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Abstract
Purposes: To	identify	potent	DNA	methylation	candidates	that	could	predict	response	
to	 temozolomide	 (TMZ)	 in	 glioblastomas	 (GBMs)	 that	do	not	have	glioma-	CpGs	 is-
land	methylator	phenotype	 (G-	CIMP)	but	have	an	unmethylated	promoter	of	O-	6-	
methylguanine-	DNA	methyltransferase	(unMGMT).
Methods: The discovery- validation approach was planned incorporating a series of 
G-	CIMP−/unMGMT	GBM	cohorts	with	DNA	methylation	microarray	data	and	clinical	
information,	to	construct	multi-	CpG	prediction	models.	Different	bioinformatic	and	
experimental	analyses	were	performed	for	biological	exploration.
Results: By	analyzing	discovery	sets	with	radiotherapy	(RT)	plus	TMZ	versus	RT	alone,	
we	 identified	a	panel	of	64	TMZ	efficacy-	related	CpGs,	 from	which	a	10-	CpG	risk	
signature	was	further	constructed.	Both	the	64-	CpG	panel	and	the	10-	CpG	risk	signa-
ture	were	validated	showing	significant	correlations	with	overall	survival	of	G-	CIMP−/
unMGMT	GBMs	when	treated	with	RT/TMZ,	rather	than	RT	alone.	The	10-	CpG	risk	
signature was further observed for aiding TMZ choice by distinguishing differential 
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1  |  INTRODUC TION

Glioblastomas	 (GBMs)	 are	 the	 most	 frequent	 and	 devastat-
ing brain malignancy with a reported median survival of only 
12 ~ 15 months.1	Temozolomide	(TMZ)	stands	for	the	most	effec-
tive	 adjuvant	 chemotherapy	 for	GBMs.2 It can alkylate genomic 
DNA	of	 tumor	cells	at	multiple	 sites	and	 induce	cell	 cycle	arrest	
and apoptosis.2	Unfortunately,	the	deadly	GBMs,	characteristic	of	
high inter- tumoral molecular heterogeneity, variably responded to 
TMZ.2 A considerable number of patients did not benefit from the 
treatment of TMZ, and some even suffer from its high costs and 
adverse effects.3– 5

The promoter methylation status of the O- 6- methylguanine- 
DNA	methyltransferase	 (MGMT)	 gene,	encoding	a	DNA	repair	en-
zyme that conferred major resistance to alkylating agents, is by far 
the most informative predictive biomarker for TMZ response.3– 5 
TMZ	was	 generally	 beneficial	 to	 GBMs	 that	 harbor	 a	 methylated	
(me)MGMT	 promoter	 and	 consequently	 have	 a	 low	 expression	 of	
MGMT.	However,	TMZ	was	not	that	sensitive	to	GBMs	harboring	an	
unmethylated	(un)MGMT	promoter	and	generally	a	high	expression	
of	MGMT	and	tended	to	yield	variable	outcomes	 in	 those	tumors.	
MGMT testing may thus have limited use in guiding TMZ choice for 
GBM	patients	and	especially	those	with	unMGMT	GBMs.6– 8 There-
fore, discovering powerful biomarkers that are predictive of TMZ re-
sponse for subpopulation with TMZ- resistant unMGMT tumors can 
be clinically useful.9,10

In	2010,	The	Cancer	Genome	Atlas	 (TCGA)	 research	group	re-
ported	 a	 novel	 and	 distinct	 subtype	 of	 GBMs	 with	 glioma	 GpGs	
island	methylator	phenotype	 (G-	CIMP)11; the subtype was charac-
terized	 by	 exclusive	 mutations	 in	 isocitrate	 dehydrogenase	 (IDH)	
gene,	concordant	DNA	hypermethylation	at	CpG	islands	throughout	
genome, good sensitivity to radio- chemotherapy, and considerably 
favorable prognosis.11– 18	 Because	 of	 the	 small	 proportion	 (10%	of	
all	GBMs)	and	the	very	distinct	molecular	and	clinical	features,	the	
G-	CIMP	subtype	was	excluded,	and	we	mainly	focused	on	the	ma-
jority	of	GBMs	that	do	not	have	G-	CIMP.	In	this	study,	by	integrating	
genome-	wide	DNA	methylation	microarray	data	and	clinical	 infor-
mation,	we	 identified	a	panel	of	64	CpG	candidates	with	potential	
linkage	to	TMZ	efficacy	in	G-	CIMP-		GBMs	with	unMGMT promoter, 
from	which	a	10-	CpG	risk	signature	was	constructed	and	validated	
to	robustly	and	stably	predict	TMZ	response.	Bioinformatic	and	 in	

vitro	experimental	analyses	further	provided	biological	insights	into	
the	10-	CpG	predictive	signature.

2  |  METHODS

2.1  |  Determination of G- CIMP and MGMT 
promoter methylation status

The	G-	CIMP	status	and	promoter	methylation	status	of	MGMT were 
defined	using	DNA	methylation	data	from	Illumina	HumanMethyla-
tion27k/450 k	microarrays	(Illumina	Inc.),	as	previously	reported.19,20 
Within	 the	 Illumina	platform,	methylation	 signal	 of	 each	CpG	was	
summarized as β	 value	which	provides	a	continuous	and	quantita-
tive	measurement	of	DNA	methylation	ranging	from	0	(completely	
unmethylated)	to	1	(completely	methylated).21 The β value was com-
monly used for intuitive biological interpretation.21	When	statistical	
analysis was employed, β value was transformed to M value, which 
has	a	Logit	transformation	relationship	with	β value.21	The	G-	CIMP	
status was determined by K-	means	(k = 3)	clustering	using	the	1,503	
featured probes as previously described.19 The MGMT promoter 
methylation was determined by a logistical regression model using 
two	Illumina	probes	(cg12434587	and	cg12981137).20 The logistical 
regression	formula	was	calculated	as	logit	(y) = 4.3215 + 0.5271 × M-	
value	of	cg12434587 + 0.9265 × M-	value	of	cg12981137,	with	a	cut-
off of 0.358 for stratifying methylated and unmethylated tumors.20

2.2  |  GBM datasets of clinical samples and 
cell lines

Molecular microarray data and clinical information of primary 
GBMs	were	downloaded	from	public	databases,	including	one	co-
hort	from	TCGA	(n = 317)22	and	three	cohorts	from	Gene	expres-
sion	omnibus	(GEO;	GSE22891,23 n = 50;	GSE50923,	n = 5424; and 
GSE60274,	n = 6425).	A	French	dataset	of	79	primary	GBMs	from	
Rennes	 and	 Angers	 University	 Hospitals	 (RAUH)	were	 provided	
by	 Prof.	 Amandine	 Etcheverry.26 In addition, non- tumor brains 
(NTBs)	from	TCGA22	and	GSE6334727 were included for compara-
tive	 analysis.	All	 samples	 had	DNA	methylation	data	profiled	by	
Infinium	 HumanMethylation	 27 k	 or	 450 k	 chips,	 and	 some	 had	
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outcomes	 to	 RT/TMZ	 versus	 RT	within	 each	 risk	 subgroup.	 Functional	 studies	 on	
GPR81,	the	gene	harboring	one	of	the	10	CpGs,	indicated	its	distinct	impacts	on	TMZ	
resistance	in	GBM	cells,	which	may	be	dependent	on	the	status	of	MGMT	expression.
Conclusions: The	64	TMZ	efficacy-	related	CpGs	and	 in	particular	 the	10-	CpG	 risk	
signature may serve as promising predictive biomarker candidates for guiding optimal 
usage	of	TMZ	in	G-	CIMP−/unMGMT	GBMs.
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paired	gene	expression	data	profiled	by	a	variety	of	transcriptome	
microarrays.22– 26 The availability of molecular and clinical data for 
each sample was presented in Figure 1A.	Finally,	DNA	methylation	
(Infinium	HumanMethylation	450 k)	and	gene	expression	(Affym-
etrix	 HumanGenome	 U219-	96)	 microarray	 data	 of	 36	 GBM	 cell	
lines	were	 downloaded	 from	GSE68379.28 More information on 
microarray platform and data processing for each dataset can be 
referred to the original reports.22– 28

2.3  |  CpG selection and model construction

The	discovery-	validation	approach	was	utilized	to	identify	CpG	can-
didates with potential linkage to TMZ efficacy. The workflow for 
study design is shown in Figure 1B. In this study, RT/TMZ- treated 
unMGMT	GBMs	from	TCGA	and	GEO	(GSE22891,	GSE50923,	and	
GSE60274)	and	RT-	treated	unMGMT	tumors	from	GSE60274	were	
preset as discovery sets. RT/TMZ- treated unMGMT	 GBMs	 from	
RAUH	and	RT-	treated	unMGMT	tumors	from	TCGA	were	preset	as	
validation	sets	(Figure 1B).

