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Abstract

Compression elastography allows the precise measurement of large deformations of soft tissue in 

vivo. From an image sequence showing tissue undergoing large deformation, an inverse problem 

for both the linear and nonlinear elastic moduli distributions can be solved. As part of a larger 
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clinical study to evaluate nonlinear elastic modulus maps (NEMs) in breast cancer, we evaluate the 

repeatability of linear and nonlinear modulus maps from repeat measurements. Within the cohort 

of subjects scanned to date, 20 had repeat scans. These repeated scans were processed to evaluate 

NEM repeatability. In vivo data were acquired by a custom-built, digitally controlled, uniaxial 

compression device with force feedback from the pressure-plate. RF-data were acquired using 

plane-wave imaging, at a frame-rate of 200 Hz, with a ramp-and-hold compressive force of 8N, 

applied at 8N/sec. A 2D block-matching algorithm was used to obtain sample-level displacement 

fields which were then tracked at subsample resolution using 2D cross correlation. Linear and 

nonlinear elasticity parameters in a modified Veronda-Westmann model of tissue elasticity were 

estimated using an iterative optimization method. For the repeated scans, B-mode images, strain 

images, and linear and nonlinear elastic modulus maps are measured and compared. Results 

indicate that when images are acquired in the same region of tissue and sufficiently high strain is 

used to recover nonlinearity parameters, then the reconstructed modulus maps are consistent.
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I. INTRODUCTION

Breast tumors are often palpable. The alteration in elastic properties is in part a result 

of inflammation that usually occurs during the early stages of disease development. The 

extracellular matrix (ECM) of breast stroma, which provides the solid consistency of 

parenchymal tissues, plays an active role in cancerous tumor growth [1], [2]. Breast tumors 

are often stiffer than normal tissue [3] and malignant breast lesions are often stiffer than 

benign lesions [4], [5].

Several elasticity imaging approaches have been used for noninvasive and objective 

evaluation of tissue elasticity. Magnetic resonance elastography (MRE) has been used to 

differentiate normal and pathological tissues in some diseases and to increase diagnostic 

specificity [6]–[10]. MRI and MRE technology are expensive, however, and thus less 

likely to see wide clinical applications for a wide range of the patient population. 

Conventional quasi-static elastography utilizes compression and ultrasound-based motion 

tracking to present maps of tissue strain [11]–[16]. Vibro-acoustography is an imaging 

method based on acoustic response of tissue to harmonic acoustic radiation force [17]–[20]. 

Both conventional ultrasound elastography and vibro-acoustography have shown promising 

results in differentiating breast masses in patients [21]–[29]. Shear Wave Elastography 

(SWE) uses ultrasound radiation force to generate shear waves and then measures shear 

wave speed, which depends on shear elastic modulus. Results of studies using SWE [5], 

[30]–[37] for breast have been very promising.

Overlap in linear elasticity between benign and malignant breast masses has been reported 

[38]–[43]. Such overlap limits the discriminating power of elasticity imaging regardless of 

the accuracy of the measurement method. It should be noted that the common goal of the 

above-mentioned methods is to measure elasticity in the linear regime. It is known that soft 
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tissues behave nonlinearly under high strains, however, and this opens up a new way of 

characterizing tissues. Results on a small sample of subjects in [44], [45] suggest that the 

nonlinearity parameter of elasticity can be significantly different for benign fibroadenoma 

(FA) and invasive ductal carcinoma (IDC). Hence evaluating elastic nonlinearity in a larger 

cohort of subjects is of interest.

The linear and non-linear elasticity parameters are physically independent. Accordingly, 

information from each of these independent parameters can improve our understanding 

about the lesion’s mechanical properties with respect to its pathology. The physiological 

reasons for this can be attributed to the changes in the morphology of the collagen fiber 

bundles in the ECM during tumorigenesis. It has been observed that as cancer develops 

an invasive phenotype, these fibers transform from a wavy state that is highly tortuous to 

a more straight and rod-like configuration [46]–[48]. In a tortuous configuration (benign 

lesions), the fibers require a significant amount of stretch before they become taut, which 

is subsequently associated with an increase in apparent stiffness. This shifts their nonlinear 

elastic behavior to strains that are greater than 20-30%. In a less tortuous configuration seen 

in cancerous tumors, however, significantly lower strain is required to make the fibers taut. 

This makes it possible to observe their nonlinear behavior within the levels of strain we have 

considered in the present study.

