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Abstract

We present a methodology to image and quantify the shear elastic modulus of three dimensional 

(3D) breast tissue volumes held in compression under conditions similar to those of a clinical 

mammography system. Tissue phantoms are made to mimic the ultrasonic and mechanical 

properties of breast tissue. Stiff lesions are created in these phantoms with size and modulus 

contrast values, relative to the background, that are within the range of values of clinical interest. 

A two dimensional ultrasound system, scanned elevationally, is used to acquire 3D images of these 

phantoms as they are held in compression. From two 3D ultrasound images, acquired at different 

compressed states, a three dimensional displacement vector field is measured. The measured 

displacement field is then used to solve an inverse problem, assuming the phantom material to be 

an incompressible, linear elastic solid, to recover the shear modulus distribution within the imaged 

volume. The reconstructed values are then compared to values measured independently by direct 

mechanical testing.

1. Introduction

Ultrasound elasticity imaging, or elastography, offers an attractive adjunct to film and digital 

mammography for breast cancer screening applications. Among the various approaches to 

elastography, perhaps the most common is that pioneered by Ophir and coworkers (Ophir et 

al. 1991). This technique is based on ultrasound tracking of quasistatic breast compression 

to generate strain images. Several clinical studies (Garra et al. 1997, Hall et al. 2003, Regner 

et al. 2006, Giuseppetti et al. 2005, Itoh et al. 2006, Thomas et al. 2006, Zhi et al. 2007, 

Burnside et al. 2007, Bamber et al. 2002) have demonstrated that the resulting strain images 

typically improve the diagnostic accuracy over ultrasound alone. While these studies all use 

2D ultrasound, there is a trend toward 3D ultrasound imaging (Weismann 2005), including 

3D strain imaging (Lindop et al. 2006, Krueger et al. 1998, Lorenz et al. 1999, Treece et al. 

2008).
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Beyond the ability to create 3D images, three dimensional ultrasound elastography offers 

several potential benefits over 2D ultrasound elastography. Among these is the ability to 

track motion in the elevation direction. Another is the ability to use physical constraints, 

e.g. tissue incompressiblity, to improve motion tracking from frame-to-frame. Both of these 

are used here. One of the most significant advantages of 3D imaging, potentially, is the 

obviation of 2D model simplifying assumptions when reconstructing modulus distributions.

One step beyond strain imaging is elastic modulus imaging. This involves solving a (non-

trivial) inverse problem to determine the elastic modulus distribution that is consistent with 

the measured strain field. This was pioneered by Kallel & Bertrand (1996), Raghavan 

& Yagle (1994) and Skovoroda et al. (1995), and strain and modulus images were 

quantitatively compared in Doyley et al. (2005). More recent approaches can be found in 

Doyley et al. (2000), Oberai et al. (2004) and Gokhale et al. (2004). In all these cases, 2D 

ultrasound elastography was used, and so only planar displacement data was available. As 

a result, some simplifying assumption, e.g. plane stress or plane strain, was required. Other 

authors (Steele et al. 2000, Sumi 2006) argue persuasively and demonstrate that such 2D 

approximations can lead to significant error when they are violated.

Here we describe the results of a study designed to evaluate the potential to reconstruct 

the 3D modulus distribution in tissue mimicking phantoms from ultrasound measured 

quasistatic compressions. The experimental protocol was designed to mimic the use of 

ultrasound elasticity imaging as an adjunct to mammographic breast screening. It utilizes 

a linear ultrasound array scanned mechanically in the elevation direction to collect a 3D 

volume of data. The sample is held between a pair of comparatively rigid compression 

plates, and the ultrasound is introduced through a window in one of the plates.

The phantoms used in our study exhibited a variety of inclusion sizes (~5 mm-13 mm) and 

contrasts (~1–3) and were set in a background with inhomogeneous (layered) properties. 

Other novel features of the study include attention to the role of boundary conditions in the 

reconstruction (Barbone & Bamber 2002) and a novel 3D displacement estimation method, 

which will be introduced in this paper but described in detail elsewhere.

The technique used here to reconstruct the elastic modulus from the measured displacement 

fields was adapted from Oberai et al. (2003) and Oberai et al. (2004). This is based on 

an optimization approach. That is, we seek the modulus distribution that, when used in 

a forward model to compute a predicted displacement field, gives the best match to the 

measured displacement fields. The optimization method chosen here utilizes the BFGS 

(Broyden Fletcher Goldfarb Shanno (Nocedal 1980)) method to minimize this difference in 

displacement fields. This quasi-Newton algorithm requires only the functional value and the 

first derivative (i.e. the gradient) of the functional be calculated explicitly at each iteration. 

The adjoint method is used to efficiently calculate the gradient (Oberai et al. 2003, Oberai et 

al. 2004).

Section 2 presents our methods for phantom construction, the design of the scanning 

apparatus, the 3D ultrasound imaging protocol and the techniques used to independently 

measure the phantom’s mechanical properties. Section 3.1 outlines the image registration 
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based algorithm used to measure the displacement vector fields from the 3D ultrasound 

images. This technique was developed as an alternative to standard cross-correlation based 

measurement techniques. Section 3.2 gives our formulation of the inverse problem and 

the assumptions necessary for modulus reconstruction. Section 4 presents the results from 

the displacement estimations and phantom reconstructions. Lastly, in Sections 5 and 6 we 

discuss the implications of our results and the future directions of this work. Appendix A 

outlines the simulation studies used to determine the appropriate parameter values necessary 

for the displacement estimation and reconstruction.