Initial	 CpG	 selection	 was	 done	 as	 reported	 in	 our	 previous	
study.29	Batch	effects	across	datasets	were	adjusted	using	M-	value	
transformation21	 and	 the	 Empirical	 Bayes	 method	 (ComBat	 mod-
ule,	 GenePattern).30	 CpGs	 with	 higher	 variability	 in	 methylation	

levels	 (standard	deviation	 [SD]	 of	β	 value	 in	 discovery	 sets	 ≥0.15)	
were kept, and their M- values were used to correlate with overall 
survival	 (OS)	 in	each	discovery	 set	 treated	with	either	RT/TMZ	or	
RT	alone.	After	 removing	 inconsistent	 results	 from	univariate	Cox	
regression	 analyses,	 a	 panel	 of	 64	 CpGs	 was	 identified	 as	 TMZ	
efficacy- related candidates. To further reduce data dimensionality, 
the	64-	CpG	methylation	data	were	incorporated	into	a	multivariate	
Cox	regression	model	using	Likelihood	Ratio	(LR)	and	Forward	selec-
tion	approach,	where	age,	sample	source,	and	G-	CIMP	status	were	
together	adjusted.	Finally,	we	identified	a	total	of	ten	CpGs	to	con-
struct a RISK- score formula, which is the sum of the M- value of each 
CpG	weighted	by	its	corresponding	multivariate	Cox	coefficient.	The	
median RISK score value in the RT/TMZ- treated discovery sets was 
pre- defined as the cutoff for low- risk and high- risk groups.

2.4  |  Gene set enrichment analysis

Gene	set	enrichment	analysis	 (GESA)	was	 run	 through	 the	Gene	
Ontology	 Gene	 Set	 collection	 from	 Molecular	 Signatures	 Da-
tabase	 (MSigDB),	 to	 evaluate	 the	 biological	 profiles	 of	 the	 risk	
subgroups, with both nominal p-	value	≤0.05	and	 false	discovery	
rate	 (FDR) ≤ 0.25	 as	 statistical	 significance.31 The proportion of 
28	tumor-	infiltrating	immune	cell	(TIIC)	types	in	tumor	bulks	was	

F I G U R E  1 Patient	dataset	information	and	study	workflow;	(A)	molecular	subtype,	available	molecular/clinical	data,	and	sample	size	of	
included	patient	datasets;	(B)	schematic	diagram	for	searching	and	validating	TMZ	efficacy-	related	CpG	candidates	and	a	10-	CpG	signature.
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estimated	using	 single-	sample	GSEA	 (ssGSEA)	approach	and	 the	
782-	gene	 signature	 reported	 by	Charoentong	 et	 al.32 The abun-
dance	 of	 each	 TIIC	 type	was	 summarized	 as	 normalized	 enrich-
ment	scores	(NES).

2.5  |  Immunohistochemistry (IHC) staining

Formalin-	fixed	 paraffin-	embedded	 (FFPE)	 samples	 of	 10	 primary	
GBMs	and	3	NTBs	 from	patients	with	 traumatic	brain	 injury	were	
collected	 from	 the	 Department	 of	 Neurosurgery,	 Xijing	 Hospital.	
FFPE	samples	were	employed	for	IHC	staining	with	anti-	GPR81	an-
tibody	 (Abcam,	 #ab106942)	 or	 anti-	MGMT	 antibody	 (Proteintech,	
#17195-	1-	AP).	The	 intensity	and	percentage	of	positive	cells	were	
evaluated in at least five separate fields at × 400	magnification.	Im-
munoreactivity was scored as follows: 0, no staining; 1, weak stain-
ing in <50%	cells;	2,	weak	staining	in	≥h50%	cells;	3,	strong	staining	
in <50%	cells;	and	4,	strong	staining	in	≥50%	cells.	The	scores	were	
evaluated by two independent researchers, and disputes were re-
solved through discussion. All patients provided written informed 
consent, and this study was approved by the Institutional Review 
Board.

2.6  |  Cell culture and treatment

Two	GBM	cell	lines	(A172	and	T98G)	were	obtained	from	American	
Type	Culture	Collection	and	grown	 in	Dulbecco's	modified	Eagle's	
medium	containing	10%	fetal	bovine	serum	at	37°C	in	5%	CO2. The 
cells	were	treated	with	TMZ	(MedChemExpress,	#HY-	17364)	at	in-
dicated	concentrations	for	48 h.	TMZ	was	dissolved	in	dimethyl	sul-
foxide	(DMSO,	Sigma-	Aldrich).

2.7  |  Plasmids and cell transfection

For	 in	 vitro	 gene	 silencing,	RNA	 interference	using	plasmids	 ex-
pressing	 human	 short	 hairpin	 RNAs	 (shRNAs)	 was	 performed.	
Plasmids	containing	shRNAs	targeting	GRP81	(shGPR81)	or	MGMT 
(shMGMT),	and	scramble	shRNAs	(shControl)	were	purchased	from	
GeneChem.	For	in	vitro	gene	overexpression,	plasmids	containing	
the MGMT	 gene	were	 also	 obtained	 (GeneChem).	 Cell	 transfec-
tion	was	 done	 using	 Lipofectamine®	 2000	 reagent	 (Invitrogen).	
Transfection	efficiency	was	verified	by	quantitative	real-	time	PCR	
(qRT-	PCR).

2.8  |  TMZ cytotoxicity assay

After	 plasmid	 transfection,	 T98G	 and	A172	 cells	were	 seeded	 on	
96	well	plates	 (5000	cells	per	well)	and	were	treated	with	TMZ	at	
the	final	concentrations	of	7.5,	15,	30,	60,	120,	240,	and	480 μM for 
48 h.	CCK-	8	reagent	was	added	to	wells	(10 μL/well)	and	incubated	at	

37°C	for	1 h.	The	absorbance	at	450 nm	was	measured	for	calculat-
ing	the	half	maximal	inhibitory	concentration	(IC50).

2.9  |  qRT- PCR

The	 total	RNA	was	extracted	using	TRIzol	 reagent	 (Shanghai	Pufei	
Biotech)	and	reverse-	transcribed	with	M-	MLV	RT	kit	 (Promega)	ac-
cording	 to	 the	 manufacturer's	 instructions.	 PCR	 amplification	 was	
performed	with	 SYBR	Master	Mixture	 (Takara)	 using	 LighterCycler	
480	II	System	(Rcoche).	The	mRNA	ratio	of	a	target	gene	to	GAPDH	
was calculated using the 2−ΔΔCt formula. The primers used were: 
GAPDH forward: 5′-	TGACT	TCA	ACA	GCG	ACA	CCCA-	3′; GAPDH 
reverse: 5′-	CACCC	TGT	TGC	TGT	AGC	CAAA-	3′; GPR81 forward: 5′- 
TTCGT	ATT	TGG	TGG	CAGGCA-	3′; GPR81 reverse: 5′-	TTTCG	AGG	
GGT	CCA	GGTACA-	3′; MGMT	 forward:	 5’-	ACCGT	TTG	CGA	CTT	GGT	
ACTT-	3′; and MGMT	reverse:	5’-	GGAGC	TTT	ATT	TCG	TGC	AGACC-	3′.

2.10  |  Western blot

After	plasmid	transfection,	T98G	and	A172	cells	were	treated	with	
TMZ	 at	 different	 concentrations	 for	 48 h.	 Cells	were	 then	 lysed	
in	RIPA	buffer-	contained	protease	 inhibitor	 and	phosphatase	 in-
hibitor	 (Roche).	 The	 primary	 antibodies	 against	 GPR81	 (Abcam,	
#ab106942),	MGMT	(Proteintech,	#17195-	1-	AP),	cleaved-	Caspase	
3	 (CST,	 #9661),	 Caspase	 3	 (CST,	 #9662),	 and	 β-	actin	 (Sigma-	
Aldrich,	 #A5441)	 were	 used	 according	 to	 the	 manufacturers'	
recommendations.

2.11  |  Flow cytometry assay

For	 cell	 apoptosis	 analysis,	 transfected	 T98G	 and	 A172	 cells	 were	
treated	with	TMZ	at	different	concentrations	for	48 h.	The	cells	were	
then	washed	with	cold	phosphate-	buffered	saline	(PBS,	4°C).	Annexin	
V-	fluorescein	isothiocyanate	(FITC)	and	propidium	iodide	(PI)	double	
staining were used to sort cells in early or late apoptotic phase.

2.12  |  Statistical analysis

Data	 normality	 was	 examined	 using	 Shapiro–	Wilk	 (n ≤ 50)	 or	
Kolmogorov–	Smirnov	 test	 (n > 50).	 Normally	 distributed	 and	 non-	
normally distributed variables were analyzed using Student t- test 
and	Mann–	Whitney	U	test.	Correlation	of	normally	distributed	and	
non-	normally	distributed	data	was	assessed	by	Pearson	and	Spear-
man	correlation	test.	Categorical	data	were	tested	using	Chi-	square	
test.	 Survival	 data	 (e.g.,	 OS,	 progression-	free	 survival	 [PFS])	 were	
compared using Kaplan– Meier curves and log- rank test. The prog-
nostic correlation and independence of each variable were evaluated 
using	univariate	and	multivariate	Cox	regression	models.	Results	of	
each cohort or subgroup were combined using meta- analysis, where 
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the	inverse-	variance	approach	was	applied	using	either	fixed-		or	ran-
dom effect models based on the heterogeneity test, with I2 ≥ 50%	or	
p-	value	≤0.05	considered	to	be	statistically	significant.	Hierarchical	
cluster	analysis	 (HCA)	was	performed	using	R	package	hclust. The 
area	under	the	curve	(AUC)	of	the	receiver	operating	characteristic	

(ROC)	 curve	was	 done	 by	R	 package	 survivalROC, to evaluate the 
prediction ability of the risk score models. All statistical analyses 
were	done	within	SPSS	statistics	v19.0,	GraphPad	Prism	v8.4.3	and	
R software v3.6.3, with two- sided p-	value	≤0.05	considered	to	be	
statistically significant.

