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Abstract

Background & Aims: Hepatic fat content can be non‐invasively estimated by
controlled attenuation parameter (CAP) during transient elastography. The aim of

this study was to examine the determinants and predictors of CAP values in in-

dividuals with metabolic dysfunction.

Methods: We enrolled 1230 consecutive apparently healthy individuals (Liver‐
Bible‐2022 cohort) with ≥3 metabolic dysfunction features. CAP was measured by

Fibroscan. CAP determinants and predictors were identified using backward step-

wise analysis and introduced in generalized linear models.

Results: Participants were predominantly males (82.9%), mean age was

53.8 � 6.4 years, 600 (48.8%) had steatosis (CAP ≥ 275 dB/m), and 27 had liver

stiffness measurement (LSM)≥ 8 kPa. CAP values correlated with LSM (p < 10−22). In

multivariable analysis, fasting insulin and abdominal circumference (AC) were the

main determinants of CAP (p < 10−6), together with body mass index (BMI; p < 10−4),

age, diabetes, triglycerides, ferritin, and lower HDL and thyroid stimulating hormone

(TSH; p < 0.05 for all). In a subset of 592 participants with thyroid hormone
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measurement, we found an association between higher free triiodothyronine levels,

correlating with lower TSH, and CAP values, independent of TSH and of levothyr-

oxine treatment (p = 0.0025). A clinical CAP score based on age, BMI, AC, HbA1c,

ALT, and HDL predicted CAP ≥ 275 dB/m with moderate accuracy (AUROC = 0.73),

which was better than that of the Fatty Liver Index and of ALT (AUROC = 0.70/0.61,

respectively) and validated it in multiple cohorts.

Conclusion: Abdominal adiposity and insulin resistance severity were the main

determinants of CAP in individuals with metabolic dysfunction and may improve

steatotic liver disease risk stratification. CAP values were modulated by the

hypophysis‐thyroid axis.

K E YWORD S

abdominal circumference, CAP, controlled attenuation parameter, fasting insulin, fibroscan,

liver stiffness measurement, LSM, metabolic syndrome, steatosis, thyroid, transient
elastography

INTRODUCTION

The prevalence of non‐alcoholic fatty liver disease (NAFLD), recently
defined as metabolic‐dysfunction associated steatotic liver disease
(MASLD) when it is associated with metabolic alterations and insulin

resistance (IR)1, has progressively risen in the last decades alongside

that of obesity and type 2 diabetes (T2D), becoming the most com-

mon chronic liver disease in the population.2

Although hepatic fat accumulation was previously considered an

innocent bystander in the natural history of liver diseases, recent

evidence from experimental and human genetics suggests that it

represents a key driver in the development of liver disease and its

complications.3,4 Because of the prognostic implications related to

the risk of liver fibrosis and hepatocellular carcinoma, the early

detection of MASLD in individuals with metabolic dysfunction has

clinical relevance.5 MASLD is mainly diagnosed by imaging, and the

most commonly used approach is still conventional ultrasound since

it is relatively cheap, non‐invasive and widely available.6 A more
accurate quantification of hepatic fat content is provided by magnetic

resonance proton density fat fraction (MRI‐PDFF),7 but its use in
clinical practice is limited because of the costs and limited availability.

In the last decade, the “Controlled Attenuation Parameter” (CAP)

has been implemented in vibration‐controlled elastography (VCTE)
devices (“FibroScan”®). CAP is a measure of hepatic viscoelasticity,

correlating with the number of lipid droplets accumulated in hepa-

tocytes.8 CAP is a promising non‐invasive tool to detect hepatic
steatosis during screening for fibrosis by VCTE in individuals with

metabolic dysfunction,9 as recommended by the major scientific so-

cieties,10–12 showing low failure and high reliability rates.13 There-

fore, CAP measurement can allow the identification of individuals

with MASLD without advanced fibrosis but at risk of progression.

However, while the prioritization for fibrosis screening is guided by

non‐invasive scores (e.g. FIB‐4), little is known about the predictive
accuracy of fatty liver indices.

Within this context, the aim of this study was to examine the

independent determinants (that is, causes of hepatic fat accumula-

tion) and clinical predictors (including biomarkers of liver damage) of

CAP values in a cohort of apparently healthy individuals at risk of

MASLD because of metabolic dysfunction. The overall goal was to

better characterize the main drivers of disease at an early stage of

development and to improve disease risk stratification.

