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Multi‑omics and immunogenomics 
analysis revealed PFKFB3 as a targetable 
hallmark and mediates sunitinib resistance 
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with laboratory verification
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Abstract 

Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. 
However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present 
study, the glycolysis-immune predictive signature was constructed and validated using WGCNA, glycolysis-immune 
clustering analysis. PPI network of DEGs was constructed and visualized. Functional enrichments and patients’ overall 
survival were analyzed. QRT-PCR experiments were performed to detect hub genes’ expression and distribution, 
siRNA technology was used to silence targeted genes; cell proliferation and migration assays were applied to evalu-
ate the biological function. Glucose concentration, lactate secretion, and ATP production were measured. Glycolysis-
Immune Related Prognostic Index (GIRPI) was constructed and combined analyzed with single-cell RNA-seq. High-
GIRPI signature predicted significantly poorer outcomes and relevant clinical features of pRCC patients. Moreover, 
GIRPI also participated in several pathways, which affected tumor immune microenvironment and provided potential 
therapeutic strategy. As a key glycolysis regulator, PFKFB3 could promote renal cancer cell proliferation and migration 
in vitro. Blocking of PFKFB3 by selective inhibitor PFK-015 or glycolytic inhibitor 2-DG significantly restrained renal 
cancer cells’ neoplastic potential. PFK-015 and sunitinib could synergistically inhibit pRCC cells proliferation. Glycolysis-
Immune Risk Signature is closely associated with pRCC prognosis, progression, immune infiltration, and therapeutic 
response. PFKFB3 may serve as a pivotal glycolysis regulator and mediates Sunitinib resistance in pRCC patients.
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Introduction
Renal cell carcinoma (RCC) is one of the fatal neo-
plasms in the genitourinary system, with an estimated 
76,080 new cases and 13,780 deaths in the United States, 
2021 [1]. Accounting for 70% of all RCC, clear cell RCC 
(ccRCC) is the most commonly occurring subtype, fol-
lowed by infrequent subtypes papillary RCC (pRCC) 
and chromophobe RCC (chRCC) [2]. PRCC occupies the 
second most common type of RCC clinically and dem-
onstrates an indolent behavior clinically. Due to a con-
siderable disparity in the incidence rate of ccRCC, pRCC 
catches less notice and the molecular characteristics of 
pRCC are elusive. However, advanced pRCC preferen-
tially exerts metastatic potential and evolves into more 
lethal disease than ccRCC [3]. Therefore, it is an urgent 
need to discover novel and targetable biomarkers that 
can override diagnostic, therapeutic, and survival chal-
lenges of pRCC patients.

Metabolic reprogramming is considered as a hallmark 
of human cancers. Among which, renal cancer is an ideal 
metabolic disease model, as a result of mutated genes 
relating to metabolic events [4, 5]. Multifarious meta-
bolic events have been reported in renal tumorigenesis, 
including glycolysis, TCA cycle, glutamine metabolism, 
and ATP production [6–9]. Accordingly, glycolysis serves 
as an essential approach for cancer cells’ energy capture 
and proliferation maintenance. Especially, even with suf-
ficient oxygen supply, cancer cells can uniquely convert 
glucose into lactate. This kind of aerobic glycolysis is also 
called Warburg effect, supporting high rates of tumor 
cell proliferation and metastasis [9]. Renal cell carcinoma 
(RCC) is essentially a metabolic disease characterized 
by a reprogramming of energetic metabolism [10–13], 
including glycolysis [5, 14, 15], mitochondrial bioenerget-
ics [16], and lipid metabolism [17, 18]. To date, emerging 
glycolytic-related genes have been identified and studied 
in kidney ccRCC, but rare is known in pRCC.

Nowadays, tumor immunotherapy played an increas-
ingly important role in clinical treatment of RCC patients. 
Immune checkpoint inhibitors (ICI) can enhance the 
antitumor activity and inhibit immune escape [19, 20]. 
Combined immunotherapeutic agents’ strategies in 
recent years has revolutionized the treatment of patients 
with renal cell carcinoma, such as anti-PD1, anti-PD-L1, 
and anti-CTLA-4 [21, 22]. Nevertheless, most patients 
did not benefit from immune checkpoint blocking, let 
alone sustained disease control [23]. Consequently, the 
underlying mechanism driving resistance needs to be 
further explored.

In this study, we extracted a set of glucose metabolism-
related genes and performed comprehensive analyses to 
elucidate tumor immune infiltration, clinical relevance, 
and therapeutic targets of pRCC using bioinformatic 

methodology. PFKFB3, as a vital regulator of glycolysis, 
was finally screened out as a promising glycolytic bio-
marker in pRCC. PFKFB3-specific inhibitors PFK-015 
and sunitinib could synergistically inhibit pRCC cell 
proliferation.

Materials and methods
Data extraction and preparation
We extracted eleven glycose metabolic-related gene 
sets (HALLMARK_GLYCOLYSIS, REACTOME_GLY-
COLYSIS, REACTOME_GLUCOSE_METABOLISM, 
CUI_GLUCOSE_DEPRIVATION, WP_GLYCOLYSIS_
AND_GLUCONEOGENESIS, KEGG_GLYCOLYSIS_
GLUCONEOGENESIS, GOBP_GLUCOSE_CATABOLIC_PROCESS, 
GOBP_GLUCOSE_METABOLIC_PROCESS, GOBP_POSITIVE_REG-
ULATION_OF_GLUCOSE_METABOLIC_PROCESS, 
GOBP_REGULATION_OF_GLUCOSE_METABOLIC_
PROCESS, PID_INSULIN_GLUCOSE_PATHWAY) 
from the Molecular Signatures Database v7.4 [24, 25] 
(MSigDB; http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/). 
After removing duplicate genes, the entire glycose-met-
abolic-related gene set consisted of 520 genes (Table 1). 
Next, the normalized RNA-seq profiles (FPKM), matched 
clinical characteristics and survival information of 289 
pRCC samples and 32 normal control samples from The 
Cancer Genome Atlas (TCGA, https://​portal.​gdc.​cancer.​
gov) and GTEx database were downloaded.

Weighted gene correlation network analysis (WGCNA)
To identify the significant genes associated with the sam-
ple subtypes (tumor/normal) for the pRCC patients, we 
constructed a co-expression network using R package 
“WGCNA”. We conducted a co-expression analysis of 
pair-wise genes using Pearson correlation coefficients. 
PickSoftThreshold function was used to calculate the 
value of β (a soft threshold power parameter) for increase 
the similarity matrix and achieve a scale-free co-expres-
sion network. Associated genes were clustered based on 
dissimilarity of the unsigned topological overlap matrix 
(TOM). Finally, we constructed a tree diagram using 
hierarchical clustering and calculated the correlation 
between the module eigengenes (MEs) and the clinical 
traits used to screen the MEs related to the sample sub-
types for the pRCC samples.

