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Abstract
Purposes: To identify potent DNA methylation candidates that could predict response 
to temozolomide (TMZ) in glioblastomas (GBMs) that do not have glioma-CpGs is-
land methylator phenotype (G-CIMP) but have an unmethylated promoter of O-6-
methylguanine-DNA methyltransferase (unMGMT).
Methods: The discovery-validation approach was planned incorporating a series of 
G-CIMP−/unMGMT GBM cohorts with DNA methylation microarray data and clinical 
information, to construct multi-CpG prediction models. Different bioinformatic and 
experimental analyses were performed for biological exploration.
Results: By analyzing discovery sets with radiotherapy (RT) plus TMZ versus RT alone, 
we identified a panel of 64 TMZ efficacy-related CpGs, from which a 10-CpG risk 
signature was further constructed. Both the 64-CpG panel and the 10-CpG risk signa-
ture were validated showing significant correlations with overall survival of G-CIMP−/
unMGMT GBMs when treated with RT/TMZ, rather than RT alone. The 10-CpG risk 
signature was further observed for aiding TMZ choice by distinguishing differential 
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1  |  INTRODUC TION

Glioblastomas (GBMs) are the most frequent and devastat-
ing brain malignancy with a reported median survival of only 
12 ~ 15 months.1 Temozolomide (TMZ) stands for the most effec-
tive adjuvant chemotherapy for GBMs.2 It can alkylate genomic 
DNA of tumor cells at multiple sites and induce cell cycle arrest 
and apoptosis.2 Unfortunately, the deadly GBMs, characteristic of 
high inter-tumoral molecular heterogeneity, variably responded to 
TMZ.2 A considerable number of patients did not benefit from the 
treatment of TMZ, and some even suffer from its high costs and 
adverse effects.3–5

The promoter methylation status of the O-6-methylguanine-
DNA methyltransferase (MGMT) gene, encoding a DNA repair en-
zyme that conferred major resistance to alkylating agents, is by far 
the most informative predictive biomarker for TMZ response.3–5 
TMZ was generally beneficial to GBMs that harbor a methylated 
(me)MGMT promoter and consequently have a low expression of 
MGMT. However, TMZ was not that sensitive to GBMs harboring an 
unmethylated (un)MGMT promoter and generally a high expression 
of MGMT and tended to yield variable outcomes in those tumors. 
MGMT testing may thus have limited use in guiding TMZ choice for 
GBM patients and especially those with unMGMT GBMs.6–8 There-
fore, discovering powerful biomarkers that are predictive of TMZ re-
sponse for subpopulation with TMZ-resistant unMGMT tumors can 
be clinically useful.9,10

In 2010, The Cancer Genome Atlas (TCGA) research group re-
ported a novel and distinct subtype of GBMs with glioma GpGs 
island methylator phenotype (G-CIMP)11; the subtype was charac-
terized by exclusive mutations in isocitrate dehydrogenase (IDH) 
gene, concordant DNA hypermethylation at CpG islands throughout 
genome, good sensitivity to radio-chemotherapy, and considerably 
favorable prognosis.11–18 Because of the small proportion (10% of 
all GBMs) and the very distinct molecular and clinical features, the 
G-CIMP subtype was excluded, and we mainly focused on the ma-
jority of GBMs that do not have G-CIMP. In this study, by integrating 
genome-wide DNA methylation microarray data and clinical infor-
mation, we identified a panel of 64 CpG candidates with potential 
linkage to TMZ efficacy in G-CIMP- GBMs with unMGMT promoter, 
from which a 10-CpG risk signature was constructed and validated 
to robustly and stably predict TMZ response. Bioinformatic and in 

vitro experimental analyses further provided biological insights into 
the 10-CpG predictive signature.

2  |  METHODS

2.1  |  Determination of G-CIMP and MGMT 
promoter methylation status

The G-CIMP status and promoter methylation status of MGMT were 
defined using DNA methylation data from Illumina HumanMethyla-
tion27k/450 k microarrays (Illumina Inc.), as previously reported.19,20 
Within the Illumina platform, methylation signal of each CpG was 
summarized as β value which provides a continuous and quantita-
tive measurement of DNA methylation ranging from 0 (completely 
unmethylated) to 1 (completely methylated).21 The β value was com-
monly used for intuitive biological interpretation.21 When statistical 
analysis was employed, β value was transformed to M value, which 
has a Logit transformation relationship with β value.21 The G-CIMP 
status was determined by K-means (k = 3) clustering using the 1,503 
featured probes as previously described.19 The MGMT promoter 
methylation was determined by a logistical regression model using 
two Illumina probes (cg12434587 and cg12981137).20 The logistical 
regression formula was calculated as logit (y) = 4.3215 + 0.5271 × M-
value of cg12434587 + 0.9265 × M-value of cg12981137, with a cut-
off of 0.358 for stratifying methylated and unmethylated tumors.20

2.2  |  GBM datasets of clinical samples and 
cell lines

Molecular microarray data and clinical information of primary 
GBMs were downloaded from public databases, including one co-
hort from TCGA (n = 317)22 and three cohorts from Gene expres-
sion omnibus (GEO; GSE22891,23 n = 50; GSE50923, n = 5424; and 
GSE60274, n = 6425). A French dataset of 79 primary GBMs from 
Rennes and Angers University Hospitals (RAUH) were provided 
by Prof. Amandine Etcheverry.26 In addition, non-tumor brains 
(NTBs) from TCGA22 and GSE6334727 were included for compara-
tive analysis. All samples had DNA methylation data profiled by 
Infinium HumanMethylation 27 k or 450 k chips, and some had 