2. Experimental Methods

2.1. Phantom manufacture

The phantoms used in this study were a mixture of 300 bloom gelatin and silica made 

to mimic the acoustic and elastic properties of soft tissue. Approximately 2% by mass 

concentration of silica particles were suspended in gelatin as scatterers to reproduce a 

full speckle image. The relative phantom stiffness was modified by varying the gelatin 

concentration. Phantoms were cuboid in shape with a base of 60 mm by 60 mm and a 

height of 50 mm. The background material of the phantoms was made with an 8% by mass 

concentration gelatin solution. Close to the center of the phantom, cylindrical inclusions of 

varying size were made to mimic the elevated stiffness of tumors relative to healthy tissue 

with 10%, 12% or 16% by mass concentration gelatin solutions. The sizes of the inclusions 

were varied by changing the size of the mold used to pour the gelatin. Three cylindrical 

inclusion sizes were tested with volumes 1280 mm3 (12.8 mm in diameter and 10 mm in 

height), 390 mm3 (7.94 mm in diameter and 8 mm in height) and 87 mm3 (4.80 mm in 

diameter and 5 mm in height). A bottom layer (approximately 10 mm of additional height), 

with an elevated stiffness typically matching that of the inclusion, was also added to each 

phantom. Prior to each additional gelatin pour of a given phantom, the previous gelatin layer 

was flushed with warm water to aid adhesion. A picture of the phantom is shown in Figure 

2.1. In this picture, regions with elevated stiffness appear darker than the background which 

is at a lower stiffness. A quantity of each type of gelatin solution used in the phantom was 

poured into several (typically 4–5 samples total per gelatin pour) cylindrical cake molds (15 

mm diameter×10 mm height) for independent stiffness calibrations.

Three inclusion sizes and three modulus contrasts were investigated. They were selected 

to identify the spatial and contrast resolution of these techniques. The modulus contrasts 

lie at the lower limit of clinical interest in detecting breast cancer, and can be considered 

as a stringent test of the proposed methods. The smallest inclusion used is at the limit of 

the manufacturing capabilities and once again at the lower limit of current clinical interest. 

Seven inclusions total were tested. Only the high contrast inclusion was tested for the largest 

volume.

2.2. Stiffness calibration

The calibration of each individual gelatin pour was performed using a Q800 Dynamic 

Mechanical Analysis machine (TA instruments, New Castle, DE 19720). To determine the 

elastic modulus of each sample, an unconfined compression test was used to measure the 
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force/displacement relationship of each sample in the range of 1–10% strain. During each 

test, the samples were visually inspected for signs of slipping, which was minimized by 

maintaining a dry surface contact between the gel and the roughened platens of the device. 

These boundary conditions, however, produce a nonuniform stress field in the samples 

which, in turn, cause the measured force-displacement slope to deviate from the actual 

modulus measurement by a multiplicative constant. A numerical simulation using FlexPDE 

(PDE Solutions Inc., Spokane Valley, WA 99206) was performed, for the given size and 

geometry of these gel samples, to determine this constant and correct our measured values. 

Each sample was kept at refrigerator temperature (approx. 4°C) up to the point at which it 

was tested. During storage, all samples were kept in an air tight container to limit water loss. 

The samples for each phantom were tested within 24 hours of the corresponding phantom 

imaging experiment. The duration of the calibration measurements were approximately 1 

minute per sample.

2.3. Imaging setup

The experimental setup for the phantom experiments was developed using a two 

dimensional ultrasound scanner (Analogic AN2300) and is shown in Figure 2. The Analogic 

AN2300 (Analogic Corp., 8 Centennial Drive, Peabody, MA 01960) allows for full radio 

frequency (RF) image capture. The transducer used was a 9.5 MHz center frequency, 

linear array (Type 8805)(B&K, Mileparken 34, DK-2730 Herlev, Denmark), with a usable 

bandwidth (stated by the manufacturer) from 5–12 MHz.

The phantoms were held in place by two plates on the bottom and top (see Figure 2). 

The top plate has a section removed to serve as an acoustic window. When the top plate 

was brought into contact with the phantom, the window forms a small well which, when 

filled with water, allows non-contact acoustic coupling between the transducer and the 

phantom. The transducer was scanned elevationally in 0.14 mm steps across this window, 

using a Newport stepper motor (Newport Corp., 1791 Deere Avenue, Irvine, CA) with 

micrometer accuracy, to obtain a 3D image. After an initial image was obtained, a small 

compressive strain was applied (typically ~1–2%), and then a second post deformation 

image was obtained. The spatial location of the pixels in the axial direction (y) was found 

using the sampling frequency of the transducer (40 MHz) and an assumed sound speed of 

1535 m/s. The lateral x  and elevational z  locations were determined by the transducer 

element spacing and the stepper motor control, respectively. The scanned volume measured 

≈67.0 mm×30.3 mm×26.9 mm in the axial, lateral, and elevational directions, respectively. 

The duration of the imaging experiment was approximately 1/2 hour for each phantom, 

however, the process has not yet been optimized for time.

3. Analysis Methods

The analysis methods used to create the elastic shear modulus images are comprised of two 

optimization algorithms. The first algorithm is an image registration based technique which 

measures the 3D displacement vector field, from a pair of 3D pre- and post-deformation 

ultrasound images acquired using the protocol outlined in Section 2. The second algorithm 

is a constrained optimization technique which seeks to find a shear modulus distribution 
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which is most consistent with the observed displacement field. This algorithm requires the 

assumption of a linear elastic, isotropic, incompressible material model. These algorithms 

are briefly described in the following sections.

3.1. Displacement estimation

Fundamental to the process of elasticity imaging is the ability to measure physically accurate 

displacements from image sets of deforming tissues or phantoms. The primary assumption 

of this measurement technique is that the deformation required to map one image to another 

results directly from the underlying tissue motion alone. That is, suppose we are given 

the functions I1 x  and I2 x , which are spatial distributions of the scalar image intensities. 

Here, I1 x  represents an initial, predeformation image of some tissue and I2 x  represents the 

image of the same tissue after it has undergone some mechanical perturbation. Then it is 

assumed that the relation between the images can be approximated as:

I1 x ≈ I2 x + u x .

(1)

Here, the displacement field u x  is the underlying tissue motion. In effect, this displacement 

field acts as a nonlinear scaling of the position vector defining the intensities of the original 

image. In practice, we approximate u x  using finite element basis functions defined over a 

prescribed mesh.

The image registration algorithm used in this study is an iterative optimization technique 

which minimizes the image intensity difference of the pre- and post-deformation images 

with respect to the measured displacement. Using an optimization technique such as this 

allows for the implementation of regularization and other constraints to decrease estimate 

variance and avoid erroneous results. It also allows for a higher order interpolation of the 

underlying displacement functions. Using a linear interpolation of u x , for instance, reduces 

the effect of image decorrelation in the displacement estimates by accounting for all locally 

affine motions within each element. One disadvantage of the optimization algorithm in 

comparison with cross-correlation based techniques is its rather large computational cost.