Unsupervised consensus cluster analysis
Consensus clustering analysis was employed to strat-
ify the pRCC samples into distinct subgroups using the 
“ConsensusClusterPlus” R package [26]. The curve of 
cumulative distribution function (CDF) and area under 
the CDF were used to choose the best k-value for the 
optimal cluster number.

http://www.gsea-msigdb.org/gsea/msigdb/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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DEGs analysis and PPI network construction
The “limma” R algorithm was used to calculate differen-
tially expressed genes (DEGs) between distinct groups 
[15]. Genes with false discovery rate (FDR) adjusted 
P < 0.05 and | logFC (fold-change) |> 1 were considered as 
DEGs.

PPI network was constructed using the STRING 
(http://​string-​db.​org) database, which is an online bio-
logical database that could help to uncover critical reg-
ulatory genes [27]. Cytoscape software and Metascape 
website was further applied to visualize the PPI network 
[28].

Construction of a predictive model and validation
Based on candidate DEGs we identified, univariate cox 
analysis, multivariate cox analysis and LASSO regres-
sion were performed sequentially to screen out possible 
prognostic WGCNA-glycosis-immune-related genes. 
Glycolysis-Immune Related Prognostic Index (GIRPI) 
was calculated with the following formula:

On the basis of the median score, we divided all 
pRCC patients into low-GIRPI and high-GIRPI groups. 
Kaplan–Meier curve was applied for demonstrating 
pRCC patients’ survival status. To evaluate the predic-
tive ability of these risk model, we further analyzed the 
receiver operating characteristic (ROC) curve and the 

GIRPI = �coef ∗ Exp(genes)

area under the ROC curve (AUC) by R package “surviv-
alROC”. Nomogram was established according to the 
patient’s overall survival comprising independent prog-
nostic factors. The calibration curves were constructed 
to evaluate the consistency of prediction between actual 
survival observation and predicted clinical outcome in 1, 
3 and 5 year. The sensitivity and specificity of the nomo-
gram was measured by ROC curves and area under curve 
(AUC).

Functional enrichment and pathways annotation
Gene ontology (GO) enrichment analysis including bio-
logical process (BP), cellular components (CC), molecu-
lar function (MF), together with Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway annotation were 
applied using the R package “clusterProfiler” [29]. A 
q-value < 0.05 was considered statistically significant.

Evaluating extent of immune cell infiltration abundance 
in tumor immune microenvironment
To exhibit the comprehensive landscape of immune 
cell infiltration in different subgroups, we conducted 
single-sample gene-set enrichment analysis (ssGSEA) 
and currently acknowledged algorithms, including 
XCELL [30, 31], TIMER [32, 33], QUANTISEQ [34, 
35], MCPCOUNT [36], EPIC [37], CIBERSORT [33, 
38] and CIBERSORT-ABS [39] to estimate the sub-
populations of immunity infiltration scores. Differences 
between two risk groups were analyzed by the Wilcoxon 

Table 1  Eleven glycose metabolic-related gene sets screened from MSigDB

Gene-sets Description Genes

HALLMARK_GLYCOLYSIS Genes encoding proteins involved in glycolysis and gluconeogenesis 200

REACTOME_GLYCOLYSIS Glycolysis 72

REACTOME_GLUCOSE_METABOLISM Glucose metabolism 92

CUI_GLUCOSE_DEPRIVATION Representative genes up-regulated in MiaPaCa2 cells under glucose-
deprived conditions

61

WP_GLYCOLYSIS_AND_GLUCONEOGENESIS Glycolysis and Gluconeogenesis 45

KEGG_GLYCOLYSIS_GLUCONEOGENESIS Glycolysis / Gluconeogenesis 62

GOBP_GLUCOSE_CATABOLIC_PROCESS The chemical reactions and pathways resulting in the breakdown of glu-
cose, the aldohexose gluco-hexose

36

GOBP_GLUCOSE_METABOLIC_PROCESS The chemical reactions and pathways involving glucose, the aldohexose 
gluco-hexose. d-glucose is dextrorotatory and is sometimes known 
as dextrose; it is an important source of energy for living organisms 
and is found free as well as combined in homo- and hetero-oligosac-
charides and polysaccharides

210

GOBP_POSITIVE_REGULATION_OF_GLUCOSE_METABOLIC_PROCESS Any process that increases the rate, frequency or extent of glucose 
metabolism. Glucose metabolic processes are the chemical reactions 
and pathways involving glucose, the aldohexose gluco-hexose

41

GOBP_REGULATION_OF_GLUCOSE_METABOLIC_PROCESS Any process that modulates the rate, frequency or extent of glucose 
metabolism. Glucose metabolic processes are the chemical reactions 
and pathways involving glucose, the aldohexose gluco-hexose

119

PID_INSULIN_GLUCOSE_PATHWAY​ Insulin-mediated glucose transport 26

http://string-db.org
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signed-rank test and the results were obtained accord-
ing to P-value < 0.05. Subsequently, we used correlation 
analysis when exploring the relationship between the risk 
score and immune infiltrated cells. Immune checkpoint 
genes were obtained from Auslander et al. [40].

Prediction of response to potential chemotherapy drugs
R package “pRRophetic” and GDSC website were used 
to estimate half maximal inhibitory concentration (IC50) 
of common chemotherapeutic agent [41]. The differ-
ence between the high-GIRPI and low-GIRPI groups was 
compared by Wilcoxon signed-rank test. Furthermore, 
another database Connectivity Map (CMap; https://​
porta​ls.​broad​insti​tute.​org/​cmap) was used to discover 
potential small molecular compounds or drugs which 
may reverse or induce the biological states based on the 
differently expressed genes [42]. The enrichment score 
from −  1 to 0 suggested that the gene expression in 
high-risk group might be suppressed by these candidate 
drugs for pRCC patients. Finally, these candidate drugs’ 
3D structure tomographs were obtained from PubChem 
(https://​pubch​em.​ncbi.​nlm.​nih.​gov), respectively, a 
public database of small molecules and their biological 
characteristics.

Single‑cell RNA sequence processing
Firstly, GSE152938 and GSE131685 were downloaded 
from GEO database, and the R package “Seurat” was used 
to process data (https://​satij​alab.​org/​seurat/) [43–46]. 
Two datasets containing one pRCC sample and four adja-
cent normal kidney samples were merged and integrated 
with “Harmony” algorithm [47]. After filtrating with the 
criteria of > 20% mitochondria-related genes, or less than 
500 genes expressed or less than 1000 counts detected, 
we finally detected 30,797 cells for further analysis. After 
quality control, we normalized the data and rescaled all 
the RNAs. Next, respective reduction of cell clustering 
was performed and cell cluster was obtained through 
the Uniform Manifold Approximation and Projection 
(UMAP) method. Finally, we used common marker genes 
to get the cell type for cell population annotation.