PATIENTS AND METHODS

Study cohort

Liver‐bible‐2022 cohort

We considered 1230 individuals, who were consecutively enrolled

from June 2019 to June 2022 in a primary prevention program

Key summary

Summarize the established knowledge on this subject

� Adiposity, insulin resistance and dyslipidemia drive

steatotic liver disease in high‐risk individuals.

What are the significant and/or new findings of this study?

� Metabolic‐dysfunction associated steatotic liver disease
(MASLD) is associated with an impairment of the

hypophysis‐thyroid axis.
� A non‐invasive score (clinical CAP score) is useful in
identifying MASLD in high‐risk individuals.

� Modulation of thyroid hormone signaling shows potential

for MASLD treatment.
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conducted among candidate blood donors in Milan, Italy, and aimed

at the early diagnosis and prevention of hepatic and extra‐hepatic
complications of fatty liver disease (the Liver‐Bible‐2022 Biobank
cohort). Part of this cohort has previously been described.14,15 The

Liver‐Bible‐2022 cohort included apparently healthy blood donors,
aged 40–65, who underwent non‐invasive screening of liver and
cardiovascular damage due to the presence of at least three criteria

of metabolic dysfunction (detailed in the Supporting Information S1:

Methods). None reported use of alcohol ≥ 60/40 g/day in M/F. All
markers for HCV, HBV, and HIV infections were negative. Laboratory

assessment is reported in the Supporting Information S1: Methods;

blood samples were collected after overnight fasting.

The presence of hepatic steatosis and liver fibrosis was non‐
invasively evaluated with liver stiffness measurement (LSM) and CAP

by VCTE with FibroScan® 530 Compact (Echosens, Paris, France). The

examination was conducted as recommended by the manufacturer.16

Patients were in overnight fasting condition and placed on supine po-

sition with the right arm behind the head; the probe transducer was

place between the rib bones at the level of the right hepatic lobe on the

median axillary line. The device was equippedwith an automatic probe

selection tool. Each exam was performed using the M or XL probe as

prompted. Each examinationwas considered validwhen: (a) at least 10

successfulmeasurementswere acquired; and (b) the variability of LSM,

evaluated as LSM interquartile range (IQR)/LSM ratio, was ≤0.30 or
>0.30 and LSMmedian< 7.1 kPa.17 CAP≥ 275 dB/m and LSM≥ 8 kPa
wereused, respectively, to identify steatotic liver disease (SLD) and the

possible presence of advanced fibrosis according to the EASL Clinical

Practice Guidelines.10

The study was approved by the Ethical committee of the Fon-

dazione IRCCS Ca’ Granda, and each patient gave written informed

consent to the study (ID 1650, revision 23 June 2020).

The MAFALDA, NHANES, and UK Biobank (UKBB) validation

cohorts are described in the Supporting Information S1: Methods.

Statistical analysis

For descriptive statistics, continuous variables are shown as mean

and standard deviation (SD) or median and interquartile range (IQR),

as appropriate; categorical variables are shown as number and pro-

portion. Not normally distributed variables (e.g. ferritin) were log‐
transformed before entering the analysis.

Observational associations were performed by fitting data to

generalized linear models (GLM). Binary outcomes were examined by

fitting logistic regression models. GLM and logistic regression models

were adjusted for sex, age, ethnicity and clinical or lifestyle factors that

were selected by a backward stepwise selection procedure (p to leave

<0.1). Additional approaches were undertaken in sensitivity analyses
to confirm the robustness of covariate selection for the predictive

models.

Performance of non‐invasive fatty liver markers was assessed by
the area under the receiver operating characteristic curve (AUROC)

in the derivation and validation cohorts. AUROCs were compared

using the DeLong test.

Statistical analyses were carried out using the JMP Pro 16.0 Sta-

tistical Analysis Software (SAS Institute, Cary, NC) and the software R,

version 4.0.4 (R Foundation for Statistical Computing, Vienna, Austria).

p values < 0.05 (two tailed) were considered statistically significant.

RESULTS

Study cohort

The clinical features of the 1230 individuals included in the Liver‐
Bible‐2022 cohort are presented in Table 1, left panel.

The majority of Fibroscan examination could be performed using

the M probe (n = 1127, 91.6%), whereas for the remaining, we used
the XL probe. MASLD was detected in about half of the participants,

whereas only 27 individuals (2.2%) had LSM ≥ 8.0 kPa, consistent
with the presence of advanced liver fibrosis. As expected, although

the cohort was characterized on average by mild liver damage, LSM

was associated with CAP values (estimate þ0.008, SE 0.001,

p = 6.9 � 10−23).