F I G U R E  2 Identification	and	validation	of	CpG	methylation	with	potential	linkage	to	TMZ	efficacy;	the	heatmaps	of	DNA	methylation	
clusters	defined	by	hierarchical	clustering	on	64	TMZ	efficacy-	related	CpGs	(M-	values)	in	(A)	discovery	and	(D)	validation	sets	of	unMGMT 
GBMs;	each	row	represents	a	CpG;	each	column	represents	a	sample	which	is	grouped	by	hierarchical	clustering;	clinical	and	molecular	
features	are	indicated	for	each	sample.	Survival	comparison	among	non-	G-	CIMP	clusters	in	(B)	discovery	and	(E)	validation	sets	with	
combination	of	RT	and	TMZ.	Survival	comparison	among	non-	G-	CIMP	clusters	in	(C)	discovery	and	(F)	validation	sets	with	RT	alone.	Survival	
difference of each cluster was tested by log- rank test with p	value	≤0.05	as	statistical	significance.	Hazard	ratio	(HR)	and	95%	confidence	
interval	(CI)	for	survival	curves	were	presented	in	Table S4.
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3  |  RESULTS

3.1  |  DNA methylation variations of a 64- CpG 
panel were specifically associated with TMZ efficacy 
in G- CIMP−/unMGMT GBMs

Following	 the	 selection	 workflow	 (Figure 1B),	 we	 identified	 a	
panel	 of	 64	 TMZ	 efficacy-	related	 CpGs	 from	 discovery	 sets,	
each	of	which	was	significantly	correlated	with	OS	of	G-	CIMP−/
unMGMT	GBMs	treated	with	RT	plus	TMZ,	rather	than	RT	alone.	
In	discovery	sets,	HCA	on	 the	64-	CpG	methylation	data	divided	
all	G-	CIMP−/unMGMT	GBMs	 into	 four	 clusters	 (Figure 2A).	 Sur-
vival	analyses	showed	that	OS	of	RT/TMZ-	treated	G-	CIMP-		GBMs	
significantly differed while that of RT- treated tumors were undis-
tinguished	 across	 the	 clusters	 (Figure 2B,C).	 Similarly,	 HCA	 also	
yielded	 four	 clusters	 of	 G-	CIMP−/unMGMT	 GBMs	 in	 validation	
sets and confirmed the distinct prognostic correlations with dif-
ferent	treatments	(RT/TMZ	vs.	RT	alone;	Figure 2D–	F).	Together	
the	results	indicated	that	the	64-	CpG	panel	may	serve	as	an	epi-
genetic biomarker pool that may provide predictive information on 
TMZ	response	in	G-	CIMP−/unMGMT	GBMs.

3.2  |  Identification of a ten- CpG signature 
with potential linkage to TMZ efficacy in 
G- CIMP−/unMGMT GBMs

To	simplify	the	HCA-	based	classification	and	develop	a	clinically	applica-
ble	prediction	model,	we	performed	multivariate	Cox	regression	analyses	
and	reduced	the	64-	CpG	panel	into	a	panel	of	10	CpGs,	each	of	which	
was supposed to provide significant, complementary, and independent 
prediction	information	for	TMZ	sensitivity	in	G-	CIMP−/unMGMT	GBMs	
(Table 1).	Accordingly,	a	RISK-	score	formula	was	established	as	follows:	
risk	 score = (−0.313 × M-	value	 of	 cg26728422) + (−0.266 × M-	value	 of	
cg03473518) + (−0.240 × M-	value	of	cg26647453) + (−0.204 × M-	value	
of	cg16302441) + (0.120 × M-	value	of	cg12578166) + (0.146 × M-	value	

of	cg14329157) + (0.179 × M-	value	of	cg13702536) + (0.181 × M-	value	
of	cg22783363) + (0.217 × M-	value	of	cg26221631) + (0.236 × M-	value	
of	cg22861316).

Using	the	median	RISK	score	(0.3028)	 in	the	RT/TMZ-	treated	
discovery	 sets	 as	 the	 cutoff,	 we	 divided	 all	 G-	CIMP−/unMGMT 
GBMs	 into	 low-	risk	 and	 high-	risk	 subgroups.	 In	 RT/TMZ-	treated	
TCGA	cohort,	low-	risk	G-	CIMP−/unMGMT patients had longer OS 
than	 high-	risk	 patients	 (Figure 3A).	 Similarly,	 significant	 results	
were	also	observed	in	RT/TMZ-	treated	GEO	cohorts	(GSE22891,	
GSE50923,	and	GSE60274	collectively;	Figure 3A).	The	risk	clas-
sification	 in	 each	 GEO	 cohort	 was	 also	 shown	 in	 Figure 3C.	 By	
contrast,	in	RT-	treated	GSE60274	cohort,	OS	was	not	significantly	
different	 between	 the	 risk	 subgroups	 (Figure 3B).	 In	 addition,	
survival	 data	 of	 patients	with	G-	CIMP	or	meMGMT	GBMs	were	
shown	for	comparison	(Figure 3).

To	 further	 evaluate	 the	 performance	 of	 the	 10-	CpG	 signature,	
we applied the RISK- score signature to validation sets with different 
treatments.	Expectedly	it	accurately	predicted	OS	in	RT/TMZ-	treated	
RAUH	cohort	 of	G-	CIMP−/unMGMT	GBMs	but	was	 not	 associated	
with	OS	 in	RT-	treated	TCGA	cohort	 (Figure 3D,E).	Patient-	level	 and	
cohort- level meta- analyses both yielded distinct prognostic correla-
tions	of	 the	10-	CpG	signature	among	different	 treatment	 subpopu-
lations	 (Figure 3F–	H).	Similar	results	were	observed	 in	terms	of	PFS	
outcome	 (Figure 4).	Cox	 regression	 analyses	 confirmed	 the	10-	CpG	
signature	 as	 a	 potent	 and	 independent	 survival	 predictor	 for	 G-	
CIMP−/unMGMT	GBMs	treated	with	RT/TMZ,	 rather	 than	RT	alone	
(Table S1).	The	results	indicated	that,	instead	of	a	general	prognostic	
factor	regardless	of	treatment,	the	10-	CpG	signature	may	have	a	spe-
cific	linkage	to	TMZ	efficacy	in	G-	CIMP−/unMGMT	GBMs.

3.3  |  The 10- CpG signature may be a potent 
predictive factor aiding in TMZ decision- making

To account for potential bias of assigned treatment regimens, only pa-
tients	receiving	standard	RT	(SRT)	with	or	without	(concurrent	or	adjuvant)	

TA B L E  1 Genomic	and	clinical	information	of	the	10	CpGs	with	potential	linkage	to	TMZ	efficacy.

Probe ID Chromosome
Relevant gene 
symbol

Relation to gene 
regions

Relation to CpG 
Island

Multivariable Cox 
regression coefficients

cg26728422 16 UNKL 5'UTR Shore −0.313

cg03473518 13 GJB6 5'UTR Shore −0.266

cg26647453 4 C4orf17 5'UTR Open sea −0.24

cg16302441 2 POMC TSS1500 Island −0.204

cg12578166 11 KCNQ1 Body Shore 0.12

cg14329157 2 WDR69 TSS200 Shore 0.146

cg13702536 12 GPR81 TSS1500 Open sea 0.179

cg22783363 8 TNFRSF10D TSS200 Island 0.181

cg26221631 11 BARX2 1stExon Island 0.217

cg22861316 5 FABP6 Body Open sea 0.236

Abbreviations:	TMZ,	temozolomide;	TSS,	transcription	start	site;	UTR,	untranslated	region.
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TMZ were included for the interaction analyses between different risk 
subgroups	(low-	risk	vs.	high-	risk)	and	different	treatments	(SRT/TMZ	vs.	
SRT).	In	line	with	previous	report,33	G-	CIMP−/unMGMT	GBMs	appeared	
not	to	benefit	much	from	SRT/TMZ	as	compared	to	SRT	(Figure 5A,D).	
The interaction analyses showed that SRT/TMZ appeared to confer an 
OS	benefit	to	low-	risk	G-	CIMP−/unMGMT	GBMs	(Figure 5B,E)	but	was	
associated	with	similar	OS	in	high-	risk	patients	(Figure 5C,F).