Cell culture and qRT‑PCR
The renal cancer cell lines (786-O, 769-P, ACHN, Caki-
1, Caki-2) and human renal tubular epithelial cell line 
(HK-2) were purchased from the Type Culture Collection 
of the Chinese Academy of Sciences (Shanghai, China) 
and cultured in RPMI 1640 (786-O, 769-P); McCoy’s 5A 
(Caki-1, Caki-2); DMEM (ACHN) and DMEM/F12 (HK-
2) (Gibco, Thermo Fisher Scientific, USA) containing 
10% fetal bovine serum and 1% penicillin/streptomycin 
(Gibco, Thermo Fisher Scientific, USA). PFK15 (PFK-
015; Selleck, China), 2-Deoxy-d-glucose (2-DG; Selleck, 

China), Sunitinib (SU11248) malate (Sunitinib; Selleck, 
China), and dimethylsulfoxide (DMSO; Sigma–Aldrich, 
USA) were also used. Cells were transfected with con-
trol siRNA and siRNA-PFKFB3 using Lipofectamine 
3000 (Invitrogen, Thermo Fisher Scientific, USA). QRT-
PCR and Western blot assays were used to evaluate the 
efficiency of siRNA interference. Total RNA was isolated 
using Trizol (Invitrogen, Thermo Fisher Scientific, USA). 
HiScript III All-in-one RT SuperMix (Vazyme, China) 
was used for cDNA synthesis. qRT-PCR was performed 
with SYBR qPCR Master Mix (Vazyme, China) using Ste-
pOne Plus (Applied Biosystems, USA) and LightCycler 
480 PCR instrument (Roche Diagnostics, Switzerland) 
according to the manufacturer’s instructions. The prim-
ers and siRNA Oligo used are listed in Additional file 1: 
Table S1.

Cell proliferation and colony formation assays
Pretreated ACHN cells were counted and seeded into a 
96-well plate at a density of 1.0 × 103 cells/well. Cell pro-
liferation was measured after 24 h, 48 h, 72 h, and 96 h 
using the CCK-8 Cell Counting Kit (Vazyme, China). The 
absorbance was measured at 450  nm with a microplate 
reader following incubation at 37 °C for 1 h according to 
the manufacturer’s protocols.

For the colony formation assay, pretreated cells were 
seeded into 6-well plates (1000 cells/well). The cells were 
incubated for 10  days. Colonies were fixed in 4% para-
formaldehyde for 20  min, washed with PBS twice, and 
stained with 0.1% crystal violet for further analysis.

Transwell cell migration assay
A total of 1.5 × 104 cells pretreated cells were seeded into 
the 24-well Transwell upper chambers with serum-free 
medium for the migration assays. Medium containing 
20% FBS was added to the bottom chamber. After incu-
bation at 37 °C for 24 h, the cells were fixed in 4% para-
formaldehyde for 20  min and stained with 0.1% crystal 
violet for 20 min. Cells were captured on a microscope in 
five randomly selected fields, and all of the experiments 
were repeated three times.

Glucose concentration, lactate secretion, and ATP 
production measurement
The glucose concentrations assay, lactic acid production 
assay, and ATP detection assay kits (Jiancheng Bioen-
gineering, Nanjing, China) were used according to the 
manufacturer’s protocol in renal cancer cell ACHN. Each 
level was normalized to the cell number.

Statistical analysis
All analyses were performed with R version 4.1.1 (http://​
www.R-​proje​ct.​org) and corresponding packages. An 

https://portals.broadinstitute.org/cmap
https://portals.broadinstitute.org/cmap
https://pubchem.ncbi.nlm.nih.gov
https://satijalab.org/seurat/
http://www.R-project.org
http://www.R-project.org
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independent t-test was used to compare continuous vari-
ables that exhibited normal distributions. The Wilcox test 
was used to compare the continuous variables that were 
not normally distributed. Kaplan–Meier survival analy-
sis and Cox hazard regression model were employed to 
assess the overall survival, disease-specific survival, dis-
ease-free interval, and progression-free interval prognos-
tic factors. All experiments were repeated at least three 
times. All statistical tests were two sided, and P < 0.05 was 
considered statistically significant.

Results
In the current study, we constructed an effective Glyco-
lysis-Immune Related Prognostic Index (GIRPI) to pre-
dict survival outcomes and performed comprehensive 
analyses to elucidate tumor immune infiltration, clinical 
relevance, and therapeutic targets of pRCC patients using 
bioinformatic methodology. Our findings revealed that 
PFKFB3, as a vital regulator of glycolysis, was a promis-
ing targetable glycolytic biomarker in pRCC treatment. 
PFKFB3-specific inhibitors PFK-015 and sunitinib could 
synergistically inhibit pRCC cell proliferation.

Characteristic of immune infiltration landscape in pRCC 
subtypes
We first investigated the landscape of 22 immune cell 
subpopulations infiltration in pRCC tissue using the 
CIBERSORT algorithm (Fig.  1A).  Consequently, total 
pRCC samples were hierarchically clustered into two 
distinct immune subtypes based on immune signa-
tures estimated by ssGSEA score (Fig.  1B, Additional 
file  1: Fig. S1E). Interestingly, we also found that the 
abundance ratios of some types of immune cells were 
correlated with other types (Fig.  1C). Moreover, we 
revealed the association between different immune cell 
subsets and pRCC clinical information including age, 
gender, stage, and T classification in a combined heat-
map (Fig.  1E). The subtypes we defined as ICI cluster 
A and ICI cluster B had significant discrimination on 
immunogenicity. The majority of the immune scores, 
including B cells, Plasma cells, NK cells, Monocytes, 
Macrophages M0, Macrophages M2 and Dendritic 
cells, revealed significant differences among the sub-
types as well (Additional file 1: Fig. S2A). Comparison 
of overall survival (OS) between two clusters showed 
significant differences (P = 0.006, Fig.  1D). Further-
more, we performed GSVA analysis between two ICI 
cluster and the result showed that ICI cluster A mainly 
related to Notch signaling pathway and cell cycle, while 
ICI cluster B enriched in sugar and nucleotide sugar 
metabolism, glycosaminoglycan degradation, other 
glycan degradation and PPAR signaling pathway (Addi-
tional file  1: Fig. S2B). Above results implied that the 

ICI cluster B subtype might have better responses to 
ICIs than cluster A subtypes, since previous studies 
demonstrate that tumor immune cell infiltration, HLA 
and immune checkpoints expression were positively 
associated with immunotherapeutic responsiveness.

Two distinct subclasses mediated by glycolysis‑related 
genes
Based on the expression profiles of glycolysis-related 
genes, cluster analysis was performed to analyze the 289 
pRCC samples from the TCGA database, and the com-
prehensive correlation coefficient was used to determine 
the optimal k-value as 2 (Fig.  2A, Additional file  1: Fig. 
S1F). Subsequently, two distinct subclasses were deter-
mined, ultimately dividing them into 2 groups: glycoly-
sis clusters A and B. (Fig. 2B). And the results of KEGG 
pathway enrichment analysis showed that high-glycolysis 
cluster was significantly related to cell cycle, galactose 
metabolism, fructose and mannose metabolism, RNA 
degradation, and DNA replication pathway (Fig. 2C).