The functional minimized in each measurement of the displacement field is:

π u x = 1
2 Ω

I1 x − I2 x + u x 2dΩ + R u x

(2)

In this functional, I1 and I2 are the pre- and post-deformation images, respectively, and Ω is 

the spatial domain of interest. The term R u  includes the regularization and constraint terms 

used in this implementation. This functional is minimized using a Gauss-Newton method 

which requires both the gradient and an approximation to the Hessian of this functional with 

respect to the function u.
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In this algorithm, the function u and its variants are discretized using finite element, trilinear 

interpolation function approximations. The integration calculations use a three dimensional 

midpoint rule and the images are interpolated at each integration point using cubic Lagrange 

polynomials. The integration calculations were parallelized to improve the speed of the 

iterations (OpenMP) and the equations were solved using a parallelized linear solver 

(PARDISO) (Intel Corp., 2200 Mission College Blvd., Santa Clara, CA 95052) (Schenk 

& Gartner 2004, Schenk & Gartner 2006).

To limit the effect of noise it is often assumed that the solution, in this case u x , is smooth 

(i.e. has a bounded H1 norm) and thus another term is added to the functional which 

penalizes noise in the measurement. The implementation of the above algorithm uses an H1

semi-norm regularization to penalize large gradients in u x :

R1 u = 1
2 Ω

α1 ∇u x
2

 dΩ .

(3)

Here, the scalar α1 determines the amount or strength of the regularization (smoothing) 

relative to the functional. The appropriate value of α1 will depend on the images used, the 

expected signal to noise ratio and the magnitude of the strain. Therefore this value is system 

and protocol specific and needs to be determined for each system independently.

One advantage of capturing a full 3 component 3D vector data set is that the a priori 
knowledge that breast tissue is an incompressible material may be used to further constrain 

the displacements measured from these image pairs. To implement this, another term is 

added to the functional of equation (2) which penalizes nonzero volume change over each 

finite element:

R2 u = 1
2 ∑

e = 1

Nelems
α2 ∫

Ωe
∇ ⋅ u x dΩ

2
.

(4)

The relative strength of the incompressibility term will be determined by the magnitude of 

the α2 parameter. This term, however, is not appropriately considered a regularization term. 

Rather, it is a constraint that is being enforced via a penalty. Ideally and naively, therefore, 

α2 could be taken to infinity. In practice however, α2 is determined as the highest value 

after which no improvement in the measured u x  is observed. The form of equation (4) 

was chosen to avoid mesh locking associated with pointwise penalties of volume change 

(Hughes 1999). Examples of calculated displacement fields will be shown in Section 4.1.

In this study, we follow a systematic procedure for the selection of the processing 

parameters, α1 and α2, as described in Appendix A.
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3.2. Inverse formulation: theory

The last step in the process of elasticity imaging is to use the measured displacement fields 

(i.e. all 3 vector components) as input to an inverse problem to determine the mechanical 

properties of the underlying material. A necessary assumption about the input to this inverse 

problem is that the tissue behaviour can be accurately predicted by a mathematical model. In 

this regard we use a linear elastic, (nearly) incompressible, single phase, isotropic model 

to predict the tissue behaviour. The constraint equations used in the inverse problem, 

combining the constitutive equations of the model and the conservation of linear momentum, 

are:

∇ ⋅ −pI + μ ∇u + ∇u T = 0 in  Ω

(5)

and

p = − λ ∇ ⋅ u  in Ω .

(6)

Here, p is (approximately) the hydrostatic pressure, λ x  and μ x  are the Lamé coefficients, 

and I is the second order identity tensor. In this work, λ x  is taken to be constant and 

large (i.e. λ ≫ μ). It is determined by specifying the Poisson’s ratio ν, and evaluating 

λ = 2ν / 1 − 2ν μref. The reference value of μref is unity, which is also the lower limit of μ x
for a given inversion. The boundary conditions are specified in the following form:

u x = q x   on   Γq

(7)

and

−pI + μ ∇u + ∇u T ⋅ n x = h x  on  Γℎ .

(8)

At each point on the boundary and in each spatial direction xi, either the traction ℎi x  or the 

displacement qi x  must be prescribed (i.e. Γ = Γℎ ∪ Γq and Γℎ ∩ Γq = ∅).

For our analysis, equations (5–8) are discretized and solved using (almost) standard trilinear 

finite elements. The Lamé parameters, μ x  and λ x  are interpolated as piece-wise constant, 

i.e. constant over each element. Nearly incompressible behaviour is addressed with selective 

reduced integration, which, on the regular meshes used here, is exactly equivalent to a mixed 

method with piece-wise constant pressure interpolation (Hughes 1999). The finite element 

mesh used to represent the displacement field in the inverse problem is identical to that used 

in image matching.
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The underlying idea of our inverse formulation is to find a modulus distribution which 

is most consistent with the observed displacement field. That is, we try to minimize the 

difference between the measured displacements um and the displacements predicted by the 

constraint equations up (Oberai et al. 2003, Oberai et al. 2004). The optimization functional 

is given by:

π μ = 1
2 Ω

T up x; μ x − T um x 2 dΩ + πR μ .

(9)

Here T is a second order tensor whose diagonal entries represent a weighted contribution 

of each of the displacement components to the functional and whose off diagonal entries 

are zero. This allows for the inversion to account for the difference in the accuracy of the 

displacement estimates in each direction. The term πR is a regularization term, discussed 

below. A BFGS optimization method was used to minimize this functional and the adjoint 

method is used to efficiently calculate the gradient (Oberai et al. 2003, Oberai et al. 2004).

The regularization used in our algorithm is based on a total variation diminishing (TVD) 

type of penalty term. We chose a TVD regularization because this type of regularization 

is well suited to data which exhibits discontinuous jumps in the underlying modulus 

distributions. That is, TVD regularization tends to penalize high oscillations in the solutions 

(i.e. noise) while allowing lower frequency jumps (Vogel 2002). The standard TVD 

regularization functional term of a scalar function μ x  is:

πR μ = αb
Ω

∇μ x dΩ .

(10)

In practice, the singularity in the absolute value function must be smoothed. The 

computational implementation of equation (10) chosen here is:

πR μ = αb
Ω

∇μ x ⋅ ∇μ x + β2 dΩ .

(11)

The constant β is user selected and “small” in an appropriate sense. The differential of this 

functional is:

δπR = αb
Ω

∇μ ⋅ ∇δμ
∇μ ⋅ ∇μ + β2 dΩ .