Independent determinants of CAP values

The independent determinants of CAP values at GLM considering as

covariates those selected by backward stepwise analysis are shown in

Table 2. At univariate analysis (Table 2, left panel) CAP values were

associated with older age (p = 0.021) and alterations in

metabolic profile, in particular adiposity (abdominal circumference

(AC), p = 1 � 10−56; BMI, p = 9 � 10−49), glucose metabolism (fasting

insulin, p = 3 � 10−27; hyperglycemia, p = 0.0095; and T2D,

p = 0.0002), lower high‐density lipoprotein cholesterol (HDL‐C)
(p = 0.0004), higher levels of ferritin (p = 6 � 10−5) and nearly with

higher TG (p = 0.057).
At multivariable analysis (Table 2, middle panel), CAP values

were associated with older age (0.59 � 0.17, p = 0.0005), larger AC
(estimate 1.07 � 0.20 per 1 cm increase, p = 9 � 10−8) and higher

BMI (estimate 2.22 � 0.55, p = 5 � 10−5), fasting insulin (estimate

0.68 � 0.12, p = 2 � 10−8) and T2D diagnosis (estimate 10.48 � 4.46,

p = 0.019), higher ferritin (estimate 3.63 � 1.27, p = 0.0042) and
higher TG (estimate 0.03 � 0.01, p = 0.038), whereas HDL‐C main-
tained a protective association (estimate −0.28 � 0.11, p = 0.015). In
addition, an independent protective association between thyroid‐
stimulating hormone(TSH) levels and CAP values emerged (esti-

mate −1.46 � 0.72, p = 0.044), and was maintained even after

adjustment for levothyroxine replacement therapy (estimate

−1.75 � 0.74, p = 0.032; Table 2, right panel).
Similar results, confirming the robustness of the independent

determinants identified, were obtained using the forward stepwise

analysis to select the independent determinants (Table S1), except
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that glucose and insulin levels were substituted by HOMA‐IR (an
index of IR directly proportional to glucose and insulin).

The aforementioned associations were not modified when CAP

values were also adjusted for variability of CAP measurement (IQR)

and the type of probe (not shown in details).

Independent determinants of steatosis

The clinical characteristics of the Liver‐Bible‐2022 cohort stratified by
the presence of steatosis as non‐invasively estimated by

CAP ≥ 275 dB/m are presented in Table 1, right panel, whereas its

TAB L E 1 Clinical features of the overall liver‐bible‐2022 cohort (left panel) and after stratification by CAP values (CAP < or ≥275 dB/m,
right panel).

Overall (n = 1230)
CAP < 275 dB/m
(n = 630, 51.2%)