WGCNA to filter significant modules and essential DEGs 
related to pRCC​
First, we reanalyzed TCGA-KIRP RNA-seq data to deter-
mine DEGs between 289 tumor samples and 32 normal 
tissues. A volcano plot and heatmap showed the top 
100 differentially expressed genes (Additional file 1: Fig. 
S1A-B). Next, we constructed a DEGs co-expression net-
work to explore the functional key modules and genes 
related to pRCC oncological characteristics by WGCNA 
algorithm.

In this research, the soft-thresholding power was 
defined as two to achieve relatively balanced scale inde-
pendence and connectivity network according to the 
scale-free topology criterion (Additional file 1: Fig. S1C). 
Here, eleven distinct modules with different colors were 
generated for further analysis. The correlation of can-
didate genes with tumor characteristics was calculated 
using the module-trait relationships method (Fig.  2D). 
Importantly, the turquoise module showed the strongest 
correlation with oncological characteristics (Fig. 2E). The 
corresponding correlation coefficient between module 
membership (MM) and Gene Significance (GS) was 0.9 
(P < 1e-200), indicating the turquoise module was highly 
significantly associated with pRCC oncological char-
acteristics (Additional file 1: Fig. S1D). Hence, a total of 
7602 genes in the turquoise module were filtered out as 
key genes for subsequent research.
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WGCNA‑glycolysis‑immune‑related overlapping DEGs 
in pRCC​
According to the above WGCNA and consensus clus-
tering analysis, expression profile comparison was 

further conducted between the “low-glycolysis & 
high- glycolysis” and “high & low immune responses 
to ICI” groups. After overlapping with glycolysis genes 
and WGCNA significant module genes, a total of 34 

Fig. 1  Characteristic of tumor microenvironment immune infiltration landscape in pRCC subtypes. A The abundance of each TME infiltrating cell 
subpopulations in pRCC samples. B Consensus clustering analysis to divide two distinct immune subtypes based on immune signatures estimated 
by ssGSEA score. C Spearman correlation analysis of different immune infiltration cells. D Survival analyses of the two immune cluster patterns 
based on pRCC patients. E The abundance of each TME infiltrating cell in ICI cluster A and B. *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant
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glycolysis-immune-related essential DEGs were identi-
fied. The Venn diagram demonstrated that there were 34 
overlapping genes between the different groups (Fig. 2F).

PPI network and function annotation for DEGs
We investigated the expression correlation among 
these 34 genes and found that they share a high correla-
tion in expression level (Fig. 3A). What’s more, we used 
STRING website and Cytoscape software to establish the 

Fig. 2  Subclass clustering mediated by glycolysis-related genes and WGCNA. A Unsupervised consensus cluster analysis to determine two 
distinct subclasses mediated by glycolysis-related genes. B The glycolysis clusters, T classification, tumor stage, gender, survival status and age 
were used as patient annotations. C GSVA enrichment analysis of two glycolysis clusters. D Cluster dendrogram of all gene’s distribution based 
on a dissimilarity measure in WGCNA network. E Heatmap of the correlation between module eigengenes (MEs) and sample characteristic 
(Normal/Tumor) of pRCC. Each module contained the correlation coefficient and displayed in different colors. F A Venn diagram showing 
WGCNA-glycolysis-immune-related overlapping DEGs
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PPI network and further visualize the interaction net-
work. Some meaningful hub genes including PPP1CC, 
PPP2R1A, PPP1CA, SRC, VEGFA, and NUP43 were 
highlighted and shown in Fig. 3B, respectively [27]. Fur-
thermore, we found that these genes were strongly cor-
related at the transcriptional level (Fig. 3C).

To discover biological functional and related path-
ways in DEGs based on WGCNA, glycolysis subtypes, 
and immune subtypes, we performed GO and KEGG 

analyses. As shown in Fig.  3D, the most significant GO 
terms were enriched in carbohydrate metabolic process, 
hexose metabolic process, and glucose metabolic pro-
cess. For KEGG analysis, these 34 genes may strongly 
participate in Insulin signaling pathway, HIF-1 signal-
ing pathway, and AMPK signaling pathway (Fig.  3E). In 
the meantime, Metascape tool was applied to construct 
PPI network and analyze functional enrichment, which 
was colored by different cluster subgroups (Fig.  3F) 

Fig. 3  Interaction among 34 WGCNA-glycolysis-immune-related overlapping genes and functional enrichment. A Correlation analysis of 34 
WGCNA-glycolysis-immune-related overlapping genes in the TCGA-KIRP. B The construction of PPI network by Cytoscape software. The thicker 
line represents higher connection strengths. C Correlation network at the transcriptional level by Spearman’s rank correlation analysis. D Circle 
diagram of Gene Ontology (GO) analysis for overlapping genes. E Circle diagram of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
for overlapping genes. F Network of enriched terms colored by cluster identity. G Network of enriched terms and genes colored by P-value
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and P-values (Fig.  3G). The result confirmed that these 
34 genes are primarily involved in glycolysis and other 
metabolic processes. Combined with the result shown 
in Fig.  3D–G, our study demonstrated that these DEGs 
were correlated mainly with the glucose metabolic pro-
cess or immune-related pathways including AMPK path-
way and TGF-β pathway in pRCC patients.

Establishment of glycolysis‑immune related prognostic 
index (GIRPI) and validation
From above analysis, a combination of 34 genes origi-
nated from the glycose metabolic-related genes, gly-
colysis subtypes, immune subtypes and WGCNA was 
analyzed through LASSO Cox Regression algorithm. 
Then, nine candidate genes (PPP4R3B, LDHA, PPIB, 
YWHAZ, NUP107, PFKFB3, FOXK2, CRTC2 and 
NUP43) were screened out. Meanwhile, univariate Cox 
regression was confirmed prognosis-related genes by 
the cutoff of P < 0.05 (Additional file 1: Fig. S3A). Finally, 
multivariate Cox analysis were conducted to filter out 
most powerful genes and construct a GIRPI related to OS 
(Additional file 1: Fig. S3B). GIRPI of pRCC patients was 
calculated according to the expression level of gene and 
regression coefficient as follows:

GIRPI = 0.00506799913379297* (the expression level 
of LDHA) + 0.353700829182504* (the expression 
level of NUP107) + 0.0166719469192151* (the expres-
sion level of PFKFB3) + 0.15593066911614* (the 
expression level of CRTC2) + 0.256809447625349* 
(the expression level of NUP43) (Additional file  1: 
Figure S3C).