Province, Grant/Award Number: 
2023-JCYB-641; Shandong Province 
Natural Science Foundation, Grant/Award 
Number: ZR2020QH0233

outcomes to RT/TMZ versus RT within each risk subgroup. Functional studies on 
GPR81, the gene harboring one of the 10 CpGs, indicated its distinct impacts on TMZ 
resistance in GBM cells, which may be dependent on the status of MGMT expression.
Conclusions: The 64 TMZ efficacy-related CpGs and in particular the 10-CpG risk 
signature may serve as promising predictive biomarker candidates for guiding optimal 
usage of TMZ in G-CIMP−/unMGMT GBMs.
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paired gene expression data profiled by a variety of transcriptome 
microarrays.22–26 The availability of molecular and clinical data for 
each sample was presented in Figure 1A. Finally, DNA methylation 
(Infinium HumanMethylation 450 k) and gene expression (Affym-
etrix HumanGenome U219-96) microarray data of 36 GBM cell 
lines were downloaded from GSE68379.28 More information on 
microarray platform and data processing for each dataset can be 
referred to the original reports.22–28

2.3  |  CpG selection and model construction

The discovery-validation approach was utilized to identify CpG can-
didates with potential linkage to TMZ efficacy. The workflow for 
study design is shown in Figure 1B. In this study, RT/TMZ-treated 
unMGMT GBMs from TCGA and GEO (GSE22891, GSE50923, and 
GSE60274) and RT-treated unMGMT tumors from GSE60274 were 
preset as discovery sets. RT/TMZ-treated unMGMT GBMs from 
RAUH and RT-treated unMGMT tumors from TCGA were preset as 
validation sets (Figure 1B).

Initial CpG selection was done as reported in our previous 
study.29 Batch effects across datasets were adjusted using M-value 
transformation21 and the Empirical Bayes method (ComBat mod-
ule, GenePattern).30 CpGs with higher variability in methylation 

levels (standard deviation [SD] of β value in discovery sets ≥0.15) 
were kept, and their M-values were used to correlate with overall 
survival (OS) in each discovery set treated with either RT/TMZ or 
RT alone. After removing inconsistent results from univariate Cox 
regression analyses, a panel of 64 CpGs was identified as TMZ 
efficacy-related candidates. To further reduce data dimensionality, 
the 64-CpG methylation data were incorporated into a multivariate 
Cox regression model using Likelihood Ratio (LR) and Forward selec-
tion approach, where age, sample source, and G-CIMP status were 
together adjusted. Finally, we identified a total of ten CpGs to con-
struct a RISK-score formula, which is the sum of the M-value of each 
CpG weighted by its corresponding multivariate Cox coefficient. The 
median RISK score value in the RT/TMZ-treated discovery sets was 
pre-defined as the cutoff for low-risk and high-risk groups.

2.4  |  Gene set enrichment analysis

Gene set enrichment analysis (GESA) was run through the Gene 
Ontology Gene Set collection from Molecular Signatures Da-
tabase (MSigDB), to evaluate the biological profiles of the risk 
subgroups, with both nominal p-value ≤0.05 and false discovery 
rate (FDR) ≤ 0.25 as statistical significance.31 The proportion of 
28 tumor-infiltrating immune cell (TIIC) types in tumor bulks was 

F I G U R E  1 Patient dataset information and study workflow; (A) molecular subtype, available molecular/clinical data, and sample size of 
included patient datasets; (B) schematic diagram for searching and validating TMZ efficacy-related CpG candidates and a 10-CpG signature.
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estimated using single-sample GSEA (ssGSEA) approach and the 
782-gene signature reported by Charoentong et al.32 The abun-
dance of each TIIC type was summarized as normalized enrich-
ment scores (NES).

2.5  |  Immunohistochemistry (IHC) staining

Formalin-fixed paraffin-embedded (FFPE) samples of 10 primary 
GBMs and 3 NTBs from patients with traumatic brain injury were 
collected from the Department of Neurosurgery, Xijing Hospital. 
FFPE samples were employed for IHC staining with anti-GPR81 an-
tibody (Abcam, #ab106942) or anti-MGMT antibody (Proteintech, 
#17195-1-AP). The intensity and percentage of positive cells were 
evaluated in at least five separate fields at × 400 magnification. Im-
munoreactivity was scored as follows: 0, no staining; 1, weak stain-
ing in <50% cells; 2, weak staining in ≥h50% cells; 3, strong staining 
in <50% cells; and 4, strong staining in ≥50% cells. The scores were 
evaluated by two independent researchers, and disputes were re-
solved through discussion. All patients provided written informed 
consent, and this study was approved by the Institutional Review 
Board.

2.6  |  Cell culture and treatment

Two GBM cell lines (A172 and T98G) were obtained from American 
Type Culture Collection and grown in Dulbecco's modified Eagle's 
medium containing 10% fetal bovine serum at 37°C in 5% CO2. The 
cells were treated with TMZ (MedChemExpress, #HY-17364) at in-
dicated concentrations for 48 h. TMZ was dissolved in dimethyl sul-
foxide (DMSO, Sigma-Aldrich).

2.7  |  Plasmids and cell transfection

For in vitro gene silencing, RNA interference using plasmids ex-
pressing human short hairpin RNAs (shRNAs) was performed. 
Plasmids containing shRNAs targeting GRP81 (shGPR81) or MGMT 
(shMGMT), and scramble shRNAs (shControl) were purchased from 
GeneChem. For in vitro gene overexpression, plasmids containing 
the MGMT gene were also obtained (GeneChem). Cell transfec-
tion was done using Lipofectamine® 2000 reagent (Invitrogen). 
Transfection efficiency was verified by quantitative real-time PCR 
(qRT-PCR).

2.8  |  TMZ cytotoxicity assay

After plasmid transfection, T98G and A172 cells were seeded on 
96 well plates (5000 cells per well) and were treated with TMZ at 
the final concentrations of 7.5, 15, 30, 60, 120, 240, and 480 μM for 
48 h. CCK-8 reagent was added to wells (10 μL/well) and incubated at 

37°C for 1 h. The absorbance at 450 nm was measured for calculat-
ing the half maximal inhibitory concentration (IC50).