(12)

With piecewise constant interpolation as used here, equation (12) cannot be used directly; 

the gradients must be interpreted in a generalized sense. Carrying this out leads to the 

following, in terms of jumps in μ across element boundaries:
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δπB
′R = αb

2 ∑
i = 1

NSB SAi × μB − μi

μB − μi
2 + β2

.

(13)

Here, μB is the modulus value of the element of integration, μi is that of a bordering element, 

SAi is the area of the surface joining these two elements and NSB is a number between 3 and 

6 defining the number of surfaces which element B shares with neighboring elements.

As in the image registration code, the integration required to calculate the stiffness matrix 

and the right hand side vectors of the elasticity equations, as well as the gradient and 

function evaluations were parallelized to further improve the speed of each iteration 

(OpenMP). A parallelized linear solver (PARDISO) is also used to solve each forward 

problem.

A single iteration of this 3D reconstruction algorithm (2 matrix inversions) took ~200 

seconds (parallelized on 9 processors). A 2D reconstruction iteration, with a comparable 

axial/lateral mesh size, takes ~0.25 seconds (parallelized on 2 processors). The 3D algorithm 

typically took ~40 iterations to reach the convergence criteria defined above.

4. Results

4.1. Displacement estimates

For each reconstructed image the displacement measurement and subsequent modulus 

reconstruction was performed using a uniform mesh of finite elements of size 0.6 mm×1.0 

mm×0.6 mm in the x, y and z directions, respectively (40×60×40 elements). For the 

displacement estimation algorithm, the regularization and incompressibility parameters were 

set to α1 = 1 × 108 and α2 = 1 × 1010, respectively. These values were selected from a series 

of separate tests performed on synthetic data. These tests are described in Appendix A. 

An initial guess for u was created based on the overall strain applied during the image 

acquisition. The termination point of the displacement matching iterations was found in 

a two step process. First, several iterations and manual updates were performed on the 

displacement initialization guess to ensure the displacement estimate avoided any local 

minima. The algorithm was then allowed to iterate until u remained relatively constant 

with iterations, to ensure that it had fully converged. The accuracy of the registration was 

monitored within each element by computing the normalized L2 norm of the difference in 

the motion compensated image pairs inside each element. That is, for every element “e”, the 

metric:

se = Ωe
I1 − I2

2 dΩ

Ωe
I1

2 dΩ
Ωe

I2
2 dΩ

(14)
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was evaluated. In all cases, the mean value of se over the image was less than 0.2. A typical 

displacement estimate is shown in Figure 3. Displacement estimation typically took on the 

order of several hours to converge on the measurement for each image pair processed. 

For comparison purposes, the axial and lateral displacement components in a central x − y
slice are shown here along with example displacements measured with a simple 2D cross 

correlation method.

4.2. Modulus reconstructions

The measured displacements were then input to the inverse algorithm, using the same mesh 

size and location. The boundary conditions used to compute the predicted displacement 

field were such that the sides of the reconstructed volume (i.e. the x − y and y − z
boundary surfaces) were assumed to have zero normal traction (ℎn = 0 on Γxy and Γyz). 

The remaining boundary conditions were specified displacements (Dirichlet conditions). A 

Poisson’s ratio of 0.4995 and a TVD regularization parameter of αb = 1 × 10−4 were used 

in the reconstructions. The weighting matrix T was set such that the diagonal components 

Txx = 1, Tyy = 10 and Tzz = 1 and the off diagonal components were set to 0. The type of 

boundary conditions and the value of the parameters ν, αb and T were selected from a 

series of independent tests performed on synthetic data, as described in Appendix A. The 

initial guess of μ was homogeneous with value 1 and the iterations were terminated at first 

iteration n for which the value π μn − 5 − π μn /π μn − 5 < 0.01. The functional value, used 

to determine the stopping criterion, was calculated from the displacement matching term 

alone, without the regularization term. Figure 5 shows slices through the volume of a typical 

modulus reconstruction.

Table 1 shows the values of the recovered modulus contrasts of each inclusion type tested 

as well as the expected modulus contrast values for each inclusion calculated from the 

independent mechanical tests. In this table, Cref is the reference modulus contrast of the 

independently measured gelatin samples for the inclusion relative to the background, Crec is 

the recovered or reconstructed contrast reported for the inclusion relative to the background, 

Cstr is the strain contrast measured in the background relative to the inclusion and γsz is the 

ratio of the reconstructed inclusion volume to the expected volume of the inclusion when it 

was made. To evaluate the recovered contrast and size of the inclusion in the reconstructions, 

the half maximum of the inclusion was determined by inspection. The average modulus of 

the elements with modulus values above the half maximum was evaluated and designated as 

the recovered inclusion modulus value. The volume of the inclusion was found by counting 

the number of elements with modulus values greater than the half maximum and multiplying 

this number by the volume of each element. Using the axial strain field, created from the 

measured displacements, a value of the average strain in the inclusion and in a homogeneous 

portion of the background were also calculated. Table 2 shows the central x − y slice from 

the modulus reconstruction images of each of the seven reconstructions reported for the 

various inclusion sizes and contrasts.

For comparison, Table 4 shows the central x − y slice from the strain images of each of 

the seven reconstructions reported for the various inclusion sizes and contrasts. Table 3 
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demonstrates the effect of the choice of boundary conditions on the reconstructed modulus 

images. This was accomplished by repeating all the reconstructions reported in Table 2 with 

displacement (Dirichlet) boundary conditions on all surfaces. All other parameters of the 

reconstruction (regularization, convergence criterion etc.) were kept unchanged. This lead 

to the reconstructions shown in Table 3. We observe that these reconstructions are not as 

accurate as those reported with traction boundary conditions. For example, they completely 

fail to represent the inhomogeneity of the background medium.

We use several benchmarks by which we evaluate our reconstructions. The first is a 

qualitative comparison to the strain images, which may be regarded as a “gold standard” 

in quasistatic elastography. A second is a comparison of the reconstructed inclusion contrast 

to the calibration measurements of the separate samples. A third is a geometric evaluation of 

the size of the inclusion and the presence of the layered background. We discuss these now.