Next, we randomly allocated TCGA-KIRP samples 
into the training and testing sets to evaluate the predic-
tive ability of the model, and patients in each set were 
separated into the high and low-risk groups on account 
of median risk score. Kaplan–Meier survival analy-
sis and time-dependent ROC curves were utilized to 
estimate the prognostic signature. High-GIRPI group 
patients had significantly poorer outcomes in the train-
ing cohort (P < 0.001, Fig. 4A). The area under the curve 
(AUC) values in the training set were 0.761 at 1  year, 
0.853 at 2  years, 0.833 at 3  years, 0.881 at 4  years, and 
0.827 at 5  years. Coincidentally, the testing set and the 
entire set have consistent results with the training set, 
survival outcomes and prognosis of high-risk patients 
were worse compared to low-risk patients (Testing set: 
P = 0.038, Entire set: P < 0.001). The AUC values in the 
testing set were 0.747 at 1 year, 0.778 at 2 years, 0.705 at 
3 years, 0.636 at 4 years, and 0.637 at 5 years, whereas the 
AUC values in the entire set were 0.740 at 1 year, 0.810 
at 2  years, 0.758 at 3  years, 0.747 at 4  years and 0.721 
at 5  years (Fig.  4B, C). The distribution of GIRPI and 

survival status are presented in Fig. 4A–C. Additionally, 
the expression levels and clinical characteristics of five 
prognostic genes in the high-risk group and the low-risk 
group were shown by heatmap (Additional file 1: Figure 
S3D). Above research confirmed that GIRPI shows a 
good predictive capability for clinical outcomes of pRCC 
patients.

Kaplan–Meier survival and genetic alteration landscape 
of five signature genes in pRCC patients
We further analyzed the association between GIRPI five-
component genes and the survival state (OS, DFS) of 
pRCC patients. Kaplan–Meier survival curves showed 
that the OS and DSS of pRCC patients with higher 
expression of CRTC2, LDHA, NUP43, NUP107, and 
PFKFB3 were significantly shorter than those with lower 
expression (Additional file  1: Figure S4A-B, Fig.  7C). In 
conclusion, our results demonstrated that these five sig-
nature genes were potential prognostic biomarkers that 
can accurately predict survival outcomes. Genetic altera-
tion information of five signature genes was explored by 
querying cBioPortal database to discover the potential 
influence of genetic alteration upon the corresponding 
gene expression [48] (Additional file 1: Fig. S5A). Among 
them, the mutation frequency of CRTC2 was the highest 
(1.7%), followed by PFKFB3 (1%). Using TIMER database, 
the copy number variation (CNV) of five signature genes, 
including deep deletion, arm-level deletion, diploid/nor-
mal, arm-level gain, and high amplification, significantly 
affected the infiltration levels of B cells, CD4 + T cells, 
CD8 + T cells, neutrophils, macrophages, and dendritic 
cells in pRCC [32, 49] (Additional file 1: Figure S5B).

GSEA analysis revealed differences between high‑GIRPI 
and low‑GIRPI groups
To further elucidate the underline biological mechanisms 
between the high-GIRPI and low-GIRPI groups, we per-
formed GO, KEGG, and GSEA enrichment. GO enrich-
ment analysis revealed that high-GIRPI group is mainly 
involved in the signaling receptor activator activity, colla-
gen-containing extracellular matrix, and small molecule 
catabolic process (Fig. 4D). In addition, KEGG pathways 
annotation results showed that high-GIRPI group was 
related to ECM receptor interaction and p53 signaling 
pathway (Fig. 4E). Above analysis revealed that molecular 
function was closely associated with the malignant prop-
erties of pRCC, especially proliferation.

Predictive nomogram based on GIRPI and clinical features
To appraise the clinical application ability for pRCC 
patients’ overall survival prognosis, we integrated the 
GIRPI and other clinical characteristics to build a nom-
ogram. GIRPI, age, gender, stage, and T classification 
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were included in the nomogram (Fig. 4F). In addition, 
the corresponding calibration plots in 1, 3, and 5 years 
were also drawn (Fig.  4G). As shown in Fig.  4H, the 
AUC values of 1-, 3-, and 5-year OS predictions for the 
nomogram were 0.968, 0.849, and 0.768, respectively. 
In general, the above results show that the nomogram 
performed well at predicting overall survival in clinical 
pRCC patients (Fig. 4F–H).

Correlation of GIRPI with tumor immune 
microenvironment
Considering the heterogeneity and complexity of the 
tumor immune microenvironment in pRCC patients, we 
carried out seven different algorithms, including XCELL 
[30, 31], TIMER [32, 33], QUANTISEQ [34, 35], MCP-
COUNT [36], EPIC [37], CIBERSORT [33, 38] and CIB-
ERSORT-ABS [39] algorithm to explore the composition 

Fig. 4  Establishment of a Glycolysis-Immune Related Prognostic Index (GIRPI) and function enrichment. A–C Kaplan–Meier survival analysis 
and ROC curves of high-GIRPI and low-GIRPI patients in training cohort (A); testing cohort (B) and entire cohort (C), along with the distribution 
of risk score and survival status. D GO and KEGG pathway enrichment analysis based on DEGs between high-GIRPI and low-GIRPI subgroups. E The 
result GSEA pathway annotation. F Construction of predictive nomogram. G Calibration curve of the nomogram at 1, 3, and 5 years. H Assessing 
prognostic performance of Nomogram by ROC curves
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of tumor-infiltrating immune cells between high-risk and 
low-risk groups (Fig.  5A, B). Compared with low-risk 
groups, we accordingly found that Cancer-associated 
fibroblast and T cell regulatory (Tregs) were enriched 
in high-risk groups’ TME (Fig.  5A). Furthermore, we 
compared several major immune checkpoints gene 
expression between the high-risk group and low-risk 
group and found that BTLA, NRP1, CD200, TNFRSF25, 
TNFSF4, CD160, ADORA2A, BTNL2, TNFRSF4, CD44, 
TNFRSF18, CD40, IDO2, CD274 and CD276 highly 
expressed in high-risk group (Fig. 5C).

Potential therapeutic strategy for pRCC patients based 
on GIRPI
Notably, we compared the response to drugs (IC50) using 
the R package “pRRophetic” to further evaluate the influ-
ence of GIRPI on predicting drug therapy response [41]. 
Four common chemotherapy drugs showed a significant 
difference in chemotherapy drug sensitivity. Among 
them, patients in the low-GIRPI subgroup might be more 
sensitive to Sorafenib, Cisplatin, and Docetaxel, which 
means patients may benefit from these chemotherapeutic 
drugs (P < 0.01 for Sorafenib, Cisplatin, and Docetaxel). 
However, we found high-GIRPI subgroup exhibit a lower 
IC50 in doxorubicin, suggesting that these patients are 
better candidates for this treatment (Fig.  5D). Next, the 
CMap database (https://​porta​ls.​broad​insti​tute.​org/​cmap) 
was conducted to screen out candidate small-molecule 
drugs showing therapeutic effects on pRCC. Based on 
differently expressed genes between high-GIRPI and 
low-GIRPI groups, six small-molecule drugs were finally 
selected (P < 0.05 and enrichment score < − 0.6) (Table 2). 
The 3D structure tomography of these small-molecule 
drugs (Prestwick-984, resveratrol, 15-delta prostaglandin 
J2, 6-bromoindirubin-3’-oxime, methotrexate, and buto-
conazole) was found in the PubChem (https://​pubch​em.​
ncbi.​nlm.​nih.​gov), which may provide possible solutions 
for clinical treatment (Fig.  5E). CMap mode-of-action 
(MoA) analysis revealed 27 mechanisms of action shared 
by the above compounds [42] (Fig. 5F).