CAP ≥ 275 dB/m
(n = 600, 48.8%) p‐valueb

Age, years 53.8 � 6.4 53.7 � 6.4 54.0 � 6.4 0.34

Sex, F 210 (17.1) 121 (19.2) 89 (14.8) 0.042

BMI, kg/m2 28.6 � 3.2 27.6 � 2.8 29.6 � 3.2 4 £ 10−32

Obesity, yes 406 (33.0) 132 (20.9) 274 (45.7) 2 £ 10−19

Abdominal circumference, cm 102.6 � 9.0 99.5 � 7.8 105.8 � 9.0 4 £ 10−30

Glucose, mg/dL 96.7 � 15.5 96.2 � 14.6 97.3 � 16.4 0.20

Insulin, mIU/L 14.7 � 9.1 12.7 � 7.3 16.8 � 10.3 6 £ 10−14

HOMA‐IR, units 3.5 � 2.4 3.0 � 1.9 4.1 � 2.7 2 £ 10−13

HbA1c, mM 35.7 � 4.8 35.2 � 3.8 36.2 � 5.7 0.0002

T2D, yes 18 (1.5) 2 (0.32) 16 (2.7) 0.0042

Hypertension, yes 1055 (85.8) 529 (84.0) 526 (87.7) 0.064

LDL‐C, mg/dL 125.7 � 31.4 126.0 � 31.2 125.5 � 31.7 0.79

HDL‐C, mg/dL 45.4 � 10.1 46.4 � 10.9 44.3 � 9.1 0.0003

TG, mg/dL 160.3 � 83.9 158.7 � 91.8 162.1 � 74.6 0.48

Hypercholesterolemia, yes 609 (49.5) 318 (50.5) 291 (48.5) 0.49

ALT, IU/L 26 [21–35] 25 [20–33] 29 [22–39] 2 £ 10−9

AST, IU/L 23 [19–27] 22 [19–25] 23 [20–28] 0.0004

GGT, IU/L 23 [17–32] 22 [15–30] 24 [18–34] 0.057

Ferritin, ng/mL 78 [43–139] 75 [42–133] 79 [45–153] 0.0058

CRP, md/dL 0.15 [0.09–0.26] 0.13 [0.08–0.23] 0.16 [0.10–0.29] 0.63

TSH, mU/L 1.71 � 1.46 1.78 � 1.86 1.64 � 0.85 0.13

fT3, ng/La 3.34 � 0.39 3.31 � 0.43 3.39 � 0.33 0.013

fT4, ng/La 11.87 � 1.48 11.91 � 1.57 11.84 � 1.38 0.61

CAP, dB/m 274.6 � 41.1 242.3 � 23.1 308.6 � 25.5 ‐

IQR CAP, dB/m 30 [23–39] 31 [24–40] 30 [23–39] 0.32

Levothyroxin replacement therapy, yes 21 (1.7) 11 (1.7) 10 (1.7) 0.91

LSM, kPa 4.9 � 1.3 4.6 � 1.1 5.2 � 1.3 2 £ 10−15

LSM IQR/LSM, % 15 [12–20] 15 [11–20] 16 [12–20] 0.051

Advanced fibrosis, LSM ≥ 8 kPa 27 (2.2) 5 (0.8) 22 (3.7) 0.002

Note: Values are reported as mean � SD, number (%) or median [IQR] as appropriate. Statistically significant values are highlighted in bold.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CAP, controlled attenuation parameter; CRP,

C‐reactive protein; fT3, free triiodothyronine; fT4, free thyroxine; GGT, gamma‐glutamyl transferase; HbA1c, glycated hemoglobin; HDL‐C, high‐density
lipoprotein cholesterol; HOMA‐IR, homeostatic model assessment for insulin resistance; LDL‐C, low‐density lipoprotein cholesterol; LSM, liver stiffness
measurement; LSM IQR/LSM, LSM interquartile range/LSM ratio; T2D, type 2 diabetes; TG, triglycerides; TSH, thyroid‐stimulating hormone.
aAvailable in 592.
bAt logistic regression model.
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independent determinants are shown in Table 3. Steatosis was asso-

ciated with indices of adiposity (AC, p = 4.0 � 10−30; BMI,

p=2.0� 10−26), fasting insulinemia (p=6.0�10−14), T2D (p= 0.0042)
and lower HDL (p = 0.0003). Moreover, steatosis tended to be asso-
ciated with higher alcohol intake (drinks per week; p = 0.071). No

significant association was detected between steatosis and other life-

style and dietary factors.

At multivariable analysis (Table 3, right panel), independent de-

terminants of steatosis were adiposity (AC, OR 1.06, 95% CI 1.03–

1.09, p = 8 � 10−6; BMI, OR 1.11, 95% CI 1.04–1.19, p = 0.0019),

TAB L E 2 Independent determinants of CAP values in 1230 individuals from the liver‐bible‐2022 cohort.

Estimatea SEa p‐valuea Estimateb SEb p‐valueb Estimatec SEc p‐valuec

Age, years 0.42 0.18 0.021 0.59 0.17 0.0005 0.59 0.17 0.0005

BMI, kg/m2 4.98 0.34 9 £ 10−49 2.22 0.55 5 £ 10−5 2.23 0.55 5 £ 10−5

AC, cm 1.89 0.12 1 £ 10−56 1.07 0.20 9 £ 10−8 1.06 0.20 1 £ 10−7

Glucose, mg/dL 0.19 0.07 0.0095 0.14 0.07 0.063 0.14 0.07 0.060

Insulin, mIU/L 1.32 0.12 3 £ 10−27 0.68 0.12 2 £ 10−8 0.68 0.12 1 £ 10−8

T2D, yes 18.05 4.85 0.0002 10.48 4.46 0.019 10.31 4.46 0.021

HDL‐C, mg/dL −0.41 0.11 0.0004 −0.28 0.11 0.015 −0.28 0.11 0.015

TG, mg/dL 0.03 0.01 0.057 0.03 0.01 0.038 0.03 0.01 0.037

Ferritin, log ng/mL 5.48 1.37 6 £ 10−5 3.63 1.27 0.0042 3.60 1.27 0.0045

TSH, mU/L −0.97 0.80 0.23 −1.46 0.72 0.044 −1.57 0.74 0.032

Note: Statistically significant values are highlighted in bold.