No	significant	difference	was	observed	in	patient	baseline	informa-
tion	(e.g.,	surgery,	gender,	or	KPS)	between	subgroups	with	different	
treatment	and	different	 risk	subgroups	except	 for	a	high	proportion	

of	 elderly	 patients	 (>70 years)	 in	 RT-	treated	 subgroups	 (data	 not	
shown).	Patient-	level	and	cohort-	level	meta-	analyses	only	incorporat-
ing	younger	patients	(≤ 70 years)	were	thus	performed,	which	yielded	
a statistically significant OS difference between SRT/TMZ- treated and 
SRT-	treated	 subgroups	 (Figure 5G–	I).	 Cox	 regression	 analyses	 con-
firmed SRT/TMZ as a better option for low- risk patients, but not for 
high-	risk	ones	(Table S2).	Together,	the	results	indicated	that	the	10-	
CpG	signature	may	represent	a	promising	predictive	model	 for	TMZ	
response and be helpful for selecting patients who are likely to benefit 
from the addition of TMZ.

F I G U R E  3 Prognostic	performance	of	the	10-	CpG	signature	in	G-	CIMP−/unMGMT	GBMs	in	term	of	OS	outcome;	survival	comparison	
among	the	subgroups	characteristic	of	G-	CIMP+,	meMGMT,	G-	CIMP−/unMGMT	low-	risk	or	G-	CIMP−/unMGMT	high-	risk	in	(A)	RT/TMZ-	
treated	and	(B)	RT-	treated	discovery	sets,	as	well	as	in	(C)	each	GEO	cohort;	survival	comparison	among	the	above	indicated	subgroups	
in	(D)	RT/TMZ-	treated	and	(E)	RT-	treated	validation	sets;	pooled	survival	comparison	using	patient-	level	data	among	the	above	indicated	
subgroups	with	(F)	RT/TMZ	or	with	(G)	RT	alone;	(H)	meta-	analysis	using	cohort-	level	data	between	the	risk	subgroups	with	RT/TMZ	or	RT	
alone. Survival difference of each subgroup was tested by the log- rank test with p	value	≤0.05	as	statistical	significance.	Hazard	ratios	[HR]	
from	each	dataset	were	combined	by	meta-	analysis,	where	the	inverse-	variance	approach	was	applied	using	either	fixed-		or	random	effect	
models based on the heterogeneity test, with I2 ≥ 50%	or	p	value	≤0.05	considered	to	be	statistically	significant.	Hazard	ratio	(HR)	and	95%	
confidence	interval	(CI)	for	survival	curves	were	presented	in	Table S4.
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3.4  |  Clinical and molecular correlations of the 10- 
CpG signature

In	 TCGA	 G-	CIMP−/unMGMT	 GBMs,	 the	 10-	CpG	 signature	 was	
found	to	be	significantly	associated	with	different	gene	expression	
subtypes; low- risk tumors were enriched with proneural subtype, 
and high- risk tumors were enriched with mesenchymal subtype 
(Figure 6A).	 In	addition,	 the	treatment	cycles	of	TMZ	were	signifi-
cantly	higher	 in	 low-	risk	tumors	 (median	cycle:	4)	 than	 in	high-	risk	
tumors	(median	cycle:	3;	Figure 6A).	GSEA	showed	that	low-	risk	tu-
mors were enriched with gene sets related to normal brain develop-
ment	and	function	(Figure 6B; Table S3),	while	high-	risk	tumors	were	
enriched with a variety of cancer- promoting signatures and espe-
cially	those	relevant	to	DNA	damage	response,	glucose	metabolism,	
fatty	acid	metabolism,	NF-	kB	activation,	extracellular	matrix	(ECM)	
remodeling,	immune	response,	and	immune	cell	function	(Figure 6C; 
Table S3).	 ssGSEA	 showed	 that	 high-	risk	 tumors	 were	 associated	
with	a	higher	abundance	of	some	TIIC	types	and	particularly	those	
immunosuppressive	 cells	 (e.g.,	 regulatory	 T	 cells	 [Treg],	 myeloid-	
derived	suppressor	cells	[MDSCs];	Figure 6D).	The	results	suggested	
that the enhanced TMZ resistance in high- risk tumors may be at-
tributable	to	a	complex	network	of	multiple	tumorigenic	or	chemo-	
resistant mechanisms, rather than a single molecular player.

3.5  |  GPR81 may exhibit distinct impacts on TMZ 
resistance that depend on MGMT status

The	10-	CpG	methylation	 and	 the	 expression	 of	 their	 correspond-
ing	genes	between	NTBs	and	GBMs	with	each	MGMT methylation 
status were presented in Figure S1.	 Pearson	 correlation	 analyses	
showed	 that	 only	 one	 CpG-	gene	 pair	 (cg13702536	 and	 GPR81)	
showed	stably	and	significantly	negative	correlations	between	CpG	
methylation	 and	 gene	 expression	 (Figure 7A).	 This	 CpG-	gene	 pair	
was thus selected for further analyses. GPR81	mRNA	and	protein	
levels	 were	 not	 significantly	 different	 between	 NTBs	 and	 GBMs	
(Figure 7B,C and Figure S1).	The	expression	of	GPR81 was also not 

significantly correlated with that of MGMT	 (Figure 7C,D).	 Interest-
ingly, meta- analyses showed that both GPR81	methylation	and	ex-
pression appeared to be significantly associated with OS in unMGMT 
tumors, but not in meMGMT tumors when treated with RT/TMZ, in-
dicting potential MGMT- dependent impacts of GPR81 on TMZ ef-
ficacy	in	G-	CIMP-		GBMs.

To	 test	 this	 hypothesis	 in	 in	 vitro	 experiments,	 we	 selected	
two	GBM	cell	 lines	(A172	and	T98G)	which	were	reported	to	have	
similarly high GPR81	 expression	 but	 distinct	 MGMT methylation 
and	expression	 status	 in	GSE6837928; specifically A172 was char-
acteristic	of	high	methylation	and	 low	expression	of	MGMT, while 
T98G	 was	 characteristic	 of	 low	 methylation	 and	 high	 expression	
of MGMT	 (Figure 7I and Figure S2).	 The	expression	of	GPR81 and 
MGMT	was	 validated	 in	 our	A172	 and	T98G	 cells	 (Figure S3),	 fol-
lowed by validation of GPR81	 knockdown	 (Figure 7J,K).	We	 found	
that GPR81 knockdown significantly increased TMZ sensitivity and 
cell	apoptosis	when	exposed	to	TMZ	in	MGMT- deficient A172 cells 
(Figure 7L,P).	However	in	MGMT-	overexpressed	A172	cells,	GPR81 
knockdown conversely decreased TMZ sensitivity and TMZ- treated 
apoptosis	(Figure 7M,P).	Moreover,	in	T98G	cells	originally	express-
ing high level of MGMT, knockdown of GPR81 did decrease TMZ 
efficacy	 (Figure 7N,P)	while	 in	MGMT-	silenced	 T98G	 cells,	GPR81 
knockdown	conversely	increased	TMZ	sensitivity	(Figure 7O,P and 
Figure S4).	The	results	together	indicated	that	the	contributions	of	
GPR81 to TMZ resistance may depend on MGMT	expression	status	
in	GBMs;	briefly,	GPR81	may	enhance	TMZ	sensitivity	when	GBM	
cells	 highly	 expressed	MGMT, while GPR81 may enhance TMZ re-
sistance when MGMT	expression	was	absent	or	largely	repressed	in	
GBM	cells.

4  |  DISCUSSION

TMZ has long been recognized as the first- choice chemotherapy for 
treating	 primary	 GBMs.1,2	 Unfortunately,	 it	 cannot	 benefit	 every	
GBM	patients	and	many	are	resistant	to	this	genotoxic	drug.2 Mo-
lecular biomarkers have been increasingly reported for aiding TMZ 

F I G U R E  4 Prognostic	performance	of	the	10-	CpG	signature	in	G-	CIMP−/unMGMT	GBMs	in	term	of	PFS	outcome;	survival	comparison	
among	the	subgroups	characteristic	of	G-	CIMP+, meMGMT,	G-	CIMP−/unMGMT	low-	risk	or	G-	CIMP−/unMGMT	high-	risk	in	(A)	RT/TMZ-	
treated	TCGA	cohort,	(B)	RT/TMZ-	treated	RAUH	cohort,	and	(C)	RT-	treated	TCGA	cohort.	Survival	difference	of	each	subgroup	was	tested	
by log- rank test with p	value	≤0.05	as	statistical	significance.	Hazard	ratio	(HR)	and	95%	confidence	interval	(CI)	for	survival	curves	were	
presented in Table S4.
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F I G U R E  5 The	predictive	performance	of	the	10-	CpG	signature	in	G-	CIMP−/unMGMT	GBMs;	Survival	difference	between	different	
treatments	(SRT/TMZ	vs.	SRT)	in	G-	CIMP−/unMGMT	GBMs	from	(A)	TCGA	and	(D)	GSE60274	cohort;	Interaction	analysis	between	
treatments	(SRT/TMZ	vs.	SRT	alone),	and	risk	subgroups	(low-	risk	vs.	high-	risk)	in	(B,C)	TCGA	and	(E,F)	GSE60274	cohort.	Pooled	survival	
comparisons	using	patient-	level	data	between	different	treatments	(SRT/TMZ	vs.	SRT)	in	(G)	low-	risk	and	(H)	high-	risk	subgroups;	Meta-	
analysis	using	cohort-	level	data	between	different	treatments	(SRT/TMZ	vs.	SRT)	in	each	risk	subgroup	incorporating	only	younger	patients	
(≤70 years).	Survival	difference	of	each	treatment	subgroup	was	tested	by	the	log-	rank	test	with	p	value	≤0.05	as	statistical	significance.	
Hazard	ratios	[HR]	from	each	dataset	were	combined	by	meta-	analysis,	where	the	inverse-	variance	approach	was	applied	using	either	fixed-		
or random effect models based on the heterogeneity test, with I2 ≥ 50%	or	p	value	≤0.05	considered	to	be	statistically	significant.