In the meantime, we performed a drug sensitivity anal-
ysis to evaluate the correlation between five model genes 

and clinical outcomes. Results indicated that NPK76-
II-72-1, CH5424802, and Crizotinib were connected with 
drugs and small molecules in the GDSC database [50] 
(Fig. 5G).

Single‑cell RNA‑seq revealed the distribution of GIRPI 
genes
In addition to bulk-RNA sequencing, we studied the cel-
lular composition of pRCC with single-cell RNA-seq 
datasets GSE152938 and GSE131685 [43, 46]. Firstly, 
we performed quality control to ensure the reliability 
of cells for the following analysis (Fig. 6A). Four normal 
kidney  samples and one pRCC sample were analyzed, 
yielding 30,797 high-quality transcriptomes after qual-
ity control and filtering. After performing  PCA and 
UMAP dimensionality reduction,  unsupervised cluster-
ing in each compartment gave rise to a total of 13 clusters 
(Fig. 6B). Then, we used common marker genes to anno-
tate different cluster cells. PRCC samples could mainly be 
divided into epithelial cells, endothelial cells, fibroblasts, 
myeloid cells, T cells, and B cells (Fig. 6C, D). Finally, we 
tried to explore the exact distribution of GIRPI genes in 
pRCC tissues. The graphs obtained by t-SNE algorithm 
revealed that expression of PFKFB3 was most concen-
trated in myeloid cells; LDHA was mainly distributed in 
fibroblasts, which indicates these genes play a vital role 
in glycolysis and immune (Fig. 6E and Additional file 1: 
Figure S6).

Experiment verification of five 
WGCNA‑glycolysis‑immune‑related genes
To support tumor growth, high glycolysis rate is required 
to generate ATP to synthesize macromolecules required 
for cancer cell mass-replication during division and pro-
liferation [51]. Therefore, we examined the potential 
influence of 2-DG (a glucose analog that acts as a com-
petitive inhibitor of glucose metabolism) in pRCC cell 
proliferation using colony formation assays. 2-DG sig-
nificantly suppressed the clone formation capability of 
ACHN cells at low concentrations (1 μM and 2 μM). At 
5  μM and 10  μM concentrations, 2-DG almost entirely 

(See figure on next page.)
Fig. 5  Correlation of GIRPI with tumor immune-infiltrating characteristics and screening out the potential therapeutic strategies for pRCC patients 
based on GIRPI. A The histogram exhibits the different immune cell fractions between high-risk and low-risk groups. B Spearman correlation 
between risk score and immune infiltration. C The histogram compared several major immune checkpoints gene expression between the high-risk 
group and low-risk group. D Sensitivity prediction of four commonly used chemotherapeutic drugs. E The 3D structure tomography of candidate 
small-molecule drugs targeting GIRPI signature (Prestwick-984, resveratrol, 15-delta prostaglandin J2, 6-bromoindirubin-3’-oxime, methotrexate, 
and butoconazole). F CMap mode-of-action (MoA) analysis of potential compounds. G Bubble plot of the correlation of NUP43, NUP107, CRTC2, 
and PFKFB3 in GDSC drug sensitivity database. The color from blue to red represents the correlation between mRNA expression and IC50. The 
bubble size positively correlates with the FDR significance

https://portals.broadinstitute.org/cmap
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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inhibited the clone formation of ACHN cells (Fig.  7A). 
These results confirmed that targeting glycolysis presents 
a promising strategy for pRCC cancer therapy.

Next, to verify the expression level of five WGCNA-
glycolysis-immune-related genes in renal cell lines, 
we performed qRT-PCR experiments. Among them, 

Fig. 5  (See legend on previous page.)
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PFKFB3 was generally upregulated in all renal tumor cell 
lines (786-O, 769-P, ACHN, Caki-1, and Caki-2). These 
findings were consistent with the results analyzed in 
TCGA dataset (Fig. 7B). Li et al. reported that blockage 
of glycolysis by targeting PFKFB3 suppresses head and 
neck squamous cell carcinoma growth and metastasis 
[52]. However, the role of PFKFB3 in pRCC patients has 
yet to be elucidated. Accordingly, we chose target gene 
PFKFB3 for further research.

Clinical relevance and immune infiltration analysis 
of PFKFB3
To further investigate whether PFKFB3 was correlated 
with prognosis in pRCC patients, we used the Kaplan–
Meier survival analysis to compare the survival outcomes. 
The high PFKFB3 expression group had significantly 
unfavorable overall survival (OS, P = 0.038), disease-
specific survival (DSS, P = 0.04), and progress-free inter-
val (PFI, P = 0.018, Fig. 7C). Next, we analyzed the ROC 
curves for assessing the diagnostic value of PFKFB3 in 
pRCC patients. The area under curve (AUC) of PFKFB3 
was 0.765 (95%CI = 0.685–0.845), which supposed effec-
tive diagnostic value for pRCC patients. Furthermore, we 
explore time-depend ROC curves of OS, DSS, and PFI 
(Fig. 7D). Then, PPI network and GSVA algorithm were 
used to seek interacting proteins and potential pathways 
related to PFKFB3; the results showed that MYC Targets, 
mTORC1, and p53 pathways were enriched (Fig. 7E, F). 
Currently, tumor immune infiltrating cells are independ-
ent predictors of survival in cancers. We explored the 
underlying association between PFKFB3 and immune 
infiltration of cells. Our results revealed that PKFKB3 
had a strong positive correlation with Treg cells, Type II 
IFN Response, and Th2 cells. For macrophages, however, 
there was a negative association with PFKFB3 (Fig. 7G). 
In addition, we investigated the association with some 

immune microenvironment molecules. Among them, 
PDCD1 (PD-1), CD274 (PD-L1), LAG-3, and CTLA-4 
show a dramatically positive correlation with PFKFB3 
(Fig. 7H).