This paper presents Nonlinear Elasticity Mapping (NEM) as a generalized (i.e., linear and 

nonlinear) elasticity evaluation/imaging method to provide complementary and relevant 

information for identification and characterization of breast masses. Nonlinear tissue 

elasticity is measured by recording ultrasound scans of the tissue under different values 

of externally applied compression and processing the resulting data. To reliably recover 

nonlinear elastic parameters, deformations of sufficiently large strain are required so that 

the nonlinear tissue behavior can be observed. Tracking such large deformations in vivo 
can be challenging. It must be done in small increments, and even so, tissue motion out 

of the imaging plane is possible. For NEM imaging, therefore, an automated compression 

mechanism is used that can apply a quantified amount of force at a known speed to the 

breast. Further, imaging is performed at a high frame-rate to allow the tracking of large 

deformations in sufficiently small increments. Because of these potential issues, a necessary 

step in the development and evaluation of NEM is evaluation of repeatability, which is the 

focus of the present study. The goal of this study is essentially to answer the question: If the 

same region of tissue is imaged and measured twice, do we recover the same mechanical 

properties?

The remainder of this paper is organized as follows. Section II describes methods of 

data acquisition, subject enrollment, RF processing for displacement and strain estimation, 

inverse problem solution for linear and nonlinear modulus reconstructions, and metrics 

developed to measure the similarity of images. Section III contains the results showing 

correlation between nominally similar fields obtained in different acquisitions. As a control, 

comparisons of acquisitions between distinct subjects are also computed and presented. A 

discussion of the results and their interpretation is presented in Section IV, with conclusions 

drawn in Section V.

Gendin et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. METHODS

In order to evaluate the repeatability of reconstructing NEMs from in-vivo data, 20 subjects 

were scanned multiple times under similar conditions and the data for each acquisition 

were separately processed in order to obtain modulus estimates. The scans were performed 

using a custom built uniaxial compression device. RF-data were acquired using plane 

wave imaging of the tissue while a ramp-and-hold compressive force was applied. A 

2D block-matching algorithm was used to obtain sample-level displacement fields which 

were then tracked using 2D cross correlation. Linear and nonlinear elasticity parameters 

in a modified Veronda-Westmann model of tissue elasticity were then estimated using an 

iterative optimization method. Repeatability for both B-mode images and modulus estimates 

were evaluated and compared. Further details for each of these steps are given below.

A. Data acquisition

The in vivo raw ultrasound in-phase and quadrature (IQ) data were acquired using a 

programmable Verasonics Vantage scanner (Verasonics Inc., Kirkland, WA), equipped with a 

128 channel linear array L11-4 transducer (Verasonics Inc., Kirkland, WA). The automated 

compression device described in [49] was used to induce large strain in the breast lesions. 

The linear array transducer was held in the probe holder fixture and guided by the arm of 

the compression device, which allowed high frame-rate imaging of the breast lesion and 

the surrounding tissue during the compression. The physical footprint of the transducer 

surface was extended by a compression plate that was semi-suspended on four load cells, 

one mounted at each corner of the rectangular probe-holder. The compression arm consisted 

of an actuator that was driven by a servo motor. Upon activation, the compression arm 

equipped with the probe and the force sensors moved rapidly into the tissue (the ramp 

phase) to achieve a preset force level on the compression plate. The force data acquired 

from the load sensors were used as feedback for the ramp-and-hold compression. The 

ultrasound IQ data were acquired using plane wave imaging, at a center and sampling 

frequency of 6.25 MHz and 25 MHz, respectively. The imaging and the force sensor data 

from the compression arm were acquired synchronously for eight seconds. To minimize 

tissue decorrelation incurred during the large compression, a high imaging frame-rate of 200 

frames/second was used.

B. In vivo Study

The in vivo study was conducted on 20 female patients, with at least one suspicious 

breast lesion recommended for biopsy. The study was performed in accordance with the 

relevant guidelines and regulations approved by the Mayo Clinic institutional review board 

(IRB). Informed consent was obtained from all patients prior to their participation, and 

documented in writing on IRB approved forms. All patients were scanned by an experienced 

sonographer who identified the lesion using regular B-mode imaging. Subsequently, the 

transducer held by the automated compression device was positioned over the lesion. To 

minimize initial pre-compression, a roughly 5 mm diameter bead of liquid ultrasound 

coupling gel was applied to the active elements of probe, allowing acoustic contact to 

be created before significant mechanical coupling was created. An additional thin smear 

of ultrasound coupling gel lubricated the compression plate. Depending on the location 
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of the lesion, subjects were scanned in either the supine or posterior-oblique position, 

using using a transverse or longitudinal imaging plane. The choice was determined by that 

which minimized out-of-plane motion and achieved better acoustic contact under the flat 

compression plate between the probe and breast tissue. Finer refinement of the final plane 

selection was based on visual inspection of the B-mode sequence to assess and minimize 

out-of-plane motion. Once the final probe-orientation was determined, a scan was acquired 

under breath hold. For each acquisition, a ramp-and-hold force of 8N was applied at a rate of 

8N per second. Additional scans were acquired from the same lesion, without repositioning 

the patient, bed or the probe. Subjects were instructed to lie as still as possible during the 5-7 

minutes between repeat acquisitions.

