in E/I 
balance.141,143,144	 For	more	 details	 about	 the	 roles	 of	NMDARs	 in	
E/I	balance,	see	a	recent	review.145	Low	doses	of	ketamine	should	
also	 block	 NMDARs	 in	 excitatory	 pyramidal	 neurons.	 However,	 a	
decrease	in	excitatory	input	would	reduce	the	inhibitory	input	onto	
a	 single	pyramidal	 neuron,	 generating	E/I	 balance	 in	 a	 cellular	 au-
tonomous manner.146,147	Reversely,	the	decrease	in	inhibitory	input	
may	 not	 affect	 the	 excitatory	 input.146,148,149	 Therefore,	 NMDAR	
inhibition	using	low	doses	of	ketamine	attenuated	the	inhibition	of	
interneurons,	resulting	in	E/I	imbalance	(Figure 2).150

The	development	switch	from	GluN2B-		to	GluN2A-	containing	
NMDARs	 in	 the	 synaptic	 regions	 and	 the	 higher	 mobility	 of	
GluN2B	than	of	GluN2A	 in	 the	extrasynaptic	 regions	 resulted	 in	
synaptic	 localized	GluN2A-	containing	NMDARs	and	extrasynap-
tic	localized	GluN2B-	containing	NMDARs.151– 153 The postsynaptic 
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density	 consisted	 of	 synaptic	 NMDARs	 and	 thousands	 of	 pro-
teins,154	 and	 exhibited	 as	 a	 dense	 lamina	 under	 an	 electron	mi-
croscope.155	 Therefore,	 a	 low	dose	of	 ketamine	 could	not	 freely	
pass	 through	 the	postsynaptic	 density,	 and	 could	 also	not	 block	
the	synaptic	NMDARs.	Therefore,	a	 low	dose	of	ketamine	might	
only	 block	 the	 GluN2B-	containing	 NMDARs	 in	 extra-	synapses,	
and	 a	 high	 concentration	 of	 ketamine	 could	 block	 the	 GluN2A-	
containing	 NMDARs	 in	 synapses,	 and	 the	 GluN2B-	containing	
NMDARs	in	extra-	synapses	(Figure 2).	Accordingly,	animal	models	
of	 schizophrenia	 generated	 using	 subanaesthetic	 doses	 of	 ket-
amine,136,137	 and	 the	 hypofunction	 of	 NMDARs	 in	 interneurons	
could	induce	schizophrenia-	relevant	phenotypes.156,157

6  |  FUTURE PERSPEC TIVES

The	rapid	onset	and	sustained	anesthetic	and	antidepressant	effects	
of	ketamine	were	dose-	dependent.	S-	ketamine	induced	rapid	onset	
and	 sustained	 anesthetic	 effects	without	 severe	 psychotomimetic	
side	 effects.158,159	 By	 contrast,	 R-	ketamine	 generated	 rapid-	onset	
and	 long-	lasting	antidepressant	effects	without	abuse	 liability	and	
side	effects	at	a	subanaesthetic	dose.82	Therefore,	S-	ketamine	might	
be	used	as	an	anesthetic	at	higher	doses,	whereas	R-	ketamine	may	
exhibit	antidepressant	effects	at	lower	doses.

Due	 to	 the	 rapid	metabolism	of	 ketamine	 into	 its	downstream	
metabolites,	it	is	proposed	that	these	metabolites	mediate	the	long-	
lasting	 effects	 of	 ketamine.	NK	 could	 produce	 anesthetic	 effects,	
and	HNK	could	induce	antidepressant	effects,	although	these	stud-
ies were inconsistent and controversial.19,24,27	Furthermore,	recent	
studies	 have	 shown	 that	 these	 pharmacological	 properties	 of	 the	
metabolites	 were	 significantly	 attenuated	 compared	 to	 those	 of	
unmetabolized	 ketamine.21,28	 Therefore,	 the	 metabolism	 of	 ket-
amine	cannot	substantiate	the	ketamine	actions,	or	unmetabolized	
ketamine	may	be	responsible	for	the	anesthetic	and	antidepressant	
effects,	all	of	which	need	further	investigation.