The current standard in elastography practice is strain imaging. In Figure 7 we compare one 

such strain image with the corresponding modulus image. We see that the latter has fewer 

artefacts. In particular, the strain image has a “ghost” layer at the top, and the shape of the 

inclusion is not well resolved. Comparing Tables 2 and 4 shows that in all cases, the stiff 

inclusions are more visible in the modulus reconstructions than in the strain images. The 

inclusion locations and sizes are similar in both images, though they appear slightly larger in 

the strain images. In several of the strain images the cross-section of the inclusion appears 

to be circular, whereas in most modulus images it is (correctly) rectangular. In all but the 

lowest contrast case, Table 1 shows that the reconstructed modulus contrast is closer to the 

reference values than the strain contrast for the inclusion. In these qualitative comparisons, 

the modulus reconstructions compare very favorably to the strain images.

Quantitatively, we may compare the reconstructed stiffness contrast to the calibration 

measurements of the separate samples, as reported in Table 1. This table shows that 

for the two higher concentrations, the reconstructed contrasts tend to be lower than the 

reference values. This apparent bias could be explicable by a number of reasons. For one, 

we use regularization in both our displacement estimation algorithm and in our modulus 

reconstruction methods. Regularization tends to bias reconstructed contrast downward; c.f. 

Figure 6(d), in which the line plot with simulated data shows a diminished inclusion contrast 

in the 3D reconstruction. For another, we compute the inclusion stiffness as the arithmetic 

mean of pixel values within half-maximum. This average is always lower, and typically 

significantly lower, than the peak value of the inclusion stiffness. Finally, the reference 

contrast values themselves may be in error as discussed below.

For the two lowest contrast inclusions the discrepancy between the reference contrast and 

the reconstructed contrast is likely due to error in the reference contrast. The independent 

mechanical tests suggest that the inclusions should be invisible, yet they are clearly seen 

in both strain and modulus images. Furthermore, a lack of contrast is at odds with the 

gelatin concentrations used in the background and the inclusion, approximately 8% and 

10%, respectively. As we discuss in detail below, the variability of gelatin with temperature, 

in conjunction with the variability in the mechanical testing itself, is likely to be responsible 

for the lack of measurable contrast in the mechanical tests at the lowest contrast. The fact 
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that the inclusions were resolved in the strain images and the reconstructed modulus images 

is highly suggestive that some contrast does exist between these gelatin concentrations.

The volume of the reconstructed inclusion relative to its actual volume shows significant 

relative variability, but no apparent bias. In nearly all cases it is within ±1/2 voxel side length 

in the linear dimensions of the sample. It seems to be most accurate for the medium sized 

inclusions and highest contrast. Certainly the volume of the reconstructed inclusion will 

depend on the somewhat arbitrary selection of the inclusion boundary which was chosen at 

the half maximum of the inclusion modulus value.

4.3. Three dimensional effects

Three-dimensional reconstructions represent an improvement over their two-dimensional 

counterparts not only because they reveal the 3D structure of the underlying material, 

but also because they incur no assumptions regarding the stress/strain-state. In 2D 

reconstructions a state of plane stress or plane strain must be assumed, even though the 

actual state may be very different from both these cases. This may lead to errors in 

reconstructions as we demonstrate in the following example.

Figure 6 shows a comparison between modulus images reconstructed from finite-element 

simulated 3D data. The generated data is designed to model a typical ultrasound tissue 

mimicking phantom (see Section 2.1) in size, geometry and modulus contrast (1 to 3 for 

background to inclusion and calibration layer). The boundary conditions applied to generate 

the data are made to approximate those of a typical experimental protocol and only that 

portion of the displacement field which falls directly below the surface at the acoustic 

window (i.e. the “imaged” volume) is considered for the inverse problem. In this example, 

white Gaussian noise is added to the resulting displacement field such the signal to noise 

ratios are approximately 20, 1800 and 20 for the lateral, axial and elevational displacements, 

respectively.

Figure 6(a) is the center slice of the reconstruction which utilizes all 3 components of 

the displacement field in the entire volume. Figure 6(b) and (c) are reconstructions done 

using the axial and lateral displacement components only of the central x − y slice of 

the simulated data and a plane strain and plane stress approximation, respectively. Mixed 

boundary conditions were used on the lateral sides for all three reconstructions as described 

above. Figure 6(d) is a center line cut though the inclusion of all three reconstructions and 

the original modulus distribution used to create the simulated displacements.

5. Discussion

5.1. Displacement estimation

This paper introduces a method to measure the displacement from sets of ultrasound images 

of breast tissue or breast tissue mimicking materials at two different deformation states. 

The novel features of this method include the use of finite element interpolation, the 

use of global information for each nodal estimation and the systematic incorporation of 

prior knowledge to stabilize the estimated displacements. This is in contrast to typical 

feature tracking algorithms common in elastography, utilizing rigid block matching methods 
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which tend to result in noisy displacement measurements. The finite element interpolation 

allows for distorted (strain compensated) elements and nonuniform meshes. The use of 

regularization improves the displacement estimates to some extent. Large values of the 

regularization parameter, however, can introduce unwanted artefacts in the displacement 

estimates, decreasing the accuracy of the algorithm. The incompressibility constraint also 

helps to decrease the noise in the solution, however, it is noted that this constraint may not 

be appropriate for all applications (i.e. tissue types). The size of the finite element mesh was 

chosen based on the upper limit of the matrix size that our hardware would allow. However, 

it is noted that when computational speed and size are minimal factors, this value should 

be chosen as the expected resolution of the displacement measurements calculated from the 

resolution and SNR of the ultrasound system (Walker & Trahey 1995, Weinstein & Weiss 

1983, Weinstein & Weiss 1984).

As alluded to earlier, one of the drawbacks of this algorithm is the presence of local minima. 

The prevalence of these minima is due to the highly oscillatory nature of the RF US images. 

To avoid these, the displacement accuracy metric (se, see equation (14)) was calculated for 

each element at each iteration. Experience has shown that metric values which are higher 

than 0.2 typically indicate regions which are stuck in local minima (a metric value of 

0.2 would correspond to a peak normalized cross correlation value of approximately 0.9). 

Although several methods may be employed to avoid local minima, we chose to identify 

these regions with the L2 norm measure and manually smooth these areas with surrounding 

areas which are not in local minima.

5.2. Modulus reconstruction

The inversion and reconstruction algorithm introduced in this paper provides a technique to 

infer underlying mechanical properties of tissue, given displacement measurements and an 

appropriate choice of model. This method utilizes a quasi-Newton method for optimization. 