p=0.7674

HR=1.138
95% CI=0.481-2.694

0 10 20 30 40
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

SRT+TMZ (11.1m)
SRT (10.9m)

p=0.5875

HR=1.329
95% CI=0.472-3.742

0 5 10 15 20 25
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

SRT+TMZ (10.6m)
SRT (9.9m)

0 10 20 30 40 50
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

SRT+TMZ (16.8m)
SRT (10.4m)

p=0.0019

HR=0.385
95% CI=0.206-0.720

0 10 20 30
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

RT+TMZ (10.6m)
RT (9.0m)

p=0.9993

0 10 20 30 40 50
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

SRT+TMZ (13.5m)
SRT (10.9m)

p=0.1917

HR=0.667
95% CI=0.362-1.231

0 10 20 30
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

RT+TMZ (16.0m)
RT (11.7m)

p=0.3106

HR=0.620
95% CI=0.240-1.604

0 5 10 15 20
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

RT+TMZ (8.6m)
RT (8.9m)

p=0.2620

HR=2.107
95% CI=0.558-7.961

0 10 20 30 40 50
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

SRT+TMZ (16.8m)
SRT (10.9m)

p=0.0505

Study or Subgroup
Low-risk
GSE60274
TCGA
Subtotal (95% CI)
Heterogeneity: P = 0.10; I² = 62%
Test for overall effect: P = 0.008

High-risk
GSE60274
TCGA
Subtotal (95% CI)
Heterogeneity: P = 0.40; I² = 0%
Test for overall effect: P = 0.45

Test for subgroup differences: P = 0.04, I² = 77.2%

Weight

40.9%
29.0%
69.9%

20.9%
9.1%

30.1%

IV, Fixed, 95% CI

0.62 [0.24, 1.60]
0.18 [0.06, 0.56]
0.37 [0.18, 0.77]

2.11 [0.56, 7.96]
0.74 [0.10, 5.57]
1.54 [0.51, 4.66]

Hazard Ratio Hazard Ratio
IV, Fixed, 95% CI

0.001 0.1 1 10 1000
Favours [RT/TMZ] Favours [RT alone]

(A) TCGA (unMGMT) TCGA (low-risk) TCGA (high-risk)

GSE60274 (unMGMT) GSE60274 (low-risk) GSE60274 (high-risk)

Meta-cohorts
(TCGA+GSE60274; low-risk, ≤70 yrs)

Meta-cohorts
(TCGA+GSE60274; high-risk, ≤70 yrs)

(B) (C)

(D) (E) (F)

(G)

(H)

(I)

HR=0.362
95% CI=0.125-1.051

HR=1.000
95% CI=0.491-2.036



10 of 16  |     LIANG et al.

−2

−1

0

1

2

3 cg26728422

cg03473518

cg26647453

cg16302441

cg12578166

cg14329157

cg13702536

cg22783363

cg26221631

cg22861316

Gene expression 
subtypes ( )
Age subgroups (ns)

Therapies (ns)

C
ox coefficients

-0.313

-0.266
-0.240

-0.204
0.120

0.146

0.179

0.181
0.217

0.236

Classical

Mesenchymal

Proneural

Neural

RT+TMZ

RT

≥70 yrs

<70 yrs

Low-risk High-risk

Acti
va

ted
B

ce
ll

Acti
va

ted
CD4 T ce

ll

Acti
va

ted
CD8 T ce

ll

Cen
tra

l m
em

ory
CD4 T ce

ll

Cen
tra

l m
em

ory
CD8 T ce

ll

Effe
cto

r mem
eo

ry
CD4 T ce

ll

Effe
cto

r mem
eo

ry
CD8 T ce

ll

Gam
ma delt

a T ce
ll

Im
matu

re
B

ce
ll

Mem
ory

B
ce

ll

Reg
ulat

ory
T ce

ll

T follic
ular

help
er

ce
ll

Typ
e 1 T help

er
ce

ll

Typ
e 17

T help
er

ce
ll

Typ
e 2 T help

er
ce

ll
-0.4

-0.2

0.0

0.2

0.4

0.6

N
ES

* *
* *

*

Acti
va

ted
den

drit
ic

ce
ll

CD56
brig

ht natu
ral

kil
ler

ce
ll

CD56
dim

natu
ral

kil
ler

ce
ll

Eosin
ophil

Im
matu

re
den

drit
ic

ce
ll

Mac
ro

phag
e

Mas
t ce

ll

MDSC

Monocy
te

Natu
ral

kil
ler

ce
ll

Natu
ral

kil
ler

T ce
ll

Neu
tro

phil

Plas
mac

yto
id

den
drit

ic
ce

ll
-0.2

0.0

0.2

0.4

0.6

N
ES

low-risk
high-risk*

*
* *

*

**

DNA damage response Glucose metabolism

NF-kB activation

Fatty acid metabolism

Extracellular matrix

Immune cell differentiation

Normal brain 
development and function

NES=-1.98
P<0.001

FDR=0.011

NES=-1.92
P<0.001

FDR=0.019

NES=-2.10
P<0.001

FDR=0.004

NES=1.71
P=0.005

FDR=0.062

Gene expression 
subtypes

Age subgroups

Therapies

Adaptive immune cells Innate immune cells

(A)

TCGA samples 
(unMGMT, non-G-CIMP, RT/TMZ or RT alone)

(B) (C)

(D)

Immune response regulation 

Immune cell activation

NES=1.53
P=0.016

FDR=0.119

NES=1.62
P=0.002

FDR=0.089

NES=1.47
P=0.013

FDR=0.148

NES=1.98
P<0.001

FDR=0.017

NES=1.83
P<0.001

FDR=0.036

NES=1.85
P<0.001

FDR=0.032

NES=1.94
P<0.001

FDR=0.022

NES=1.85
P<0.001

FDR=0.033

NES=1.61
P<0.001

FDR=0.094

NES=1.85
P<0.001

FDR=0.034

NES=1.78
P<0.001

FDR=0.044

Bevacizumab (ns)

*

TMZ cycles (    )**

yes

no

Bevacizumab

0 2 4 6 8 10 12

TMZ cycles

NA



    |  11 of 16LIANG et al.

choice, among which MGMT methylation status stands for the most 
widely validated predictive biomarker.1,2 However, MGMT methyla-
tion had limited use in guiding TMZ in clinical practice due to lack 
of a straightforward relationship between its detection and TMZ 
choice	 in	 GBMs.3 Although TMZ yielded much reduced benefits 
to unMGMT tumors as compared to meMGMT tumors, it is unlikely 
to withdraw from standard treatment, since there is lack of effec-
tive alternative therapies, and TMZ still benefits for some unMGMT 
cases.3 However, it should be noted that TMZ is not a cost- effective 
anti-	GBM	therapy,	and	its	overuse	can	result	in	overconsumption	of	
health resources, raise medical cost to caregivers, and increase risk 
of	drug	toxicity.34 Therefore, identifying potent predictive biomark-
ers, other than MGMT methylation, that can be useful for selecting 
subgroups of unMGMT patients with good sensitivity to TMZ, may 
represent a promising approach for optimizing decision- making on 
TMZ.