Abbreviations: AC, abdominal circumference; BMI, body mass index; CAP, controlled attenuation parameter; HbA1c, glycated hemoglobin; HDL‐C,
high‐density lipoprotein cholesterol; HOMA‐IR, homeostatic model assessment for insulin resistance; LDL‐C, low‐density lipoprotein cholesterol; MDS,
Mediterranean diet score; T2D, type 2 diabetes; TG, triglycerides; TSH, thyroid‐stimulating hormone.
aAt GLM (unadjusted). Variables were selected at Backward Stepwise Regression analysis: p‐value to leave = 0.10. Variables fitted in Backward
Stepwise Regression analysis: age, sex, ethnicity, BMI, obesity, abdominal circumference, glucose, insulin, HOMA‐IR, HbA1c, T2D, hypertension, LDL‐C,
HDL‐C, TG, hypercholesterolemia, ferritin, TSH, MDS, MDS >7, number of alcohol drinks/week, number of soft drinks/week, hours of physical activity/
week.
bAt GLM, adjusted for sex, ethnicity and reported variables.
cAt GLM, further adjustment for Levothyroxine replacement.

TAB L E 3 Independent determinants of CAP ≥ 275 dB/m in 1230 individuals from the liver‐bible‐2022 cohort.

ORa 95% c.i.a p‐valuea ORb 95% c.i.b p‐valueb ORc 95% c.i.c p‐valuec

Age, years 1.01 0.99–1.03 0.34 1.02 0.99–1.04 0.094 1.02 1.00–1.04 0.094

BMI, kg/m2 1.27 1.21–1.32 2 £ 10−26 1.11 1.04–1.19 0.0019 1.11 1.04–1.19 0.0019

AC, cm 1.09 1.08–1.11 4 £ 10−30 1.06 1.03–1.09 8 £ 10−6 1.06 1.03–1.09 8 £ 10−6

Insulin, mU/mL 1.06 1.05–1.08 6 £ 10−14 1.03 1.01–1.05 0.0002 1.03 1.01–1.05 0.0002

T2D, yes 8.60 1.97–37.58 0.0042 6.89 1.49–31.78 0.013 6.87 1.49–31.79 0.014

HDL‐C, mg/dL 0.98 0.97–0.99 0.0003 0.98 0.97–0.99 0.0026 0.98 0.97–0.99 0.0026

TSH, mU/L 0.92 0.81–1.03 0.13 0.87 0.76–0.99 0.046 0.87 0.76–0.99 0.046

Alcohol drinks, n/week 1.02 1.00–1.04 0.071 1.02 1.00–1.04 0.056 1.02 1.00–1.04 0.056

Note: Statistically significant values are highlighted in bold.

Abbreviations: 95% c.i., 95% confidence interval; AC, abdominal circumference; BMI, body mass index; CAP, controlled attenuation parameter; HbA1c,

glycated hemoglobin; HDL‐C, high‐density lipoprotein cholesterol; HOMA‐IR, homeostatic model assessment for insulin resistance; LDL‐C, low‐density
lipoprotein cholesterol; MDS, Mediterranean diet score; OR, odds ratio; T2D, type 2 diabetes; TG, triglycerides; TSH, thyroid‐stimulating hormone.
aAt logistic regression (unadjusted). Variables were selected at Backward Stepwise Regression analysis: p‐value to leave = 0.10. Variables fitted in
backward stepwise regression analysis were age, sex, ethnicity, BMI, obesity, abdominal circumference, glucose, insulin, HOMA‐IR, T2D, hypertension,
LDL‐C, HDL‐C, TG, hypercholesterolemia, ferritin, TSH, MDS, MDS >7, number of alcohol drinks/week, number of soft drinks/week, hours of physical
activity/week.
bAt logistic regression, adjusted for sex, ethnicity and reported variables.
cAt logistic regression, further adjustment for Levothyroxine replacement.
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fasting insulin levels (odds ratio [OR] 1.03, 95% CI 1.01–1.05,

p = 0.0002), T2D (OR 6.89, 95% CI 1.49–31.78, p = 0.013), lower
HDL‐C (OR 0.98, 95% CI 0.97–0.99, p = 0.0026), and nearly alcohol
consumption (OR 1.02 per drink/week, 95% CI 1.00–1.04, p = 0.056).
TSH levels displayed a protective association against steatosis (OR

0.87, 95% CI 0.76–0.99, p = 0.046), independent of levothyroxine
replacement (OR 0.87, 95% CI 0.76–0.99, p = 0.046).

The selection of independent determinants of steatosis using the

forward stepwise analysis led to similar results, except that HOMA‐
IR substituted fasting insulinemia (Table S2), confirming the robust-

ness of the independent determinants identified.