As	an	NMDAR	antagonist,	the	roles	of	NMDARs	have	been	ex-
tensively	 studied	 in	 the	 anesthetic	 and	 antidepressant	 effects	 of	
ketamine.	However,	the	roles	of	NMDARs	in	the	antidepressant	ef-
fects	of	ketamine	are	complicated	and	controversial.	Furthermore,	
ketamine	 could	 also	 bind/affect	 other	 receptors,	 such	 as	 HCN1	
channels,160,161 σ1	 receptor,162	 dopamine,163,164 and serotonin re-
ceptors,165	 although	 with	 a	 lower	 affinity	 compared	 with	 that	 of	
NMDARs,	 suggesting	 that	 other	 receptor	 systems	might	 also	me-
diate	ketamine-	mediated	anesthetic	and	antidepressant	effects.	 In	
line	with	this,	HCN1	channels	were	found	to	mediate	the	hypnotic	
actions	of	ketamine,160,161	and	the	dopamine	receptors	affected	the	
antidepressant	 effects	 and	 abuse	 potential	 of	 ketamine.163	More-
over,	opioid	receptors	contributed	to	the	antidepressant	effects	of	

F I G U R E  2 Ketamine	and	its	metabolites	produce	anesthetic	and	antidepressant	effects	by	acting	on	NMDARs.	The	inhibition	of	
NMDARs	by	ketamine	and	its	metabolites	affects	synaptic/extrasynaptic	NMDAR-	mediated	functions,	which	might	disrupt	the	balance	of	
excitation	and	inhibition,	thereby	generating	antidepressant	and	anesthetic	effects.
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ketamine.166,167 Recent studies have suggested that opioid recep-
tors	might	mediate	the	abuse	potential	of	 (S-	)-	ketamine.168,169 Fur-
thermore,	the	brain	networks	such	as	the	connections	between	the	
frontal	cortex	and	striatal	system,	the	subgenual	anterior	cingulate	
cortex	 (sgACC),	 and	 the	 posterior	 cingulate	 cortex	 (PCC)	 system,	
were	abnormal	in	depressed	patients,	and	this	may	be	restored	using	
low	doses	of	ketamine.170	Therefore,	 investigating	 the	subsequent	
effects	of	ketamine	on	 the	 integrated	nervous	 system	would	help	
eliminate	side	effects.

As	 the	 primary	 molecular	 targets	 of	 ketamine,	 NMDARs	 also	
mediate	 the	 analgesic	 and	 anti-	inflammatory	 effects	 of	 ketamine,	
although the underlying molecular signaling pathways remain un-
clear.	 Furthermore,	 the	 severe	 side	 effects	 of	 ketamine	 and	 its	
abuse	 potential	 are	 mediated	 by	 ketamine-	induced	 hypofunction	
of	NMDARs.171	 These	would	 attenuate	 the	 clinical	 applications	of	
anesthetics	 and	 antidepressants.	 Thus,	 the	 design	 and	 synthesis	
of	neo-	analogs	of	ketamine	with	mildly	psychoactive	effects	and	a	
lower	abuse	potential	would	benefit	patients.

Besides	their	major	ionotropic	functions	(Ca2+	influx),	NMDARs	
also	 exhibit	 metabotropic	 functions,	 which	 are	 Ca2+	 influx	 inde-
pendent.172	The	metabotropic	functions	of	NMDARs	contribute	to	
long-	term	 depression	 and	 the	 development	 switch	 of	GluN2A-		 to	
GluN2B-	containing	 NMDARs.173,174	 The	 contributions	 of	 the	 me-
tabotropic	functions	of	NMDARs	to	those	of	ketamine	require	fur-
ther investigation.
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