2.9  |  qRT-PCR

The total RNA was extracted using TRIzol reagent (Shanghai Pufei 
Biotech) and reverse-transcribed with M-MLV RT kit (Promega) ac-
cording to the manufacturer's instructions. PCR amplification was 
performed with SYBR Master Mixture (Takara) using LighterCycler 
480 II System (Rcoche). The mRNA ratio of a target gene to GAPDH 
was calculated using the 2−ΔΔCt formula. The primers used were: 
GAPDH forward: 5′-TGACT​TCA​ACA​GCG​ACA​CCCA-3′; GAPDH 
reverse: 5′-CACCC​TGT​TGC​TGT​AGC​CAAA-3′; GPR81 forward: 5′-
TTCGT​ATT​TGG​TGG​CAGGCA-3′; GPR81 reverse: 5′-TTTCG​AGG​
GGT​CCA​GGTACA-3′; MGMT forward: 5’-ACCGT​TTG​CGA​CTT​GGT​
ACTT-3′; and MGMT reverse: 5’-GGAGC​TTT​ATT​TCG​TGC​AGACC-3′.

2.10  |  Western blot

After plasmid transfection, T98G and A172 cells were treated with 
TMZ at different concentrations for 48 h. Cells were then lysed 
in RIPA buffer-contained protease inhibitor and phosphatase in-
hibitor (Roche). The primary antibodies against GPR81 (Abcam, 
#ab106942), MGMT (Proteintech, #17195-1-AP), cleaved-Caspase 
3 (CST, #9661), Caspase 3 (CST, #9662), and β-actin (Sigma-
Aldrich, #A5441) were used according to the manufacturers' 
recommendations.

2.11  |  Flow cytometry assay

For cell apoptosis analysis, transfected T98G and A172 cells were 
treated with TMZ at different concentrations for 48 h. The cells were 
then washed with cold phosphate-buffered saline (PBS, 4°C). Annexin 
V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) double 
staining were used to sort cells in early or late apoptotic phase.

2.12  |  Statistical analysis

Data normality was examined using Shapiro–Wilk (n ≤ 50) or 
Kolmogorov–Smirnov test (n > 50). Normally distributed and non-
normally distributed variables were analyzed using Student t-test 
and Mann–Whitney U test. Correlation of normally distributed and 
non-normally distributed data was assessed by Pearson and Spear-
man correlation test. Categorical data were tested using Chi-square 
test. Survival data (e.g., OS, progression-free survival [PFS]) were 
compared using Kaplan–Meier curves and log-rank test. The prog-
nostic correlation and independence of each variable were evaluated 
using univariate and multivariate Cox regression models. Results of 
each cohort or subgroup were combined using meta-analysis, where 
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the inverse-variance approach was applied using either fixed- or ran-
dom effect models based on the heterogeneity test, with I2 ≥ 50% or 
p-value ≤0.05 considered to be statistically significant. Hierarchical 
cluster analysis (HCA) was performed using R package hclust. The 
area under the curve (AUC) of the receiver operating characteristic 

(ROC) curve was done by R package survivalROC, to evaluate the 
prediction ability of the risk score models. All statistical analyses 
were done within SPSS statistics v19.0, GraphPad Prism v8.4.3 and 
R software v3.6.3, with two-sided p-value ≤0.05 considered to be 
statistically significant.

F I G U R E  2 Identification and validation of CpG methylation with potential linkage to TMZ efficacy; the heatmaps of DNA methylation 
clusters defined by hierarchical clustering on 64 TMZ efficacy-related CpGs (M-values) in (A) discovery and (D) validation sets of unMGMT 
GBMs; each row represents a CpG; each column represents a sample which is grouped by hierarchical clustering; clinical and molecular 
features are indicated for each sample. Survival comparison among non-G-CIMP clusters in (B) discovery and (E) validation sets with 
combination of RT and TMZ. Survival comparison among non-G-CIMP clusters in (C) discovery and (F) validation sets with RT alone. Survival 
difference of each cluster was tested by log-rank test with p value ≤0.05 as statistical significance. Hazard ratio (HR) and 95% confidence 
interval (CI) for survival curves were presented in Table S4.
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3  |  RESULTS

3.1  |  DNA methylation variations of a 64-CpG 
panel were specifically associated with TMZ efficacy 
in G-CIMP−/unMGMT GBMs

Following the selection workflow (Figure  1B), we identified a 
panel of 64 TMZ efficacy-related CpGs from discovery sets, 
each of which was significantly correlated with OS of G-CIMP−/
unMGMT GBMs treated with RT plus TMZ, rather than RT alone. 
In discovery sets, HCA on the 64-CpG methylation data divided 
all G-CIMP−/unMGMT GBMs into four clusters (Figure  2A). Sur-
vival analyses showed that OS of RT/TMZ-treated G-CIMP- GBMs 
significantly differed while that of RT-treated tumors were undis-
tinguished across the clusters (Figure 2B,C). Similarly, HCA also 
yielded four clusters of G-CIMP−/unMGMT GBMs in validation 
sets and confirmed the distinct prognostic correlations with dif-
ferent treatments (RT/TMZ vs. RT alone; Figure 2D–F). Together 
the results indicated that the 64-CpG panel may serve as an epi-
genetic biomarker pool that may provide predictive information on 
TMZ response in G-CIMP−/unMGMT GBMs.