The novel features of this algorithm include the use of total variation diminishing (TVD) 

regularization with piece-wise constant interpolation and the ability to reconstruct three 

dimensional structure.

The reference stiffness measurements exhibited a high degree of variability. This is thought 

to be due to a combination of limitations of the measurement protocol and inherent 

variability of gelatin properties. For example, despite efforts to limit slipping at the boundary 

during mechanical compression tests, it is possible that some visibly undetectable degree of 

slipping took place. If so, this presumably occurred to a different extent in each experiment. 

Furthermore, gelatin stiffness itself is known to have a high variability depending on the 

length of time between setting and testing, due to water loss, as well as the temperature 

at which it was tested (Hall et al. 1996). To reduce these effects, both the imaging 

phantoms and the calibration samples were tested within 24 hours of their construction. 

They were tested immediately following their removal from refrigeration and kept sealed 

during refrigeration to limit water loss. The difference in size between the imaging phantoms 

and the calibration samples may also have contributed to the error. For instance, the small 

size of the calibration samples could result in a higher temperature variation across the 

samples. In addition, the larger length of the imaging experiment and the relatively large size 
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of the phantoms could result, at least to some degree, to a larger temperature variation within 

the phantom volume, as well as some possible water loss within the phantom, during testing. 

The effect of the latter would be to stiffen the phantom non-uniformly, beginning with the 

exposed surfaces of the phantom (not the reconstructed surface). The temperature variation, 

resulting from both the length of the exam and the US image heating, would effectively 

soften the phantom non-uniformly. Although it is assumed in this work that these effects 

are minimal, they cannot be ignored. We believe that a combination of all these effects are 

responsible for the apparent inability to measure the contrast in the reference samples in 

the lowest contrast inclusions. Even considering all these possible sources of error, it was 

somewhat reassuring that the reconstructed modulus contrast was within about 35% of the 

reference values for all cases considered.

Choosing the value of the regularization constant remains a challenge. The “strength” of 

the regularization term in the functional is affected not only by the magnitude of the αb

parameter, but also the size and contrast of the underlying modulus distribution. Thus, 

regularization will tend to play a larger role in modulus distributions with higher contrasts 

and larger sizes. We also note that the presence of the surrounding artefacts is more obvious 

for lower inclusion contrasts than larger. It is possible that increasing the regularization in 

these cases, to try and further minimize the artefacts, may cause the low contrast inclusion to 

be lost. To a certain extent, an optimal choice of regularization constant can be selected 

using a priori knowledge of the target contrast of inclusions. Such results present an 

unrealistic impression of the effectiveness of inversion in practice, however, where such 

knowledge would be unavailable. In this work we tried to avoid such bias by selecting the 

regularization parameter through simulated experiments. We then used precisely the same 

regularization parameter for all subsequent inversions. In retrospect, we feel it likely that the 

reconstructions above are over-regularized, and therefore biased toward low contrasts. An 

opportunity exists in the field to develop an adaptive automated regularization method for 

each construction, to simultaneously control noise and preserve contrast.

Our study indicates that the algorithm used for modulus reconstruction is sensitive to the 

choice of boundary conditions. This dependence needs to be explored in future research. 

It also appears to indicate that traction boundary conditions lead to better reconstructions. 

This implies that devices that are able to measure surface traction in addition to making 

ultrasound measurements will be very useful in elasticity imaging. Another approach to 

mitigating the effect of boundary conditions might be to use more than one deformation field 

in evaluating the shear modulus. How much this would help is yet to be determined.

The bottom layer was remarkably difficult to resolve. This is due, in part, to the role of 

boundary conditions in computing the predicted displacement field and to the uniqueness 

issues tied closely to those boundary conditions. In this inverse problem, the use of Dirichlet 

(e.g. displacement) boundary conditions decreases the sensitivity of the inversion near these 

boundaries (see Table 3). That is, in areas where the boundaries are all Dirichlet, the 

predicted displacements are fixed and therefore independent of the estimate of μ. Thus in 

equation (9) the derivative of π with respect to μ in these regions is practically zero. A 

direct consequence of this is that in these regions the value of μ tends to remain “frozen” 

at its initial value and the modulus estimate does not improve. Since the bottom layer is 
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adjacent to a boundary, reconstructions with all displacement boundary conditions resulted 

in little to no recovery of this layer. On the other hand, using traction boundary conditions 

adds information to the reconstruction additional to the measured displacement field (see 

Table 2). It was found during simulations that with the sides of the reconstructed volume 

(i.e. the x − y and y − z boundary surfaces) assumed to have zero normal traction (ℎn = 0
on Γn

xy and Γn
yz) and the remaining boundary conditions Dirichlet conditions, the bottom 

layer and the field as a whole resulted in the most accurate modulus distributions. Although 

this choice of boundary conditions are inexact we expect, based on our phantom geometry 

and experimental setup, that they are a reasonable approximation. Indeed, the information 

they add evidently improves the reconstruction significantly. At the same time, however, 

the approximate nature of these boundary conditions did introduce some artefacts into the 

images, particularly at the edges where the calibration layer lies. This, we believe, led to the 

high variability observed in the accuracy of the reconstructed bottom layer (see the figures in 

Table 2).

It is clear from Figure 6 that the three dimensional modulus reconstruction results in a better 

representation of underlying modulus. In this case, the plane strain reconstruction is better 

than the plane stress, but neither is as good as the 3D reconstruction. In addition, it’s worth 

noting that while plane strain seems better in this example, other examples might be created 

where plane stress gives a more accurate reconstruction than does plane strain.

The adjoint method for gradient evaluation is crucial for the practical solution of this 

problem. The modulus reconstructions were performed on a 40×60×40 element mesh, which 

leads to 96×103 ≈ 105 optimization variables. Any scheme whose major computational cost 

scales poorly, even linearly, with the number of optimization variables would have been 

impractical in solving this problem. The adjoint method gives us the gradient with just two 

forward solves, independent of the number of optimization variables. This technique makes 

the solution of this problem feasible.

It has been well documented that the inverse problem considered here has a non-unique 

solution (Barbone & Gokhale 2004, Barbone & Bamber 2002, Richards 2007). That 

is, several distinct modulus distributions are all equally consistent with the measured 

displacement field. We note, however, that our reconstructions are based on more 

information than just the measured displacement field. In particular, information is added 

in three specific places: the assumed boundary conditions, the optimization formulation, and 

the regularization function.