Silencing key gene PFKFB3 suppressed papillary renal cell 
carcinoma cells proliferation and migration
To determine the biological function of PFKFB3, we 
transfected ACHN and Caki-2 papillary renal carcinoma 
cells with PFKFB3 small interfering RNA (siRNA), or 
control siRNA. PFKFB3 expression levels were meas-
ured by qRT-PCR to confirm the performance of siRNA 
(Fig.  8A). Consequently, we chose siPFKFB3-2 and siP-
FKFB3-3 for further experiments. Cell counting kit-8 
(CCK-8) assay indicated that PFKFB3 knockdown 
decreased cell proliferation ability (Fig. 8B). Colony for-
mation assay was also employed to determine the long-
term impact of PFKFB3 on pRCC cell proliferation. We 
observed lower colony-formation efficiency among siP-
FKFB3-2 and siPFKFB3-3 groups than negative control 
group both in ACHN and Caki-2 cell lines after 10 days 
(Fig. 8C). Additionally, Transwell migration assay demon-
strated that knockdown of PFKFB3 could decrease cells 
metastasis ability (Fig. 8D). Glucose uptake, lactate detec-
tion, and ATP detection assays revealed that PFKFB3 
knockdown was able to significantly suppress glucose uti-
lization, and lactate production and decrease intracellu-
lar ATP levels (Fig. 8E). Furthermore, PFK-015 (PFK15), 
a selective inhibitor of PFKFB3 was used for treatment in 
ACHN cells. Remarkably, we found PFK15 (1 μM) could 
reduce ACHN cell the level of glycolysis, consistent with 
the results of PFKFB3 depletion (Fig. 8F). In conclusion, 
the above results demonstrated that PFKFB3 may act as a 
positive regulator of tumor proliferation and migration in 
pRCC cells by promoting a glycolysis manner.

Table 2  Potential therapeutic small molecular compounds from connectivity map (CMap) website based on GIRPI

CMap name Mean N Enrichment P-value Specificity Percent 
non-
null

Resveratrol − 0.616 9 − 0.769 <0.00001 0.0093 88

15-Delta prostaglandin J2 − 0.327 15 − 0.627 <0.00001 0.0301 60

6-Bromoindirubin-3ʹ-oxime − 0.445 7 − 0.81 0.00002 0 71

Methotrexate − 0.414 8 − 0.717 0.00012 0.0069 62

Butoconazole − 0.643 4 − 0.852 0.00092 0.0076 100

Prestwick-984 − 0.403 4 − 0.831 0.00147 0.0056 75

Puromycin − 0.475 4 − 0.804 0.00284 0.0448 75

5707885 − 0.236 4 − 0.788 0.00406 0.0168 50

Bergenin − 0.342 4 − 0.772 0.00547 0.0065 50
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Fig. 6  Single-cell RNA-seq revealed the distribution of GIRPI genes. A. Quality control of single-cell RNA-seq samples (Four normal kidney samples: 
N1-N4 and one pRCC sample). The number of gene expressions in each cell, the sum of gene expressions, and the percentage of mitochondrial 
genes were illustrated. B UMAP plot showing total 13 clusters. C The results of the cell cluster obtained by common cell marker gene. D UMAP 
plot showing six main cell types distribution in the integrated dataset. E Dot plot showing the expression levels and distribution of PFKFB3, LDHA, 
CRTC2, NUP43 and NUP107 in different cell based on ESCC scRNA-seq dataset
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PFK‑015 and sunitinib synergistically inhibited pRCC cells 
proliferation
Nowadays, sunitinib is a first‐line recommended clini-
cal treatment drug that targets multiple RTKs, such as 
VEGFR2 (Flk-1) and PDGFRβ [53, 54]. However, suni-
tinib resistance is still a major challenge for advanced 
renal cell carcinoma [55]. Emerging evidence has proved 
that glycolysis plays an important role in resistance to 
sunitinib [56, 57]. Since PFKFB3 was essential for pRCC 
glycolysis from the above analysis, we next investigated 
whether knockdown of PFKFB3 could re-sensitize pRCC 
to TKI inhibition. Importantly, we found that depletion 
of PFKFB3 could render pRCC cells sensitive to sunitinib 
(Fig. 8G). Given the poor response of pRCC patients to 
current therapies such as sunitinib, we speculated that 
the combined use of PFK-015 and sunitinib could be 
more active than a TKI inhibitor in pRCC cell lines [58, 
59]. Surprisingly, by performing colony formation assays, 
we observed that PFK-015 and sunitinib showed highly 
synergistic effects on suppressing pRCC cell proliferation 
(Fig.  8H). Additionally, we calculated the synergy score 
for drug combinations and found a synergistic interac-
tion between PFK-015 and sunitinib, with a high syn-
ergy score for ACHN cells [60, 61] (ZIP: 31.268; Loewe: 
28.981; Bliss: 31.204; HSA:27.153; Fig. 8I–L).

Discussion
PRCC is a second common subtype of renal cancer, 
with incidence accounting for 15% of total RCC cases 
approximately. Molecular characteristics have been well 
illustrated in ccRCC, but little is known in pRCC, espe-
cially for biomarkers in pRCC diagnosis, treatment and 
prognosis prediction. Metabolic reprogramming exists in 
most of tumors and fuels the rapid proliferation of can-
cer cells [62, 63]. As known, aerobic glycolysis has been 
widely studied to involve into cancer energy metabolism 
[13, 16] and affects tumor progression and therapeutic 
response, including renal cancer [16, 17, 64–67]. How-
ever, the key glycolysis-related regulators that partici-
pating pRCC biology and progression are undefined and 
still need further exploration. Herein, we applied inte-
grative analysis by constructing glycolytic genes mod-
els in pRCC, and established its potential role in pRCC 
immune infiltration, clinical relevance and therapeutic 
strategies.

In the present study, we constructed a five glycolysis-
related genes risk model in predicting pRCC patients’ 
survival and progression. Eleven glycose metabolic-
related gene sets were primarily extracted and a total 
of 520 genes were identified for further analyzed. As 
known, cancer cells usually take up more nutrient and 
energy than normal cells for the maintenance of high 