3.2  |  Identification of a ten-CpG signature 
with potential linkage to TMZ efficacy in 
G-CIMP−/unMGMT GBMs

To simplify the HCA-based classification and develop a clinically applica-
ble prediction model, we performed multivariate Cox regression analyses 
and reduced the 64-CpG panel into a panel of 10 CpGs, each of which 
was supposed to provide significant, complementary, and independent 
prediction information for TMZ sensitivity in G-CIMP−/unMGMT GBMs 
(Table 1). Accordingly, a RISK-score formula was established as follows: 
risk score = (−0.313 × M-value of cg26728422) + (−0.266 × M-value of 
cg03473518) + (−0.240 × M-value of cg26647453) + (−0.204 × M-value 
of cg16302441) + (0.120 × M-value of cg12578166) + (0.146 × M-value 

of cg14329157) + (0.179 × M-value of cg13702536) + (0.181 × M-value 
of cg22783363) + (0.217 × M-value of cg26221631) + (0.236 × M-value 
of cg22861316).

Using the median RISK score (0.3028) in the RT/TMZ-treated 
discovery sets as the cutoff, we divided all G-CIMP−/unMGMT 
GBMs into low-risk and high-risk subgroups. In RT/TMZ-treated 
TCGA cohort, low-risk G-CIMP−/unMGMT patients had longer OS 
than high-risk patients (Figure  3A). Similarly, significant results 
were also observed in RT/TMZ-treated GEO cohorts (GSE22891, 
GSE50923, and GSE60274 collectively; Figure 3A). The risk clas-
sification in each GEO cohort was also shown in Figure 3C. By 
contrast, in RT-treated GSE60274 cohort, OS was not significantly 
different between the risk subgroups (Figure  3B). In addition, 
survival data of patients with G-CIMP or meMGMT GBMs were 
shown for comparison (Figure 3).

To further evaluate the performance of the 10-CpG signature, 
we applied the RISK-score signature to validation sets with different 
treatments. Expectedly it accurately predicted OS in RT/TMZ-treated 
RAUH cohort of G-CIMP−/unMGMT GBMs but was not associated 
with OS in RT-treated TCGA cohort (Figure 3D,E). Patient-level and 
cohort-level meta-analyses both yielded distinct prognostic correla-
tions of the 10-CpG signature among different treatment subpopu-
lations (Figure 3F–H). Similar results were observed in terms of PFS 
outcome (Figure  4). Cox regression analyses confirmed the 10-CpG 
signature as a potent and independent survival predictor for G-
CIMP−/unMGMT GBMs treated with RT/TMZ, rather than RT alone 
(Table S1). The results indicated that, instead of a general prognostic 
factor regardless of treatment, the 10-CpG signature may have a spe-
cific linkage to TMZ efficacy in G-CIMP−/unMGMT GBMs.

3.3  |  The 10-CpG signature may be a potent 
predictive factor aiding in TMZ decision-making

To account for potential bias of assigned treatment regimens, only pa-
tients receiving standard RT (SRT) with or without (concurrent or adjuvant) 

TA B L E  1 Genomic and clinical information of the 10 CpGs with potential linkage to TMZ efficacy.

Probe ID Chromosome
Relevant gene 
symbol

Relation to gene 
regions

Relation to CpG 
Island

Multivariable Cox 
regression coefficients

cg26728422 16 UNKL 5'UTR Shore −0.313

cg03473518 13 GJB6 5'UTR Shore −0.266

cg26647453 4 C4orf17 5'UTR Open sea −0.24

cg16302441 2 POMC TSS1500 Island −0.204

cg12578166 11 KCNQ1 Body Shore 0.12

cg14329157 2 WDR69 TSS200 Shore 0.146

cg13702536 12 GPR81 TSS1500 Open sea 0.179

cg22783363 8 TNFRSF10D TSS200 Island 0.181

cg26221631 11 BARX2 1stExon Island 0.217

cg22861316 5 FABP6 Body Open sea 0.236

Abbreviations: TMZ, temozolomide; TSS, transcription start site; UTR, untranslated region.
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TMZ were included for the interaction analyses between different risk 
subgroups (low-risk vs. high-risk) and different treatments (SRT/TMZ vs. 
SRT). In line with previous report,33 G-CIMP−/unMGMT GBMs appeared 
not to benefit much from SRT/TMZ as compared to SRT (Figure 5A,D). 
The interaction analyses showed that SRT/TMZ appeared to confer an 
OS benefit to low-risk G-CIMP−/unMGMT GBMs (Figure 5B,E) but was 
associated with similar OS in high-risk patients (Figure 5C,F).

No significant difference was observed in patient baseline informa-
tion (e.g., surgery, gender, or KPS) between subgroups with different 
treatment and different risk subgroups except for a high proportion 

of elderly patients (>70 years) in RT-treated subgroups (data not 
shown). Patient-level and cohort-level meta-analyses only incorporat-
ing younger patients (≤ 70 years) were thus performed, which yielded 
a statistically significant OS difference between SRT/TMZ-treated and 
SRT-treated subgroups (Figure  5G–I). Cox regression analyses con-
firmed SRT/TMZ as a better option for low-risk patients, but not for 
high-risk ones (Table S2). Together, the results indicated that the 10-
CpG signature may represent a promising predictive model for TMZ 
response and be helpful for selecting patients who are likely to benefit 
from the addition of TMZ.