The sides of the reconstructed volume (i.e. those surfaces parallel to the axial direction) 

are assumed to have zero normal traction. That is, we assume there is no confining 

pressure around the sides of the phantom. This is roughly consistent with the physical 

experiment. This also helps with the reconstruction as specifying traction boundary 

conditions substantially reduces the dimension of the solution space, and thereby alleviates 

the non-uniqueness of the problem (Barbone & Bamber 2002, Richards 2007).

The modulus is reconstructed relative to the background value, which we arbitrarily set at 

unity. We set this as the lower limit for the modulus distribution, and initialize our iterations 
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there. Thus, we bias the search to seek stiff inclusions in a compliant homogeneous 

background. Finally, the TVD regularization used here biases towards piece-wise constant 

modulus distributions. The results indicate that this seems to be a relatively weak effect 

in our reconstructions. These three sources of information inform our reconstructions. 

Significantly altering any one of them could significantly change the reconstruction, 

even with exactly the same input displacement data. Thus the reconstructions represent a 

synthesis of these different sources of information, above and beyond what is contained in 

the measured displacement field.

6. Conclusions

We have developed and implemented an algorithm for the accurate measurement of a three 

dimensional displacement field from ultrasound images of deforming tissue. The novel 

features of this algorithm include the use of finite element discretization, the inclusion 

of a priori knowledge of the material’s incompressibility and the use of regularization. 

We have also developed an efficient formulation to solve the three dimensional inverse 

elasticity problem using a full three dimensional displacement field measurement. The novel 

features of this approach include the use of a gradient based algorithm and the efficient 

computation of the gradient using the adjoint equations. By using these techniques we have 

successfully imaged and reconstructed phantom inclusions as small as 5.0 mm and with 

contrasts approaching unity. The development of an accurate, quantitative method by which 

to measure and image the mechanical properties of materials, such as is outlined in this 

paper, is a significant step forward in the field of elasticity imaging. It offers a noninvasive 

method to interrogate mechanical properties in vivo for the purposes of diagnosis and 

monitoring.

Future work will include further investigation into the uniqueness of the three dimensional 

inverse elasticity problem and the relationship between the imposed boundary conditions 

and the modulus reconstructions. In addition, an initial clinical investigation of three 

dimensional breast ultrasound elasticity imaging is currently underway.
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Appendix A.: Parameter Value Evaluation

In this section, we describe a series of experiments for each algorithm (displacement 

measurement and inversion), which are designed to determine the appropriate choice of 

the algorithms’ parameters. Once these parameters are determined they are used without any 

modifications in the actual reconstruction experiments. For each algorithm, artificial input 

is created from a known solution so that for the given input we have a reference or “true” 

value to compare to the algorithm output. For example, in the case of the displacement 

estimation algorithm, we acquired a single 3D US RF image using the phantoms and 
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experimental setup described in Section 2. Then a second, pre-deformation, image is created 

artificially by defining the spatial locations of the first image’s pixels x  and interpolating 

that image at x + utrue x  as is shown in equation (1). In these experiments, utrue x  is chosen 

to correspond to an unconfined compression test with slip boundaries of a homogeneous 

block of incompressible linear elastic material at a strain level of 4%. Thus the displacement 

field is linear in each direction and volume conserving. The second image was interpolated 

using MATLAB’s Interp3 function and cubic interpolation (The MathWorks, Inc., 3 Apple 

Hill Drive Natick, MA 01760). Then these images were input to the displacement estimation 

algorithm, with various values of the regularization parameter α1  and the incompressibility 

parameter α2 , which then resulted in a corresponding measured displacement field umeas .

The error in the resulting measurement was then quantified as the Euclidean norm of the 

difference in the measurement and reference displacement field erri = ∥ ui
meas − ui

true ∥) for 

each displacement vector component (i). Several values of α1 were tested within a range 

spanning the approximate expected value and for each value of α1 several values of α2, again 

spanning the relevant range, were also tested. The experiment was repeated for 5 sets of 

images, where the initial, experimentally created image, was taken of different phantoms 

or different regions within the same phantom to ensure that the resulting image sets were 

uncorrelated. The experiment was also repeated for various finite element mesh sizes to 

determine the accuracy of the measurement as a function of the resolution.

The values of the α parameters which consistently minimized the total displacement 

measurement error (∑i = 1
3 erri) were those used in the displacement estimation of all the 

subsequent phantom experiments in this paper. In these experiments there was no significant 

change in accuracy for the different mesh sizes and thus the mesh size used in this paper 

represented the upper limit that our computational resources would allow. It should be noted 

that previous experiments have shown that the electronic noise of the imaging system is not 

the dominant source of error affecting the accuracy of this algorithm and thus electronic 

noise was neglected in this parameter evaluation study (Richards 2007).

A similar set of experiments was performed for the reconstruction algorithm. Here a 

modulus distribution μtrue  is created to model a typical ultrasound tissue-mimicking 

phantom in size and geometry, including an inclusion and bottom layer. The size of the 

inclusion and the modulus contrast of the inclusion and bottom layer were chosen to be 

approximately equivalent to the large sized inclusion and the highest contrast of those tested 

in the actual phantom experiments. An artificial displacement field was then created, using 

this modulus distribution and a forward finite element analysis. This displacement field was 

created on a finite element mesh which was spatially refined by 1.25 times that of the 

subsequent reconstruction meshes to ensure that the forward problem was well resolved. 

The boundary conditions applied to this modulus distribution were selected to approximate 

those of a typical experimental protocol. Then only that portion of the displacement field, 

which would correspond to the imaged volume experimentally, was then considered for this 

parameter evaluation.

Richards et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2024 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The relevant parameters for the reconstruction algorithm are the Poisson’s ratio ν , the 

boundary conditions used in the reconstruction, the optimal weighting of the displacement 

estimates T  and the regularization parameter αb . To determine the choice of the Poisson’s 

ratio for the reconstructions, various displacement fields were created using several different 

values of the Poisson’s ratio of nearly incompressible materials ν > 0.4995  in the forward 

problem described above. These displacement fields were then input to the reconstruction 

algorithm to create a predicted modulus field μpred. For each choice of Poisson’s ratio 

in the forward problem, several reconstructions were performed assuming a similar set 

of Poisson’s ratios in the inversion algorithm. Again, the error in the measurement is 

quantified by the Euclidean norm of the predicted and reference values ∥ μpred − μtrue ∥ . 