DNA	 methylation	 represented	 ideal	 biomarker	 candidates	 for	
precision oncology.35	The	mainstream	expression-		 (e.g.,	RNA,	pro-
tein)	based	biomarkers	have	critical	weaknesses	as	their	information	
can be unstable and even misleading owing to the high dynamic 
metabolism	of	RNA	and	protein,	and	the	instable	physical–	chemical	
structure when stored in biological specimens.35– 37 The genetic 
(e.g.,	 mutations,	 copy	 number	 variation)-	based	 biomarkers	 also	
have clinical drawbacks such as inability to distinguish non- tumor 
cell contamination and tumor cells of origin, and disallowance for a 
quantitative	detection.35– 37	By	contrast,	cancer-	specific	DNA	meth-
ylation alterations can be stable over time and easy to get and store, 
and usually carried abundant biological information, and occurred 
at the very early phase of carcinogenesis preceding other molecular 
alterations.35– 37 The last and most appealing advantage is the avail-
ability	of	epigenetic	drugs	that	could	reverse	aberrant	DNA	methyla-
tion modifications, making it not only an indicator of certain features 
of a given cancer but also a druggable target to cure the disease.38

In this study, by integrating epigenome data, survival outcome, 
and	treatment	information	of	multi-	sourced	GBM	cohorts,	we	iden-
tified	 a	 panel	 of	 64	 CpGs	 that	may	 be	 specifically	 linked	 to	 TMZ	
efficacy	 in	G-	CIMP−/unMGMT	GBMs.	To	construct	a	clinically	ap-
plicable prediction model, we employed a multi- step selection work-
flow	to	screen	out	an	optimal	combination	of	a	few	number	of	CpGs,	
each of which not only conferred potent and independent predic-
tion ability but also coordinated with and complemented each other. 
Finally,	a	10-	CpG	panel	was	identified	and	combined	using	a	RISK-	
score	model.	Testing	 the	10-	CpG	signature	 in	different	cohorts	of	
G-	CIMP−/unMGMT	GBMs	showed	that	the	defined	low-	risk	tumors	
were stably associated with better OS than high- risk tumors when 

treated with RT/TMZ but not RT alone. So, it is inferred that the risk 
signature	may	be	informative	of	distinct	TMZ	efficacy	in	G-	CIMP−/
unMGMT	 GBMs,	 instead	 of	 a	 treatment-	independent	 prognostic	
biomarker.6	Furthermore,	the	interaction	analyses	revealed	that,	as	
compared to RT alone, RT/TMZ was more beneficial to low- risk pa-
tients but yielded similar OS outcomes in high- risk patients. These 
results	 indicated	 that	 the	 10-	CpG	 risk	 signature	 may	 serve	 as	 a	
promising	predictive	factor	for	TMZ	efficacy	in	G-	CIMP−/unMGMT 
GBMs	and	may	be	helpful	 for	providing	predictive	 information	on	
the likely response to TMZ and identifying appropriate patients who 
are most likely to benefit from TMZ.6

Sparse studies have been focused on discovering prognostic or 
predictive	factors	for	G-	CIMP−/unMGMT	GBMs,	and	a	few	predic-
tion models been reported with potential clinical value.39– 41	Like	our	
study,	Chai	et	al.39	reported	a	31-	CpGs	risk	signature	that	predicted	
survival of TMZ- treated unMGMT	GBMs.	Ye	et	al.40 reported a prog-
nostic 13- gene risk signature that was validated in four RT/TMZ- 
treated cohorts of IDH	wild-	type	(wt)	and	unMGMT	GBMs.	Li	et	al.41 
proposed	a	6-	lncRNA	immune-	relevant	risk	signature	that	predicted	
survival in IDHwt/unMGMT	GBMs.	Table 2 compares the published 
signatures	with	our	risk	signature.	The	10-	CpG	signature	appeared	
to have a good predictive ability than the published models, with the 
highest	AUC	values	at	1 year,	2 years,	and	3 years	in	TCGA	samples	
(Table 2).	Also	 the	present	 study	may	have	 advantages	 in	 the	 fol-
lowing	aspects.	First,	abundant	sample	sources	with	relatively	large	
sample size were used for discovery and validation of the risk model. 
Second,	the	treatment	 information	was	 incorporated	 into	the	CpG	
selection, which is a key variable to distinguish a predictive factor 
from a prognostic one.6 Third, the predictive value of the risk sig-
nature in our study was observed with a prospective objective on 
building a predictive model for TMZ response, instead of a spurious 
finding	from	a	post-	hoc	subgroup	analysis.	Finally,	interaction	anal-
yses were performed to compare the survival benefits of different 
treatment regimens in each risk subgroup, which could provide a di-
rect guide on TMZ usage in specific subpopulations.

The	biological	implications	of	the	10-	CpG	signature	may	provide	
molecular clues behind its predictive ability for TMZ response. As 
highlighted by previous studies42	 that	 a	 complex	 and	 intertwined	
network of multiple molecular mechanisms may together determine 
the	 therapeutic	 resistance	 of	 GBMs,	 our	 bioinformatic	 analyses	
showed that the enhanced TMZ resistance observed in high- risk tu-
mors may be partially attributable to the high enrichment of various 
cancer-	promoting	or	therapy-	resistant	signatures	involving	in	DNA	
damage	 response,	 energy	metabolism,	NF-	kB	 activation,	 ECM	 re-
modeling, and tumor immunity, as well as an increased abundance of 

F I G U R E  6 Molecular	and	biological	correlations	of	the	10-	CpG	signature	using	TCGA	multi-	omics	data;	(A)	heatmaps	of	the	methylation	
levels	(M-	values)	of	the	10	CpGs;	each	row	represents	a	CpG	and	each	column	represents	a	sample	which	is	ranked	by	its	risk	score.	Clinical	
and	molecular	features	are	indicated	for	each	sample,	and	multivariable	Cox	coefficients	are	indicated	for	each	CpG;	Representative	GSEA	
enrichment	plots	of	the	highly	enriched	gene	sets	in	(B)	low-	risk	tumors	and	in	(C)	high-	risk	tumors;	(D)	the	abundance	of	adaptive	and	innate	
immune	infiltrating	cells	between	low-	risk	and	high-	risk	tumors.	Categorical	data	(e.g.,	gene	expression,	age	subgroup,	therapies,	and	the	
use	of	bevacizumab)	were	tested	by	Chi-	square	test.	Data	of	TMZ	cycles	did	not	pass	the	normality	test	and	were	compared	using	Mann–	
Whitney	U	test.	Data	of	Normalized	enrichment	scores	(NESs)	passed	the	normality	test,	and	were	compared	using	Student	t- test. Statistical 
significance	was	indicated	at	the	level	of	ns >0.05,	* < 0.05,	**	<0.01,	*** < 0.001	and	**** < 0.0001.	ns,	non-	significant.



12 of 16  |     LIANG et al.

F I G U R E  7 The	impacts	of	GPR81	on	TMZ	resistance	of	GBM	cells	that	may	depend	on	MGMT	status;	(A)	Pearson	correlation	coefficients	
for	each	CpG-	gene	pair	from	included	cohorts;	(B).	The	IHC	scores	of	GPR81	between	NTB	and	GBM	samples	from	Neurosurgery	
Department,	Xijing	Hospital;	(C)	Representative	IHC	images	of	GPR81 and MGMT	in	NTB	or	GBM	samples,	with	corresponding	IHC	
scores;	(D)	Pearson	correlation	between	MGMT and GPR81	at	protein	and	mRNA	levels	in	local	samples;	(E,F)	Survival	difference	between	
low versus high methylation of GPR81	among	RT/TMZ-	treated	(E)	G-	CIMP−/unMGMT	and	(F)	G-	CIMP−/meMGMT	GBMs;	the	median	
methylation	value	(M-	value:	2.0708)	from	RT/TMZ-	treated	G-	CIMP−/unMGMT	GBMs	was	used	for	stratifying	low	versus	high	methylation;	
(G,H)	Meta-	analyses	for	(G)	GPR81	methylation-	based	groups	and	(H)	GRP81	expression-	based	groups	in	RT/TMZ-	treated	non-	G-	CIMP	
GBMs	with	each	MGMT	methylation	status;	the	median	expression	value	(Z-	score:	−0.1992)	from	RT/TMZ-	treated	G-	CIMP−/unMGMT	GBMs	
was	used	for	stratifying	low	versus	high	expression.	(I)	Methylation	and	expression	status	of	MGMT	in	A172	and	T98G	cells	from	GSE68379;	
(J)	Validation	of	GPR81 knockdown and MGMT	overexpression	in	A172	cells	by	qRT-	PCR;	(K)	Validation	of	GPR81 knockdown and MGMT 
knockdown	in	T98G	cells	by	qRT-	PCR;	(L)	GPR81 knockdown increased TMZ sensitivity and cell apoptosis to TMZ treatment in A172 cells 
originally with no detectable MGMT	expression;	(M)	GPR81 knockdown decreased TMZ sensitivity and cell apoptosis to TMZ treatment 
in MGMT-	overexpressed	A172	cells;	(N)	GPR81	knockdown	decreased	TMZ	sensitivity	and	cell	apoptosis	to	TMZ	treatment	in	T98G	cells	
originally	expressing	MGMT;	(O)	GPR81 knockdown increased TMZ sensitivity and cell apoptosis to TMZ treatment in MGMT-	silenced	T98G	
cells;	(P)	Western	bolt	results	in	A172	and	T98G	cells	treated	with	TMZ;	Hazard	ratios	[HR]	from	each	dataset	were	combined	by	meta-	
analysis,	where	the	inverse-	variance	approach	was	applied	using	either	fixed-		or	random	effect	models	based	on	the	heterogeneity	test,	with	
I2 ≥ 50%	or	p	value	≤0.05	considered	to	be	statistically	significant.	All	continuous	data	passed	normality	test	except	for	IHC	scores.	Statistical	
significance	was	indicated	at	the	level	of	ns >0.05,	* < 0.05,	**	<0.01,	*** < 0.001	and	**** < 0.0001.	ns,	non-	significant.