The relationship between the activation status of the

hypophysis‐thyroid axis and steatosis in a subset of 592 individuals
for whom complete hormone levels were available is reported in the

Supporting Information S1: Results.

Independent predictors of steatosis

The independent predictors of CAP ≥ 275 dB/m in the Liver‐Bible‐
2022 cohort, selected by backward stepwise analysis, are shown in

Table 4. Higher ALT levels and indices of adiposity (AC and BMI)

were the parameters most robustly associated with the presence

of steatosis, together with older age, higher HbA1c and lower

HDL‐C.
Based on the aforementioned variables, we developed a clinical

predictive score (the CAP‐score, CAPS; Table S5) that can be calcu-
lated as follows: (0.0225 � age) þ (0.1173 � BMI) þ (0.0537 � AC) þ

(0.0371 � HbA1c) þ (0.0249 � ALT) − (0.0192 * HDL‐C). In the
Liver‐Bible‐2022 cohort, CAPS had an AUROC of 0.734 for

predicting CAP ≥275dB/m, and it was associated with a higher risk of
steatosis (OR 2.72 per 1 point increase, 95% 2.33–3.16, p = 5 �
10−38). A value of ≥10.982 (hereinafter defined as “positive” test)
was identified as the best single cut‐off for CAPS, with 76.0%
sensitivity and 61.0% specificity. A positive CAPS was associated

with an almost 5‐fold increased risk of steatosis in the Liver‐Bible‐
2022 cohort (OR 4.85, 95% CI 3.79–6.20, p = 3 � 10−36).

Inclusion of insulin and even TSH in this predictive model led to

only marginal improvement in the AUROC of steatosis (from 0.734 to

0.738 and 0.740, respectively, p = 0.92 and p = 0.97) at the price of
limiting its applicability in clinical practice.

We next compared the diagnostic performance of CAPS with

other non‐invasive fatty liver markers currently used in clinical
practice, namely ALT levels, Fatty Liver Index (FLI) and Hepatic

Steatosis Index (HSI). Positive CAPS predicted the presence of

steatosis more accurately than the other non‐invasive scores,
although the accuracy was moderate (CAPS vs. ALT levels,

p = 2 � 10−13; CAPS vs. FLI, p = 3 � 10−4; and CAPS vs. HSI,

p = 5 � 10−5; Table S6 and Figure 1).

We also tested the performance of non‐invasive fatty liver
markers in three independent external validation cohorts (MAFALDA

cohort, NHANES 2017–2018 cohort and UKBB cohort; Table 5). In

all three cohorts, CAPS showed a satisfactory performance for

detecting steatosis (AUROCs 0.76–0.84). In MAFALDA, CAPS had a

higher performance than FLI and HSI (p = 0.017 and 0.011, respec-
tively), whereas no difference was found compared with ALT levels

(p = 0.34). In NHANES 2017–2018 and UKBB, CAPS had a higher
performance than HSI (p = 6 � 10−5 and 8 � 10−5, respectively) and

ALT levels (p = 7 � 10−9 and 2 � 10−89, respectively), and a similar

performance to FLI (p = 0.82 for both).

TAB L E 4 Independent predictors of CAP ≥ 275 dB/m in the
liver‐bible‐2022 cohort.

OR 95% c.i. p‐valuea

Age, years 1.02 1.01–1.04 0.031

BMI, kg/m2 1.12 1.05–1.20 0.0003

Abdominal circumference, cm 1.05 1.03–1.08 3.4 £ 10−6

HbA1c, mM 1.04 1.01–1.07 0.0091

HDL‐C, mg/dL 0.98 0.97–0.99 0.0031

ALT, IU/L 1.02 1.01–1.03 5.2 £ 10−7

Note: Statistically significant values are highlighted in bold.

Abbreviations: 95%, c.i., 95% confidence interval ALT, alanine

aminotransferase; AST, aspartate aminotransferase; BMI, body mass

index; CAP, controlled attenuation parameter; CRP, C‐reactive protein;
GGT, gamma‐glutamyl transferase; HbA1c, glycated hemoglobin;
HDL‐C, high‐density lipoprotein cholesterol; LDL‐C, low‐density
lipoprotein cholesterol; OR, odds ratio; TG, triglycerides; TSH,

thyroid‐stimulating hormone.
aAt logistic regression, adjusted for the covariates specified in the table.

Variables were selected at Backward Stepwise Regression analysis:

p‐value to leave = 0.05. Variables fitted in Backward Stepwise
Regression analysis: age, sex, BMI, abdominal circumference, AST, ALT,

GGT, platelet count, glucose, HbA1c, LDL‐C, HDL‐C, TG, ferritin, TSH,
and CRP.