F I G U R E  3 Prognostic performance of the 10-CpG signature in G-CIMP−/unMGMT GBMs in term of OS outcome; survival comparison 
among the subgroups characteristic of G-CIMP+, meMGMT, G-CIMP−/unMGMT low-risk or G-CIMP−/unMGMT high-risk in (A) RT/TMZ-
treated and (B) RT-treated discovery sets, as well as in (C) each GEO cohort; survival comparison among the above indicated subgroups 
in (D) RT/TMZ-treated and (E) RT-treated validation sets; pooled survival comparison using patient-level data among the above indicated 
subgroups with (F) RT/TMZ or with (G) RT alone; (H) meta-analysis using cohort-level data between the risk subgroups with RT/TMZ or RT 
alone. Survival difference of each subgroup was tested by the log-rank test with p value ≤0.05 as statistical significance. Hazard ratios [HR] 
from each dataset were combined by meta-analysis, where the inverse-variance approach was applied using either fixed- or random effect 
models based on the heterogeneity test, with I2 ≥ 50% or p value ≤0.05 considered to be statistically significant. Hazard ratio (HR) and 95% 
confidence interval (CI) for survival curves were presented in Table S4.
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3.4  |  Clinical and molecular correlations of the 10-
CpG signature

In TCGA G-CIMP−/unMGMT GBMs, the 10-CpG signature was 
found to be significantly associated with different gene expression 
subtypes; low-risk tumors were enriched with proneural subtype, 
and high-risk tumors were enriched with mesenchymal subtype 
(Figure 6A). In addition, the treatment cycles of TMZ were signifi-
cantly higher in low-risk tumors (median cycle: 4) than in high-risk 
tumors (median cycle: 3; Figure 6A). GSEA showed that low-risk tu-
mors were enriched with gene sets related to normal brain develop-
ment and function (Figure 6B; Table S3), while high-risk tumors were 
enriched with a variety of cancer-promoting signatures and espe-
cially those relevant to DNA damage response, glucose metabolism, 
fatty acid metabolism, NF-kB activation, extracellular matrix (ECM) 
remodeling, immune response, and immune cell function (Figure 6C; 
Table  S3). ssGSEA showed that high-risk tumors were associated 
with a higher abundance of some TIIC types and particularly those 
immunosuppressive cells (e.g., regulatory T cells [Treg], myeloid-
derived suppressor cells [MDSCs]; Figure 6D). The results suggested 
that the enhanced TMZ resistance in high-risk tumors may be at-
tributable to a complex network of multiple tumorigenic or chemo-
resistant mechanisms, rather than a single molecular player.

3.5  |  GPR81 may exhibit distinct impacts on TMZ 
resistance that depend on MGMT status

The 10-CpG methylation and the expression of their correspond-
ing genes between NTBs and GBMs with each MGMT methylation 
status were presented in Figure  S1. Pearson correlation analyses 
showed that only one CpG-gene pair (cg13702536 and GPR81) 
showed stably and significantly negative correlations between CpG 
methylation and gene expression (Figure  7A). This CpG-gene pair 
was thus selected for further analyses. GPR81 mRNA and protein 
levels were not significantly different between NTBs and GBMs 
(Figure 7B,C and Figure S1). The expression of GPR81 was also not 

significantly correlated with that of MGMT (Figure 7C,D). Interest-
ingly, meta-analyses showed that both GPR81 methylation and ex-
pression appeared to be significantly associated with OS in unMGMT 
tumors, but not in meMGMT tumors when treated with RT/TMZ, in-
dicting potential MGMT-dependent impacts of GPR81 on TMZ ef-
ficacy in G-CIMP- GBMs.

To test this hypothesis in in vitro experiments, we selected 
two GBM cell lines (A172 and T98G) which were reported to have 
similarly high GPR81 expression but distinct MGMT methylation 
and expression status in GSE6837928; specifically A172 was char-
acteristic of high methylation and low expression of MGMT, while 
T98G was characteristic of low methylation and high expression 
of MGMT (Figure  7I and Figure  S2). The expression of GPR81 and 
MGMT was validated in our A172 and T98G cells (Figure  S3), fol-
lowed by validation of GPR81 knockdown (Figure 7J,K). We found 
that GPR81 knockdown significantly increased TMZ sensitivity and 
cell apoptosis when exposed to TMZ in MGMT-deficient A172 cells 
(Figure 7L,P). However in MGMT-overexpressed A172 cells, GPR81 
knockdown conversely decreased TMZ sensitivity and TMZ-treated 
apoptosis (Figure 7M,P). Moreover, in T98G cells originally express-
ing high level of MGMT, knockdown of GPR81 did decrease TMZ 
efficacy (Figure 7N,P) while in MGMT-silenced T98G cells, GPR81 
knockdown conversely increased TMZ sensitivity (Figure 7O,P and 
Figure S4). The results together indicated that the contributions of 
GPR81 to TMZ resistance may depend on MGMT expression status 
in GBMs; briefly, GPR81 may enhance TMZ sensitivity when GBM 
cells highly expressed MGMT, while GPR81 may enhance TMZ re-
sistance when MGMT expression was absent or largely repressed in 
GBM cells.

4  |  DISCUSSION

TMZ has long been recognized as the first-choice chemotherapy for 
treating primary GBMs.1,2 Unfortunately, it cannot benefit every 
GBM patients and many are resistant to this genotoxic drug.2 Mo-
lecular biomarkers have been increasingly reported for aiding TMZ 