The results of these simulations suggested that the accuracy of the modulus reconstruction 

has little dependence on the choice of Poisson’s ratio used in the reconstruction or the “true” 

material Poisson’s ratio when both were greater than 0.495 and less than 0.5. The boundary 

conditions for this study’s reconstructions were prescribed displacements. T was set to the 

second order identity tensor I  and the regularization parameter αb  was set to zero.

Contrary to Poisson’s ratio, the choice of boundary conditions can have a large impact on 

the reconstruction accuracy. For the purposes of this paper, reconstructions with two types 

of boundary conditions were investigated using the same process of forward modeling and 

subsequent reconstruction. The first type of boundary conditions investigated all prescribed 

displacement, or Dirichlet, boundary conditions. The second type of boundary conditions 

investigated allowed a portion of the boundary to be traction free in the direction of the 

surface normal. In the latter case, the sides of the reconstructed volume (i.e. those surfaces 

parallel to the axial direction) were assumed to have zero normal traction ℎn = 0  and the 

remaining boundary conditions were Dirichlet conditions. It was found that the “zero normal 

traction” yielded the highest accuracy for our modulus geometry and thus these boundary 

conditions were used in all of the gel phantom reconstructions presented here. However, 

for comparison purposes, reconstructions using all Dirichlet boundary conditions for all the 

phantoms tested are provided in Table 3. There was no noise introduced in this study and as 

such T was again set to the identity matrix I  and the regularization parameter αb  was set to 

zero.

The weighting matrix T was determined from estimates of error in the displacement 

components. In particular, the diagonal components Txx = 1, Tyy = 10 and Tzz = 1 and the off 

diagonal components were set to 0. These values were based on our estimate that the axial 

(y) displacements are a factor of 10 times more accurate than the lateral (x) and elevational 

(z) displacements.

To determine the appropriate choice of the reconstruction regularization parameter αb, 

a series of reconstructions were performed on artificial displacement fields, created as 

described above. White Gaussian noise was added to these displacement estimates, prior 

to reconstruction, with error magnitudes equal to those realized in practice (calculated 

in the displacement estimation study). A series of reconstructions are performed with 

various values of the regularization parameter producing a corresponding predicted 

modulus distribution. The accuracy was again monitored by calculating the Euclidian 
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norm ∥ μpred − μtrue ∥ and the value of the regularization parameter which minimized this 

difference was used for all the subsequent modulus reconstructions in this paper.

It is important to note that, although the parameter evaluations of this section were 

determined from studies of only one possible realization of the displacement field utrue

and one possible realization of the actual modulus distribution μtrue , the optimal values of 

the parameters found here were held constant for all the measurements and reconstructions 

done in the actual phantom experiments.
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Figure 1. 
Ultrasound Elasticity Gelatin Phantom
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Figure 2. 
Compression and Imaging Experimental Setup.
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Figure 3. 
Displacement estimates from ultrasound phantom images (mm). (a) Lateral displacement 

(x-direction), (b) axial displacement (y-direction), (c) elevational displacement (z-direction).
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Figure 4. 
Example x − y slice of axial displacements measured using the image registration technique 

(a) and using a cross correlation method (b). Corresponding x − y slice of lateral 

displacements measured using the image registration technique (c) and using a cross 

correlation method (d))
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Figure 5. 
(a) x − y slice of 3D modulus reconstruction for a small inclusion with a 12% by mass 

gelatin concentration through the center of the inclusion. (b) x − z slice of 3D modulus 

reconstruction for this same inclusion through the center of the inclusion. Note that the 

cylindrical shape of this ~5 mm inclusion is apparent.
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Figure 6. 
(a) Example x − y slice of modulus reconstruction using 3D reconstruction and all 3 

vector components. (b) 2D modulus reconstruction using the center slice of simulated 3D 

displacement data and a plane strain reconstruction. (c) 2D modulus reconstruction using 

the center slice of simulated 3D displacement data and a plane stress reconstruction. (d) 

Center axial line of all three modulus reconstructions in addition to the original modulus 

distribution used to create the displacements.
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Figure 7. 
(a) x − y slice of modulus reconstruction for a small inclusion with a 12% by mass gelatin 

concentration. (b) x − y slice of the axial strain ϵyy  for this same inclusion. (Images are 

extracted from Tables 2 and 4)
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Table 1.

Reconstructed modulus contrast accuracy reported for the inclusion sizes and gelatin concentrations.

Inclusion Size

Inc. Gel Conc. Large (1280 mm3) Medium (390 mm3) Small (87 mm3)

16% by mass

Cref = 3.24 ± 0.28 Cref = 3.24 ± 0.28 Cref = 2.56 ± 0.17
Crec = 2.23 ± 0.23 Crec = 2.09 ± 0.20 Crec = 2.04 ± 0.21.

Cstr = 1.57 ± 0.12 Cstr = 1.28 ± 0.14 Cstr = 1.26 ± 0.19
γsz = 1.18 γsz = 1.16 γsz = 1.10

12% by mass

Cref = 2.01 ± 0.22 Cref = 1.89 ± 0.11
NA Crec = 1.61 ± 0.12 Crec = 1.55 ± 0.10

Cstr = 1.31 ± 0.18 Cstr = 1.45 ± 0.11
γsz = 0.83 γsz = 1.21

10% by mass

Cref = 1.02 ± 0.23 Cref = 1.02 ± 0.23
NA Crec = 1.25 ± 0.06 Crec = 1.36 ± 0.07.

Cstr = 1.19 ± 0.12 Cstr = 1.28 ± 0.13
γsz = 0.97 γsz = 0.57
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Table 2.

Reconstructed modulus image slices (the central x  −  y slice from each phantom reconstruction) reported for 

their respective inclusion sizes and gelatin concentrations.
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Table 3.

Reconstructed modulus image slices (the central x  −  y slice from each phantom reconstruction), using all 

Dirichlet boundary conditions, reported for their respective inclusion sizes and gelatin concentrations.
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Table 4.

Axial strain image slices (the central x − y slice from each phantom reconstruction) reported for their 

respective inclusion sizes and gelatin concentrations.
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