F I GUR E 1 Comparison of the diagnostic accuracy of non‐
invasive markers of SLD in the liver‐bible‐2022 cohort.
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DISCUSSION

In this study, we examined the clinical determinants and predictors of

hepatic fat content and steatosis, as estimated by CAP values, in a

biobank cohort of 1230 apparently healthy middle‐aged blood do-
nors at risk of liver disease due to metabolic dysfunction.

We were prompted by two main considerations. First, converging

data from epidemiological, clinical, human genetics and experimental

studies suggest that steatosis is a key driver in the development and

progression of MASLD.3,4 Secondly, measurement of CAP values is

cheap, easy to perform and highly reproducible, and it is progressively

being implemented in clinical practice to non‐invasively assess hepatic
fat accumulation during screening for advanced liver fibrosis in high‐
risk individuals with metabolic dysfunction and abnormal fibrosis

scores.10,12 In fact, evaluation of LSM alonemaymiss patients with less

advanced but rapidly progressive disease due to the presence of high

hepatic fat and lipotoxicity. In clinical settings where the MASLD

prevention or early treatment is the priority, it may therefore be useful

to identify by simple non‐invasive scores, among individuals with
metabolic dysfunction, also those with a high likelihood of MASLD

irrespective of advanced fibrosis. Furthermore, available non‐invasive
scores of steatosis still lack validation in a large cohort of patients with

metabolic dysfunction with direct quantification of hepatic fat by CAP.

The main findings were that: (a) adiposity and the severity of IR

remain the main determinants of CAP even among individuals with

metabolic dysfunction; (b) other endocrine alterations, and in

particular modulation of the hypophysis‐thyroid axis as captured by
TSH levels influence CAP levels; c) a clinical score taking into

consideration measurements of overall and abdominal adiposity, IR

and liver enzymes outperforms currently available scores in identi-

fying patients with high values of CAP consistent with a diagnosis of

early stages of MASLD.

Indeed, in the Liver‐Bible‐2022 cohort the main determinants of
both CAP values and MASLD were AC, BMI, and T2D. Importantly,

AC, BMI and T2D were associated with CAP and steatosis indepen-

dently of each other, with a larger effect of AC. AC is a better pre-

dictor of visceral fat than BMI,18 in line with the notion that the

distribution and quality of fat, besides the total amount, is the main

driver of MASLD. Indeed, visceral fat is directly linked with the

development and the progression of MASLD,19,20 and it is a predictor

of liver‐specific mortality in patients with MASLD.20 These data are
in line with previous evidence indicating that CAP values are influ-

enced by BMI,9,21,22 T2D9,22 and metabolic comorbidities.9,21

Notably, among the other determinants of CAP and steatosis, we

identified hyperinsulinemia, which may be secondary to IR due to a

suboptimal cellular response to circulating insulin, or a consequence of

downregulation of hepatic insulin clearance due to excess hepatic fat

accumulation.23 On one hand, proinflammatory cytokines derived

from adipose tissue and the increase in free fatty acids worsen IR in

patients with MASLD.24 On the other hand, during metabolic

dysfunction in the liver, there is a paradoxical dissociation between the

lack of suppression of hepatic glucose output and increased de novo

lipogenesis in response to insulin. This apparent conundrum is linked

to a different response in the insulin signaling pathways that drive

cholesterol and glucose homeostasis, resulting in the classic T2D triad

of hyperinsulinemia‐hyperglycemia‐hypertriglyceridemia.25,26 Unsur-
prisingly, another typical manifestation of hepatic IR, namely reduced

HDL levels,27 was the last independent determinant of steatosis we

identified in the cohort. In keeping, we showed that there is a causal

association between genetically determined hepatic fat accumulation

and the development of IR and diabetes, with a borderline impact on

HDL levels.28 The present data are not helpful to dissect causality in

this association but support the notion that an early detection and

treatment of metabolic alterations could prevent MASLD onset, the

development of T2D and cardiovascular complications.

An intriguing finding was the evidence of a protective associ-

ation between higher TSH levels and lower CAP values. This as-

sociation was independent of several indices of IR and the other

clinical risk factors. In addition, it was confirmed in sensitivity an-

alyses in participants with TSH levels within the normal range and

not taking levothyroxine supplementation. Previous observational

studies identified a robust relationship between impaired thyroid

function and the presence and severity of MASLD,29 and a causal

association emerged from Mendelian randomization approaches.30

The association was also observed in euthyroid individuals.31 In

addition, previous studies reported increased conversion of T4 to

reverse‐T3 in patients with chronic liver injury, which may be
involved in disease predisposition due to the detrimental impact on

intracellular fat oxidation.32 In the present cohort, however, lower

TSH, and in a subset higher free triiodothyronine (fT3) and fT3/T4

TAB L E 5 Diagnostic accuracy of non‐invasive markers for SLD diagnosis in the external validation cohorts.