F I G U R E  4 Prognostic performance of the 10-CpG signature in G-CIMP−/unMGMT GBMs in term of PFS outcome; survival comparison 
among the subgroups characteristic of G-CIMP+, meMGMT, G-CIMP−/unMGMT low-risk or G-CIMP−/unMGMT high-risk in (A) RT/TMZ-
treated TCGA cohort, (B) RT/TMZ-treated RAUH cohort, and (C) RT-treated TCGA cohort. Survival difference of each subgroup was tested 
by log-rank test with p value ≤0.05 as statistical significance. Hazard ratio (HR) and 95% confidence interval (CI) for survival curves were 
presented in Table S4.
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F I G U R E  5 The predictive performance of the 10-CpG signature in G-CIMP−/unMGMT GBMs; Survival difference between different 
treatments (SRT/TMZ vs. SRT) in G-CIMP−/unMGMT GBMs from (A) TCGA and (D) GSE60274 cohort; Interaction analysis between 
treatments (SRT/TMZ vs. SRT alone), and risk subgroups (low-risk vs. high-risk) in (B,C) TCGA and (E,F) GSE60274 cohort. Pooled survival 
comparisons using patient-level data between different treatments (SRT/TMZ vs. SRT) in (G) low-risk and (H) high-risk subgroups; Meta-
analysis using cohort-level data between different treatments (SRT/TMZ vs. SRT) in each risk subgroup incorporating only younger patients 
(≤70 years). Survival difference of each treatment subgroup was tested by the log-rank test with p value ≤0.05 as statistical significance. 
Hazard ratios [HR] from each dataset were combined by meta-analysis, where the inverse-variance approach was applied using either fixed- 
or random effect models based on the heterogeneity test, with I2 ≥ 50% or p value ≤0.05 considered to be statistically significant.
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choice, among which MGMT methylation status stands for the most 
widely validated predictive biomarker.1,2 However, MGMT methyla-
tion had limited use in guiding TMZ in clinical practice due to lack 
of a straightforward relationship between its detection and TMZ 
choice in GBMs.3 Although TMZ yielded much reduced benefits 
to unMGMT tumors as compared to meMGMT tumors, it is unlikely 
to withdraw from standard treatment, since there is lack of effec-
tive alternative therapies, and TMZ still benefits for some unMGMT 
cases.3 However, it should be noted that TMZ is not a cost-effective 
anti-GBM therapy, and its overuse can result in overconsumption of 
health resources, raise medical cost to caregivers, and increase risk 
of drug toxicity.34 Therefore, identifying potent predictive biomark-
ers, other than MGMT methylation, that can be useful for selecting 
subgroups of unMGMT patients with good sensitivity to TMZ, may 
represent a promising approach for optimizing decision-making on 
TMZ.

DNA methylation represented ideal biomarker candidates for 
precision oncology.35 The mainstream expression-  (e.g., RNA, pro-
tein) based biomarkers have critical weaknesses as their information 
can be unstable and even misleading owing to the high dynamic 
metabolism of RNA and protein, and the instable physical–chemical 
structure when stored in biological specimens.35–37 The genetic 
(e.g., mutations, copy number variation)-based biomarkers also 
have clinical drawbacks such as inability to distinguish non-tumor 
cell contamination and tumor cells of origin, and disallowance for a 
quantitative detection.35–37 By contrast, cancer-specific DNA meth-
ylation alterations can be stable over time and easy to get and store, 
and usually carried abundant biological information, and occurred 
at the very early phase of carcinogenesis preceding other molecular 
alterations.35–37 The last and most appealing advantage is the avail-
ability of epigenetic drugs that could reverse aberrant DNA methyla-
tion modifications, making it not only an indicator of certain features 
of a given cancer but also a druggable target to cure the disease.38

In this study, by integrating epigenome data, survival outcome, 
and treatment information of multi-sourced GBM cohorts, we iden-
tified a panel of 64 CpGs that may be specifically linked to TMZ 
efficacy in G-CIMP−/unMGMT GBMs. To construct a clinically ap-
plicable prediction model, we employed a multi-step selection work-
flow to screen out an optimal combination of a few number of CpGs, 
each of which not only conferred potent and independent predic-
tion ability but also coordinated with and complemented each other. 
Finally, a 10-CpG panel was identified and combined using a RISK-
score model. Testing the 10-CpG signature in different cohorts of 
G-CIMP−/unMGMT GBMs showed that the defined low-risk tumors 
were stably associated with better OS than high-risk tumors when 

treated with RT/TMZ but not RT alone. So, it is inferred that the risk 
signature may be informative of distinct TMZ efficacy in G-CIMP−/
unMGMT GBMs, instead of a treatment-independent prognostic 
biomarker.6 Furthermore, the interaction analyses revealed that, as 
compared to RT alone, RT/TMZ was more beneficial to low-risk pa-
tients but yielded similar OS outcomes in high-risk patients. These 
results indicated that the 10-CpG risk signature may serve as a 
promising predictive factor for TMZ efficacy in G-CIMP−/unMGMT 
GBMs and may be helpful for providing predictive information on 
the likely response to TMZ and identifying appropriate patients who 
are most likely to benefit from TMZ.6

Sparse studies have been focused on discovering prognostic or 
predictive factors for G-CIMP−/unMGMT GBMs, and a few predic-
tion models been reported with potential clinical value.39–41 Like our 
study, Chai et al.39 reported a 31-CpGs risk signature that predicted 
survival of TMZ-treated unMGMT GBMs. Ye et al.40 reported a prog-
nostic 13-gene risk signature that was validated in four RT/TMZ-
treated cohorts of IDH wild-type (wt) and unMGMT GBMs. Li et al.41 
proposed a 6-lncRNA immune-relevant risk signature that predicted 
survival in IDHwt/unMGMT GBMs. Table 2 compares the published 
signatures with our risk signature. The 10-CpG signature appeared 
to have a good predictive ability than the published models, with the 
highest AUC values at 1 year, 2 years, and 3 years in TCGA samples 
(Table  2). Also the present study may have advantages in the fol-
lowing aspects. First, abundant sample sources with relatively large 
sample size were used for discovery and validation of the risk model. 
Second, the treatment information was incorporated into the CpG 
selection, which is a key variable to distinguish a predictive factor 
from a prognostic one.6 Third, the predictive value of the risk sig-
nature in our study was observed with a prospective objective on 
building a predictive model for TMZ response, instead of a spurious 
finding from a post-hoc subgroup analysis. Finally, interaction anal-
yses were performed to compare the survival benefits of different 
treatment regimens in each risk subgroup, which could provide a di-
rect guide on TMZ usage in specific subpopulations.