Fig. 7  The association with clinical relevance and Immune infiltration of key GIRPI component gene PFKFB3. A Clone formation capability of ACHN 
cells exposed to different concentrations of 2-DG. B qRT-PCR analysis to verify the expression level of five GIRPI genes in RCC cell lines. C Kaplan–
Meier survival of PFKFB3 in pRCC patients (OS, DSS, PFI). D The time-dependent ROC curves of PFKFB3. E PPI network of PFKFB3-related genes 
using STRING database. F GSVA analysis of potential mechanism involved in PFKFB3. G The underlying association between PFKFB3 and immune 
infiltration of cells. H The association between some immune microenvironment molecules and PFKFB3
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Fig. 8  Silencing key gene PFKFB3 suppressed papillary renal cell carcinoma proliferation, migration and sunitinib resistance. A qRT-PCR 
to confirm the performance of siRNA targeting PFKFB3. B CCK-8 assay results indicated that PFKFB3 knockdown decreased cell proliferation. C 
Colony-formation efficiency of knockdown PFKFB3. D Transwell migration assay of knockdown PFKFB3 and control group. E Glucose uptake, lactate 
detection, and ATP detection assays of knockdown PFKFB3. F Glucose uptake, lactate detection, and ATP detection assays of ACHN cells at 1μM 
PFK-015. G Inhibition rate of ACHN siNC or siPFKFB3 cells treated with sunitinib. H The growth of ACHN cells after the treatment with sunitinib and/
or PFK-015 for 10 days was determined using colony formation assay. I–L Synergy score plot based on ZIP (I); Loewe (J); Bliss (K) and HSA (L) models
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proliferating rates, especially in renal cell carcinomas 
due to its specific metabolic mutations [4]. Emerging 
evidence suggests that the activation of specific meta-
bolic pathway has a role in regulating angiogenesis and 
inflammatory signatures [68, 69]. Integrated multi-omics 
characterization has revealed different types of risk mod-
els based on glycolytic metabolism and validated their 
essential roles in determining RCC progression and 
therapeutic outcomes [15]. It has been reported that a 
glycolysis-related Long noncoding signature participated 
renal cancer evolution and released potential abilities in 
deciding RCC patients’ prognosis. Zhang et al. collected 
CNV, SNV, and mRNA expression from TCGA ccRCC 
cohort and established a predictive model consisting of 
13 glycolysis-correlated genes. This predictive model 
including a batch of classical or novel glycolytic genes, 
such as RPIA, G6PD, PSAT1, ENO2, HK3, IDH1, PDK4, 
PGM2, PGK1, FBP1, OGDH, SUCLA2, and SUCLG2 
[65]. Using the same dataset, Wang et  al. screened dif-
ferentially expressed genes related to glucose metabolism 
pathway, finally selected six glucose metabolism-related 
DEGs (FBP1, GYG2, KAT2A, LGALS1, PFKP, and RGN) 
and developed a risk signature [66]. Moreover, a four gly-
colysis-relevant signature (B3GAT3, CENPA, AGL and 
ALDH3A2) was also built and applied to better predict 
ccRCC patients [70]. To our knowledge, pRCC is one of 
the most immune-infiltrated tumors [71–73]. Features of 
the tumor microenvironment heavily affect disease biol-
ogy and may affect responses to systemic therapy [74–
78]. It has also been announced that a novel glycolytic 
risk signature could not only participate in RCC progres-
sion and prognosis but also affect the immune microen-
vironment of RCC. It included CD44, PLOD2, KIF20A, 
IDUA, PLOD1, HMMR, DEPDC1, and ANKZF1 in the 
model, which might exert the possibility of being a bio-
marker for the immunotherapy response [79]. However, 
little attention has been concentrated on the relationship 
between glycolytic genes and pRCC progression.

Our study comprehensively filtered DEGs using vari-
ous glycolytic-related gene sets, WGCNA, and Immune 
infiltration landscape, and firstly identified 34 overlap-
ping genes as a primary glycolysis-immune signature in 
pRCC. GO enrichment analysis declared that these 34 
key genes might be strongly correlated with carbohy-
drate metabolic process, hexose metabolic process, and 
glucose metabolic process, and KEGG pathway analysis 
also showed potential participating pathways, includ-
ing Insulin signaling pathway, HIF-1 signaling pathway, 
and AMPK signaling pathway. Nine candidate genes 
(PPP4R3B, LDHA, PPIB, YWHAZ, NUP107, PFKFB3, 
FOXK2, CRTC2, and NUP43) were further screened 
out, and LASSO Cox Regression algorithm and multi-
variate Cox analysis indicated the most powerful genes 

and conducted a five genes GIRPI. Previously reported, 
researchers have established several predicting mod-
els from glycolysis-relevant genes, which showed robust 
function in demonstrating renal cancer outcomes and 
progression [5, 80]. Different risk models might represent 
similar predictive roles in tumor survival decision-mak-
ing. However, the data collection and extracted approach 
between different researchers would bring discrepant 
results. Currently, there is no standard screening route 
for bioinformatic analysis, which limited the reliability 
of risk models in guiding patients’ outcomes. Therefore, 
our present research used different analyzing approaches 
including TCGA datasets, WGCNA, immune and gly-
colysis clusters, then combined with integrated Cox 
regression analysis, and finally built a five-gene-based 
prediction signature. This signature certainly represented 
a powerful effect in evaluating the predictive value of 
training and testing datasets. In addition, we identified 
several potential therapeutic strategies for pRCC based 
on our risk signature, which provided more treatment 
opportunities for pRCC patients even with unresectable 
cancer mass or late-stage tumors.

Considering the unique role of individual genes, we 
further filtered the highest differentially expression gene 
from GIRPI and evaluated the expression difference in 
renal cancer cell lines. A glycolytic-related gene called 
PFKFB3 was finally screened out for subsequent veri-
fication. During the past several years, the function of 
PFKFB3 in cancer has advanced considerably. Knowl-
edge of the vital role of PFKFB3 in regulating glycolysis, 
accumulating evidence has demonstrated that PFKFB3 
participated in multiple cancer events, including carcino-
genesis, cancer cell proliferation, vessel aggressiveness, 
drug resistance, and tumor microenvironment [81]. In 
view of renal cancer as a metabolic disease [4], PFKFB3 
mediated glycolytic pathways should affect RCC devel-
opment and progression. However, the regulating role 
of PFKFB3 in RCC glycolysis metabolism is rarely eluci-
dated currently, much less in pRCC. Our study primarily 
demonstrated the abnormal expression profile of PFKFB3 
in pRCC. Experimental assays further verified that 
PFKFB3 could promote renal cancer cell proliferation 
and migration in vitro, confirming its oncogenic potential 
in tumor progression.

As accumulates of PFKFB3 in cancer metabolism, 
researchers have aroused increasing interest in devel-
oping inhibitors targeting PFKFB3 for anti-neoplastic 
therapy [82]. Currently, potent and selective inhibitors 
of PFKFB3, such as PFK-015 and PFK-158 have been 
identified and undergone clinical trials for treat-
ing late-stage patients with cancer [83–85]. We also 
found that PFK-015 exerted a substantially suppres-
sive role in RCC cell proliferation in  vitro, showing a 
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similar function to a specific glycolysis inhibitor 2-DG. 
These results indicated the feasibility of PFKFB3 as a 
potential target of pRCC intervention therapy, which 
provided a more extensive choice for treating RCC 
patients. On the other hand, accumulating resistance 
to targeted therapy would also allow for broader alter-
natives including drug combinations. Furthermore, 
we confirmed that PFK-015 and sunitinib could highly 
synergistically suppress pRCC cell proliferation, which 
may provide a promising new treatment strategy for 
advanced renal cell carcinoma making this combination 
drug therapy. The discovery of biomarkers that predict 
benefit and the use of a suitable tolerance combination 
are crucial pillars in improving renal cell cancer prog-
nosis [86, 87].

Conclusion
In this study, we constructed a Glycolysis-Immune 
Related Prognostic Index and performed comprehen-
sive analyses to elucidate tumor immune infiltration, 
clinical relevance, and therapeutic targets of pRCC 
using bioinformatic methodology. GIRPI is closely 
associated with pRCC prognosis, progression, immune 
infiltration, and therapeutic response. PFKFB3, as a 
vital regulator of glycolysis and mediates sunitinib 
resistance, was finally screened out as a promising gly-
colytic biomarker in pRCC.
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