−0.050

−0.122

−0.275

−0.066

−0.010

0.019

−0.458

−0.408

−0.262

−0.255

−0.538

−0.035

−0.044

−0.047

−0.231

−0.174

−0.239

−0.092

−0.196

−0.214

0.032

−0.038

−0.014

−0.017

−0.039

0.148

−0.210

0.011

−0.086

0.110

cg
03

47
35

18

−G
JB

6

cg
12

57
81

66

−K
CNQ1

cg
13

70
25

36

−G
PR81

cg
14

32
91

57

−W
DR69

cg
16

30
24

41

−P
OMC

cg
22

78
33

63

−T
NFRSF10

D

cg
22

86
13

16

−F
ABP6

cg
26

22
16

31

−B
ARX2

cg
26

64
74

53

−C
4o

rf1
7

cg
26

72
84

22

−U
NKL

TCGA

RAUH

GSE22891

Pearson correlation coefficients for each CpG-gene pair

0 40 80 120
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

GPR81 low methylation
(14.5m)

GPR81 high methylation
(12.0m)
p=0.0208

HR=0.712
95% CI=0.533-0.952

HR=1.006
95% CI=0.713-1.418

0 40 80 120
0

50

100

months

O
ve

ra
ll

su
rv

iv
al

GPR81 low methylation
(21.4m)
GPR81 high methylation
(20.6m)

p=0.9747

(E)

(F)

G-CIMP-/unMGMT 
(RT/TMZ)

G-CIMP-/meMGMT 
(RT/TMZ)

(A)

NTB GBM

0

1

2

3

4

5

G
PR

81
IH

C
sc

or
e

ns

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

GPR81 expression
(z-score)

M
G

M
T

ex
pr

es
si

on
(z

-s
co

re
)

0 1 2 3 4 5

0

1

2

3

4

5

GPR81 IHC score

M
G

M
T

IH
C

sc
or

e

NTB GBM

GPR81 (0)

GPR81 (1)

GPR81 (0)

GPR81 (4)

MGMT (0)

MGMT (4)

TCGA

Pearson r=0.079
P=0.162

Pearson r=-0.134
P=0.713

IHC

50 μm

(B) (C) (D)

cg
12

43
45

87

cg
12

98
11

37
0.5

0.6

0.7

0.8

0.9

1.0

Si
ng

le
-C

pG
m

et
hy

la
tio

n
le

ve
l

(b
et

a-
va

lu
e)

MGMT
-1

0

1

2

3

G
en

e
ex

pr
es

si
on

(z
-s

co
re

s)

A172
T98G

GSE68379 
GBM cell lines(I)

sh
C

on
tro

l
sh

G
PR

81
sh

M
G

M
T

sh
G

PR
81

+s
hM

G
M

T
sh

C
on

tro
l

sh
G

PR
81

A172 
(TMZ 120μM)

0.5 1.0 1.5 2.0 2.5 3.0
0

40

80

120

C
el

lv
ia

bi
lit

y
(%

)

shControl IC50=205.2
shGPR81 IC50=151.5

0.5 1.0 1.5 2.0 2.5 3.0
0

40

80

120

C
el

lv
ia

bi
lit

y
(%

)

shMGMT+shControl IC50 =258.5
shMGMT+shGPR81 IC50=206.1

0.5 1.0 1.5 2.0 2.5 3.0
40

80

120

C
el

lv
ia

bi
lit

y
(%

)

shControl IC50=845.7
shGPR81 IC50=1898

6

8

10

12

14

16

Ap
op

to
tic

ce
lls

(%
)

**

6

7

8

9

10

Ap
op

to
tic

ce
lls

(%
)

**

13

14

15

16

17

18

Ap
op

to
tic

ce
lls

(%
)

**

0

5

10

15

20

25

Ap
op

to
tic

ce
lls

(%
)

*

O
E-

M
G

M
T

sh
G

PR
81

+O
E-

M
G

M
T

sh
Con

tro
l

sh
MGMT

0.0

0.5

1.0

1.5

R
el

at
iv

e
M

G
M

T
m

R
N

A
le

ve
ls

****

sh
Con

tro
l

sh
GPR81

0.0

0.5

1.0

1.5

R
el

at
iv

e
G

PR
81

m
R

N
A

le
ve

ls

****

sh
Con

tro
l

sh
GPR81

0.0

0.5

1.0

1.5

R
el

at
iv

e
G

PR
81

m
R

N
A

le
ve

ls

****

OE-C
on

tro
l

OE-M
GMT

0

2

4

40
50
60
70
80

R
el

at
iv

e
M

G
M

T
m

R
N

A
le

ve
ls

****
0.5 1.0 1.5 2.0 2.5 3.0

0

40

80

120

C
el

lv
ia

bi
lit

y
(%

)

OE-MGMT+shControl  IC50=344.9
OE-MGMT+shGPR81  IC50=602.9

A172 
(TMZ 240μM)

T98G 
(TMZ 480μM)

22KD

40KD

42KD

19KD
17KD

36KD

A172 
(TMZ 120μM)

T98G 
(TMZ 480μM)

0.0

0.5

1.0

1.5
****

0.0

0.5

1.0

1.5
***

0.0

0.5

1.0

1.5

R
el

at
iv

e
G

PR
81

pr
ot

ei
n

le
ve

ls

***

0

1

2

3

R
el

at
iv

e
pr

ot
ei

n
le

ve
ls

(c
le

av
ed

-C
as

3/
C

as
3)

**

0.0

0.5

1.0

1.5 ***

0.5

0.6

0.7

0.8

0.9

1.0

1.1
***

0.0

0.5

1.0

1.5
****

0.9

1.0

1.1

1.2

1.3 *

StudyorSubgroup
unMGMT/G-CIMP- (RT/TMZ)
GSE22891
GSE50923
GSE60274
RAUH
TCGA
Subtotal (95% CI)
Heterogeneity: P = 0.63; I² = 0%
Test for overall effect: P = 0.0002

meMGMT/G-CIMP- (RT/TMZ)
GSE22891
GSE50923
GSE60274
RAUH

Subtotal (95% CI)
Heterogeneity: P = 0.25; I² = 26%

Test for subgroup differences: P = 0.01

Weight

7.5%
5.4%
4.8%

25.3%
16.6%
59.6%

7.4%
4.6%
3.2%
5.5%

19.8%
40.4%

IV, Fixed,95%CI

1.33 [0.97, 1.83]
1.49 [1.03, 2.16]
1.28 [0.86, 1.89]
1.12 [0.95, 1.34]
1.30 [1.05, 1.61]
1.24 [1.11, 1.39]

0.90 [0.65, 1.23]
1.15 [0.77, 1.73]
1.55 [0.96, 2.52]
0.81 [0.56, 1.17]
0.98 [0.81, 1.19]
0.99 [0.87, 1.14]

Hazard Ratio Hazard Ratio
IV, Fixed,95%CI

0.5 0.7 1 1.5 2
Favours

[high methylation]
Favours

[low methylation]

Test for overall effect: P = 0.92

GPR81 methylation

StudyorSubgroup
unMGMT/G-CIMP- (RT/TMZ)
GSE22891
RAUH
TCGA
Subtotal (95% CI)
Heterogeneity:P = 0.66; I² = 0%
Test for overall effect: P = 0.06

meMGMT/G-CIMP- (RT/TMZ)
GSE22891
RAUH
TCGA
Subtotal (95% CI)
Heterogeneity: P = 0.01; I² = 77%
Test for overall effect: P = 0.23
Test for subgroup differences: P = 0.10

Weight

13.0%
21.8%
24.1%
59.0%

6.6%
12.2%
22.2%
41.0%

IV, Random, 95% CI

0.80 [0.48, 1.34]
0.78 [0.59, 1.03]
0.92 [0.73, 1.16]
0.85 [0.72, 1.01]

2.78 [1.20, 6.44]
1.65 [0.96, 2.84]
0.91 [0.69, 1.19]
1.47 [0.78, 2.76]

Hazard Ratio Hazard Ratio
IV, Random, 95% CI

0.1 0.2 0.5 1 2 5 10
Favours

[high expression]
Favours

[low expression]

GPR81 expression

A172

T98G

sh
Con

tro
l

sh
GPR81

OE-M
GMT

+s
hC

on
tro

l

OE-M
GMT

+s
hG

PR81

sh
Con

tro
l

sh
GPR81

sh
MGMT

+s
hC

on
tro

l

sh
MGMT

+s
hG

PR81

sh
Con

tro
l

sh
GPR81

OE-M
GMT

+s
hC

on
tro

l

OE-M
GMT

+s
hG

PR81

sh
Con

tro
l

sh
GPR81

sh
MGMT

+s
hC

on
tro

l

sh
MGMT

+s
hG

PR81

(G) (H)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

A172 
(TMZ 240μM)

T98G 
(TMZ 480μM)

T98G 
(TMZ 480μM)



    |  13 of 16LIANG et al.

immunosuppressive	cells	(e.g.,	Treg	and	MDSCs).	In	another	word,	a	
prediction model incorporating multiple variables that are indicative 
of different aspects of TMZ efficacy- related molecular features, like 
our risk signature, may be more informative of chemo- resistance in 
G-	CIMP−/unMGMT	GBMs,	instead	of	a	single-	marker	model.