The biological implications of the 10-CpG signature may provide 
molecular clues behind its predictive ability for TMZ response. As 
highlighted by previous studies42 that a complex and intertwined 
network of multiple molecular mechanisms may together determine 
the therapeutic resistance of GBMs, our bioinformatic analyses 
showed that the enhanced TMZ resistance observed in high-risk tu-
mors may be partially attributable to the high enrichment of various 
cancer-promoting or therapy-resistant signatures involving in DNA 
damage response, energy metabolism, NF-kB activation, ECM re-
modeling, and tumor immunity, as well as an increased abundance of 

F I G U R E  6 Molecular and biological correlations of the 10-CpG signature using TCGA multi-omics data; (A) heatmaps of the methylation 
levels (M-values) of the 10 CpGs; each row represents a CpG and each column represents a sample which is ranked by its risk score. Clinical 
and molecular features are indicated for each sample, and multivariable Cox coefficients are indicated for each CpG; Representative GSEA 
enrichment plots of the highly enriched gene sets in (B) low-risk tumors and in (C) high-risk tumors; (D) the abundance of adaptive and innate 
immune infiltrating cells between low-risk and high-risk tumors. Categorical data (e.g., gene expression, age subgroup, therapies, and the 
use of bevacizumab) were tested by Chi-square test. Data of TMZ cycles did not pass the normality test and were compared using Mann–
Whitney U test. Data of Normalized enrichment scores (NESs) passed the normality test, and were compared using Student t-test. Statistical 
significance was indicated at the level of ns >0.05, * < 0.05, ** <0.01, *** < 0.001 and **** < 0.0001. ns, non-significant.
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F I G U R E  7 The impacts of GPR81 on TMZ resistance of GBM cells that may depend on MGMT status; (A) Pearson correlation coefficients 
for each CpG-gene pair from included cohorts; (B). The IHC scores of GPR81 between NTB and GBM samples from Neurosurgery 
Department, Xijing Hospital; (C) Representative IHC images of GPR81 and MGMT in NTB or GBM samples, with corresponding IHC 
scores; (D) Pearson correlation between MGMT and GPR81 at protein and mRNA levels in local samples; (E,F) Survival difference between 
low versus high methylation of GPR81 among RT/TMZ-treated (E) G-CIMP−/unMGMT and (F) G-CIMP−/meMGMT GBMs; the median 
methylation value (M-value: 2.0708) from RT/TMZ-treated G-CIMP−/unMGMT GBMs was used for stratifying low versus high methylation; 
(G,H) Meta-analyses for (G) GPR81 methylation-based groups and (H) GRP81 expression-based groups in RT/TMZ-treated non-G-CIMP 
GBMs with each MGMT methylation status; the median expression value (Z-score: −0.1992) from RT/TMZ-treated G-CIMP−/unMGMT GBMs 
was used for stratifying low versus high expression. (I) Methylation and expression status of MGMT in A172 and T98G cells from GSE68379; 
(J) Validation of GPR81 knockdown and MGMT overexpression in A172 cells by qRT-PCR; (K) Validation of GPR81 knockdown and MGMT 
knockdown in T98G cells by qRT-PCR; (L) GPR81 knockdown increased TMZ sensitivity and cell apoptosis to TMZ treatment in A172 cells 
originally with no detectable MGMT expression; (M) GPR81 knockdown decreased TMZ sensitivity and cell apoptosis to TMZ treatment 
in MGMT-overexpressed A172 cells; (N) GPR81 knockdown decreased TMZ sensitivity and cell apoptosis to TMZ treatment in T98G cells 
originally expressing MGMT; (O) GPR81 knockdown increased TMZ sensitivity and cell apoptosis to TMZ treatment in MGMT-silenced T98G 
cells; (P) Western bolt results in A172 and T98G cells treated with TMZ; Hazard ratios [HR] from each dataset were combined by meta-
analysis, where the inverse-variance approach was applied using either fixed- or random effect models based on the heterogeneity test, with 
I2 ≥ 50% or p value ≤0.05 considered to be statistically significant. All continuous data passed normality test except for IHC scores. Statistical 
significance was indicated at the level of ns >0.05, * < 0.05, ** <0.01, *** < 0.001 and **** < 0.0001. ns, non-significant.
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immunosuppressive cells (e.g., Treg and MDSCs). In another word, a 
prediction model incorporating multiple variables that are indicative 
of different aspects of TMZ efficacy-related molecular features, like 
our risk signature, may be more informative of chemo-resistance in 
G-CIMP−/unMGMT GBMs, instead of a single-marker model.

DNA methylation represents one critical layer of control in gene 
expression.35,37,38 It is reasonable to assume that the multi-CpG 
signature may contribute to TMZ resistance via regulating the ex-
pression of relevant genes. In our signature, only one CpG-gene pair 
(cg13702536 and GPR81) was found to show stable and significant 
correlation between DNA methylation and gene expression across 
different datasets, suggesting that GPR81 may be epigenetically 
controlled by DNA methylation. GPR81 has been reported to have 
multifunctional roles in promoting malignant behaviors of tumor 
cells by regulating energy metabolism,43 angiogenesis,44 therapeutic 
resistance,45 and tumor immunity.46,47 Surprisingly, in in vitro GBM 
cell experiments, we have revealed the potential MGMT-dependent 
impacts of GPR81 on TMZ resistance; specifically in GBM cells with 
high methylation (or low expression) of MGMT, e.g., A172- and MGMT-
silenced T98G cells, GPR81 may enhance TMZ resistance while in 
GBM cells with low methylation (or high expression) of MGMT, e.g., 
MGMT-overexpressed A172 and T98G cells, GPR81 may increase 
TMZ sensitivity. In line with experimental data, survival analyses 
also supported the distinct predictive abilities of GPR81 expression 
(or methylation) in RT/TMZ-treated G-CIMP- GBMs with different 
MGMT methylation statues. However, the absence of apparent pre-
dictive ability in meMGMT tumors indicated that the tumor intrinsic 
GPR81 expression may not act as a major contributor to TMZ resis-
tance among the complex molecular mechanisms conferred by the 
entire tumor microenvironments in meMGMT samples. By contrast, 
tumor intrinsic GRP81 expression may be a dominant player for TMZ 
efficacy among the unMGMT GBM microenvironments as supported 
by the significant predictive ability in clinical samples and the signif-
icant impacts on TMZ resistance in GBM cell lines. In summary, the 
clinical and experimental data of GPR81 may provide additional layer 
of evidence supporting the predictive ability of the 10-CpG signa-
ture in G-CIMP−/unMGMT GBMs. Moreover, the MGMT-dependent 
roles of GPR81 highlighted the complexity and sophistication of the 
underlying molecular mechanisms that eventually define the re-
sistant nature of GBMs. However, by far, the data are too prelimi-
nary to draw conclusion. Future studies are needed to address how 
MGMT affects the functions of GPR81 in TMZ resistance of GBMs, 
and what MGMT status triggers the function transition of GPR81.