MAFALDA (n = 264) NHANES 2017–2018 (n = 936) UK biobank (n = 21,042)

AUROC (95% c.i.) p‐value AUROC (95% c.i.) p‐value AUROC (95% c.i.) p‐value

CAPS 0.76 (0.70–0.82) ‐ 0.78 (0.75–0.81) ‐ 0.84 (0.83–0.85) ‐

ALT 0.79 (0.74–0.85) 0.34 0.66 (0.62–0.69) 7 � 10−09 0.71 (0.70–0.72) 2 � 10−89

FLI 0.73 (0.66–0.79) 0.017 0.78 (0.75–0.81) 0.82 0.84 (0.83–0.85) 0.82

HSI 0.70 (0.64–0.77) 0.011 0.74 (0.70–0.77) 6 � 10−05 0.82 (0.81–0.83) 8 � 10−05

Abbreviations: 95% c.i., 95% confidence interval; ALT, alanine aminotransferase; AUROC, area under the receiver operating characteristic curve; CAPS,

CAP‐score; FLI, fatty liver index; HSI, hepatic steatosis index.
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ratios were linked with higher CAP and risk of steatosis. It could

therefore be speculated that the increased T4 conversion to fT3 in

participants with steatosis, possibly due to enhanced expression of

deiodinase 1 in the liver, may represent a feedback loop to contrast

hepatic/visceral fat accumulation. However, this attempt was not

completely effective due to the tight regulation of fT3 levels, as

highlighted by the reduced TSH levels in individuals with steatosis,

in order to avoid systemic side effects of excess activation of thy-

roid hormone signaling. In keeping with the present results, Chung

et al. showed that subjects with lower baseline TSH levels and

higher increase during a 4‐year follow‐up were at increased risk of
developing MASLD.33 However, the impact of thyroid axis activa-

tion in protection against steatosis can be exploited by specific

agonists of thyroid receptor β, which is selectively expressed by
hepatocytes, whose administration improved steatosis and liver

damage in randomized controlled studies in patients with fibrotic

MASH.34,35

Finally, we developed a new simple non‐invasive score, named
CAPS, to predict the presence of steatosis in individuals with multiple

metabolic abnormalities. CAPS was significantly superior not only to

ALT, but also to the HSI and FLI, in predicting SLD. CAPS was based

on evaluation of BMI and AC, ALT levels, plus HDL‐C and HBA1c
capturing both hepatic IR and altered hepatic lipid metabolism.

Interestingly, HDL‐C and HBA1c were not included in previous
scores, but included in the fibrotic NASH index, recently developed to

predict fibrotic NASH and demonstrating higher accuracy than clas-

sical non‐invasive scores.36 Moreover, the ability of CAPS to predict
steatosis was validated in three external cohorts. CAPS showed a

better performance than ALT and HSI in detecting steatosis in gen-

eral population‐based cohorts (NHANES and UKBB), whereas the
improvement in the stratification of the risk of MASLD was marginal

compared to FLI in this setting.37 However, CAPS was more accurate

in predicting histological steatosis than FLI in severely obese in-

dividuals (MAFALDA cohort). Thus, CAPS may be useful in epide-

miological studies to estimate the prevalence of steatosis when direct

assessment is not available, and in clinical settings to predict the

presence of early stage MASLD in young individuals with metabolic

dysfunction to prioritize them for intervention aimed at preventing

the hepatic and cardiometabolic complications of excess hepatic fat

accumulation.

Limitations of the present study include the lack of assessment of

hepatic fat content by gold‐standard imaging approaches, such as H1‐
magnetic resonance spectroscopy or MRI‐PDFF. Future studies
should examine the predictive accuracy of CAPS on histological liver

damage and the ability to predict liver‐related events in long‐term
follow‐up. Furthermore, results may not be applicable in non‐
European ethnicity with different average body compositions.

In conclusion, the severity of IR and abdominal adiposity were

the main independent determinants of CAP in individuals with

metabolic dysfunction and may improve the risk stratification of early

SLD. CAP values were modulated by the hypophysis‐thyroid axis
activity. We developed a new simple CAPS score to predict the

presence of steatosis in individuals with metabolic dysfunction.
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