DNA	methylation	represents	one	critical	layer	of	control	in	gene	
expression.35,37,38	 It	 is	 reasonable	 to	 assume	 that	 the	 multi-	CpG	
signature	may	contribute	 to	TMZ	 resistance	via	 regulating	 the	ex-
pression	of	relevant	genes.	In	our	signature,	only	one	CpG-	gene	pair	
(cg13702536	and	GPR81)	was	found	to	show	stable	and	significant	
correlation	between	DNA	methylation	and	gene	expression	across	
different datasets, suggesting that GPR81 may be epigenetically 
controlled	by	DNA	methylation.	GPR81 has been reported to have 
multifunctional roles in promoting malignant behaviors of tumor 
cells by regulating energy metabolism,43 angiogenesis,44 therapeutic 
resistance,45 and tumor immunity.46,47	Surprisingly,	in	in	vitro	GBM	
cell	experiments,	we	have	revealed	the	potential	MGMT- dependent 
impacts of GPR81	on	TMZ	resistance;	specifically	in	GBM	cells	with	
high	methylation	(or	low	expression)	of	MGMT, e.g., A172-  and MGMT- 
silenced	T98G	cells,	GPR81 may enhance TMZ resistance while in 
GBM	cells	with	low	methylation	(or	high	expression)	of	MGMT, e.g., 
MGMT-	overexpressed	 A172	 and	 T98G	 cells,	GPR81 may increase 
TMZ	 sensitivity.	 In	 line	 with	 experimental	 data,	 survival	 analyses	
also supported the distinct predictive abilities of GPR81	expression	
(or	methylation)	 in	RT/TMZ-	treated	G-	CIMP-		GBMs	with	different	
MGMT methylation statues. However, the absence of apparent pre-
dictive ability in meMGMT tumors indicated that the tumor intrinsic 
GPR81	expression	may	not	act	as	a	major	contributor	to	TMZ	resis-
tance	among	the	complex	molecular	mechanisms	conferred	by	the	
entire tumor microenvironments in meMGMT	samples.	By	contrast,	
tumor intrinsic GRP81	expression	may	be	a	dominant	player	for	TMZ	
efficacy among the unMGMT	GBM	microenvironments	as	supported	
by the significant predictive ability in clinical samples and the signif-
icant	impacts	on	TMZ	resistance	in	GBM	cell	lines.	In	summary,	the	
clinical	and	experimental	data	of	GPR81 may provide additional layer 
of	evidence	supporting	the	predictive	ability	of	the	10-	CpG	signa-
ture	in	G-	CIMP−/unMGMT	GBMs.	Moreover,	the	MGMT- dependent 
roles of GPR81	highlighted	the	complexity	and	sophistication	of	the	
underlying molecular mechanisms that eventually define the re-
sistant	nature	of	GBMs.	However,	by	far,	 the	data	are	too	prelimi-
nary	to	draw	conclusion.	Future	studies	are	needed	to	address	how	
MGMT affects the functions of GPR81	in	TMZ	resistance	of	GBMs,	
and what MGMT status triggers the function transition of GPR81.

Functional	 reports	 on	 the	other	CpG-	relevant	 genes	may	 also	
provide biological clues for the predictive ability of our risk signa-
ture. GJB6	 (harboring	 cg03473518)	 encodes	 a	 tumor-	suppressive	
gap	 junction	 protein	 and	 may	 prevent	 GBM	 growth	 via	 rewiring	
glucose metabolism and inhibiting stemness.48,49 KCNQ1	(harboring	
cg12578166)	 encodes	 a	 voltage-	dependent	 K+ channel and acts 
both	as	a	target	gene	and	regulator	of	the	Wnt/β- catenin pathway.50 
Loss	of	KCNQ1	has	been	reported	to	exert	anti-	tumor	functions	via	
promoting	epithelial-	to-	mesenchymal	transition	(EMT)	and	disrupt-
ing adheren junctions in epithelial cancers.50 WDR69	 (harboring	TA
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cg14329157),	also	called	dynein	assembly	factor	with	WD	repeats	1	
(DAW1),	belongs	to	the	WD-	repeat	domain	(WDR)	family	and	plays	
vital roles in cilia motility.51 WDR69 hypermethylation was found 
to be associated with unfavorable prognosis in hepatocellular car-
cinoma.52 TNFRSF10D	 (harboring	 cg22783363)	 encodes	 a	 plasma	
membrane-	located	 TNF-	related	 apoptosis-	inducing	 ligand	 (TRAIL)	
decoy	 receptor,	 and	 negatively	 regulates	 TRAIL-	induced	 apopto-
sis.53 Hypermethylation and silencing of TNFRSF10D have been 
reported to occur in multiple cancer types and be associated with 
poor	 survival	 and	 resistance	 to	 DNA-	damaging	 drugs.53,54 FABP6 
(harboring	 cg22861316),	 encoding	 a	 bile	 acid-	binding	 protein,	 is	
physiologically involved in fatty acids metabolism.55 Recently, dys-
regulation and dysfunction of FABP6 have been reported to be in-
volved	in	multiple	cancers	including	GBMs.55– 57	In	GBM	cells,	FABP6	
inhibition reversed the malignant phenotypes of tumor cells and in-
creased TMZ sensitivity.55 BARX2	(harboring	cg26221631)	encodes	
a	member	of	the	homeobox	transcription	factor	family	that	controls	
cell adhesion and cytoskeleton remodeling.58 Downregulation of 
BARX2,	 partially	 by	 CGI	 hypermethylation,	 has	 been	 reported	 to	
correlate with enhanced aerobic glycolysis and aggressive behaviors 
of tumor cells and be indicative of poor prognosis.59 POMC	(harbor-
ing	cg16302441)	encodes	a	pro-	hormone	that	gives	rise	to	various	
active	peptides	 such	as	adrenocorticotropic	hormone	 (ACTH)	and	
melanocyte	 stimulating	 hormones	 (MSHs).60 Some POMC- derived 
peptides have been reported to have vital roles in neuroendocrine 
tumors such as guiding optimal choice of chemotherapy.60	By	far,	lit-
tle is known about the relevance of C4orf17	(harboring	cg26647453)	
and UNKL	(harboring	cg26728422)	in	cancers.	The	multi-	CpG	signa-
ture may unlikely impact TMZ resistance via direct transcriptional 
control of the above genes as no significant correlations were ob-
served	for	the	nine	CpG-	gene	pairs.	However,	in	addition	to	classical	
epigenetic	 regulation	mechanism,	DNA	methylation	 abnormalities	
may have broader biological effects by affecting heterochromatin 
structures, leading to loss of epigenetic regulation and resulting 
in	 hypervariability	 of	 gene	 expression.36,37,61	 Future	 studies	 are	
needed	 to	 explore	 the	 molecular	 machinery	 on	 TMZ	 resistance	
behind	the	CpG	members	that	may	not	directly	control	 local	gene	
expression.

Limitations	 exist	 in	 the	 present	 study.	 Our	 finding	 should	 be	
carefully interpreted due to the following shortcomings, such as lack 
of validation in a randomized setting or in a prospective manner, 
potential patient selection bias in retrospectively collected cohorts, 
very few samples for RT- treated patients, heterogeneous treatment 
regimens, and incomplete clinical data. Moreover, the risk signature 
was	built	on	high-	throughput	DNA	methylation	detection	platform,	
which is not clinically available and not economical for routine test-
ing. Therefore, the risk signature in its current form is not ready for 
daily use and should be modified and validated by a more common 
detection	system,	such	as	pyrosequencing.47	Finally,	the	histochemi-
cal characterization of glioma in our study is technically conventional 
and	has	limited	scope.	New	histo-	methodology,	such	as	tissue	clear-
ing	and	quantitative	ultramicroscopy,	may	provide	more	comprehen-
sive molecule- histology information.62

In conclusion, we firstly reported a panel of 64 TMZ efficacy- 
related	CpGs	and	then	built	a	10-	CpG-	based	RISK-	score	signature	
that	may	robustly	and	stably	predict	response	to	TMZ	in	G-	CIMP−/
unMGMT	GBMs,	 a	 subtype	 characteristic	 of	 high	TMZ	 resistance.	
Experimental	 data	 revealed	 potential	 MGMT- dependent roles of 
GPR81	in	TMZ	resistance,	highlighting	the	complexity	of	the	chemo-	
resistant	mechanisms	in	GBMs.	The	10-	CpG	signature	may	be	help-
ful	for	guiding	TMZ	choice	in	such	subpopulation.	Future	studies	are	
needed	 to	 explore	 the	 molecular	 mechanisms	 underlying	 the	 risk	
signature and to translate it into routine practice.
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