Functional reports on the other CpG-relevant genes may also 
provide biological clues for the predictive ability of our risk signa-
ture. GJB6 (harboring cg03473518) encodes a tumor-suppressive 
gap junction protein and may prevent GBM growth via rewiring 
glucose metabolism and inhibiting stemness.48,49 KCNQ1 (harboring 
cg12578166) encodes a voltage-dependent K+ channel and acts 
both as a target gene and regulator of the Wnt/β-catenin pathway.50 
Loss of KCNQ1 has been reported to exert anti-tumor functions via 
promoting epithelial-to-mesenchymal transition (EMT) and disrupt-
ing adheren junctions in epithelial cancers.50 WDR69 (harboring TA
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cg14329157), also called dynein assembly factor with WD repeats 1 
(DAW1), belongs to the WD-repeat domain (WDR) family and plays 
vital roles in cilia motility.51 WDR69 hypermethylation was found 
to be associated with unfavorable prognosis in hepatocellular car-
cinoma.52 TNFRSF10D (harboring cg22783363) encodes a plasma 
membrane-located TNF-related apoptosis-inducing ligand (TRAIL) 
decoy receptor, and negatively regulates TRAIL-induced apopto-
sis.53 Hypermethylation and silencing of TNFRSF10D have been 
reported to occur in multiple cancer types and be associated with 
poor survival and resistance to DNA-damaging drugs.53,54 FABP6 
(harboring cg22861316), encoding a bile acid-binding protein, is 
physiologically involved in fatty acids metabolism.55 Recently, dys-
regulation and dysfunction of FABP6 have been reported to be in-
volved in multiple cancers including GBMs.55–57 In GBM cells, FABP6 
inhibition reversed the malignant phenotypes of tumor cells and in-
creased TMZ sensitivity.55 BARX2 (harboring cg26221631) encodes 
a member of the homeobox transcription factor family that controls 
cell adhesion and cytoskeleton remodeling.58 Downregulation of 
BARX2, partially by CGI hypermethylation, has been reported to 
correlate with enhanced aerobic glycolysis and aggressive behaviors 
of tumor cells and be indicative of poor prognosis.59 POMC (harbor-
ing cg16302441) encodes a pro-hormone that gives rise to various 
active peptides such as adrenocorticotropic hormone (ACTH) and 
melanocyte stimulating hormones (MSHs).60 Some POMC-derived 
peptides have been reported to have vital roles in neuroendocrine 
tumors such as guiding optimal choice of chemotherapy.60 By far, lit-
tle is known about the relevance of C4orf17 (harboring cg26647453) 
and UNKL (harboring cg26728422) in cancers. The multi-CpG signa-
ture may unlikely impact TMZ resistance via direct transcriptional 
control of the above genes as no significant correlations were ob-
served for the nine CpG-gene pairs. However, in addition to classical 
epigenetic regulation mechanism, DNA methylation abnormalities 
may have broader biological effects by affecting heterochromatin 
structures, leading to loss of epigenetic regulation and resulting 
in hypervariability of gene expression.36,37,61 Future studies are 
needed to explore the molecular machinery on TMZ resistance 
behind the CpG members that may not directly control local gene 
expression.

Limitations exist in the present study. Our finding should be 
carefully interpreted due to the following shortcomings, such as lack 
of validation in a randomized setting or in a prospective manner, 
potential patient selection bias in retrospectively collected cohorts, 
very few samples for RT-treated patients, heterogeneous treatment 
regimens, and incomplete clinical data. Moreover, the risk signature 
was built on high-throughput DNA methylation detection platform, 
which is not clinically available and not economical for routine test-
ing. Therefore, the risk signature in its current form is not ready for 
daily use and should be modified and validated by a more common 
detection system, such as pyrosequencing.47 Finally, the histochemi-
cal characterization of glioma in our study is technically conventional 
and has limited scope. New histo-methodology, such as tissue clear-
ing and quantitative ultramicroscopy, may provide more comprehen-
sive molecule-histology information.62

In conclusion, we firstly reported a panel of 64 TMZ efficacy-
related CpGs and then built a 10-CpG-based RISK-score signature 
that may robustly and stably predict response to TMZ in G-CIMP−/
unMGMT GBMs, a subtype characteristic of high TMZ resistance. 
Experimental data revealed potential MGMT-dependent roles of 
GPR81 in TMZ resistance, highlighting the complexity of the chemo-
resistant mechanisms in GBMs. The 10-CpG signature may be help-
ful for guiding TMZ choice in such subpopulation. Future studies are 
needed to explore the molecular mechanisms underlying the risk 
signature and to translate it into routine practice.
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