C. Displacement estimation

Sequences of ultrasound RF echo signals corresponding to individual B-mode image frames 

were obtained as described above in multi-compression breast scans. Using these frames, 

we estimated the large displacements for material points in the first frame from the initial 

state to the last deformation step. We dynamically paired echo signal frames [50] to achieve 

a relatively constant frame-average strain of about either 0.3% or 0.5%. For each scan, 

the starting and ending frame was selected for motion tracking and a 2D companding 

method [51] was performed to track incremental displacements. Relatively large-scale 

deformation was tracked using a guided-search block matching motion tracking method 

based on regiongrowing [52], [53]. That large scale motion tracking is used to warp the 

post-deformation field into the coordinate system of the pre-deformation field followed by 

a phase tracking method to refine displacements [54], [55]. The incremental displacements 

were accumulated at all material points for all deformation steps to obtain the accumulated 

displacement from the first to the last step in the selected sequence.

D. Modulus reconstruction

The inverse elasticity problem is posed as a constrained optimization problem, as in [44], 

with slight modifications below. For a given measured axial displacement field uy
meas we wish 

to find the distribution of a material parameter

β (representing either log of the linear shear modulus, log μ/μ0  or the non-linearity 

parameter γ) that will minimize the following cost function:

C[β] = uy(β) − uy
meas

0
2 + αR[β] .

(1)

Here, uy β  is the predicted displacement field from a computational model of the 

deformation of breast tissue with material property β. The material parameter μ is the 

familiar linear elastic shear modulus. The material parameter γ determines the exponential 

increase of energy with strain, and is referred to here as the “nonlinear elastic modulus” 

(NEM), “nonlinearity parameter” (NLP), or simply the “nonlinearity”.

Gendin et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first term of the objective function (1) represents the mismatch between the measured 

and predicted displacement fields. Due to the high level of noise in the lateral displacements 

relative to the axial displacements, we match only the axial displacements. The mismatch 

between the measured and predicted displacements is calculated in the L2 norm represented 

here by the symbol ∥ ⋅ ∥0
2, which is defined as ∥ f ∥0

2 = ∫Ω0f
2d Ω. Here, Ω0 is the region of 

interest in the undeformed image.

The second term of the objective function is the regularization term. It ameliorates the 

ill-posed nature of the inverse problem and smooths the solution. Here α is the regularization 

parameter. It is a weight given to the regularization term. Its value is noise dependent and is 

chosen through the L-Curve method, described in chapter 7.4 of [56]. For the regularization 

term itself, a smoothed total variation diminishing regularization was used of this form:

R[β] = ∫
Ω0

∇β 2 + c2d Ω0 .

(2)

Here, c is a small constant that is used to make the regularization term smooth, so that it 

does not have the cusp that is inherent to the absolute value function.

The computational model for the breast tissue deformation is based on the following 

boundary conditions. The axial displacements on all surfaces of the boundary are prescribed 

to equal the measured axial displacements on the boundary. The lateral displacement is 

prescribed only at one point, to prevent rigid body motion. These boundary conditions 

correspond to the case of unconfined compression between two surfaces, where the 

displacement of the medium is prescribed in the axial direction but the tissue is free to slip 

and expand in the lateral direction. Thus, the equilibrium equation and boundary conditions 

are:

∇ ⋅ (FS) = 0 on Ω0

(3)

uy = uy
meas on ∂ Ω0

(4)

tx = 0 on ∂ Ω0 .

(5)

Here F is the deformation gradient and S is the second Piola-Kirchhoff stress tensor [57], 

that will be defined through a strain energy function. The traction vector on the boundary is 

given by t = FS ⋅ n̂ [57], where n̂ represents the unit outward normal vector.
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The constitutive equation for the tissue is obtained by assuming a modified Veronda-

Westmann strain energy function [58] for an incompressible material. This function is:

W = μ eγ I1 − 3 − 1
γ − I2 − 3

2 .

(6)

Here, I1 and I2 represent the first and second principal invariants of the right Cauchy-Green 

strain tensor C = FTF. The material parameter μ is the linear shear modulus. The material 

parameter γ determines the exponential increase of energy with strain, and will be referred 

to as the “nonlinearity parameter” or simply “nonlinearity”. The strain energy function (6) is 

equivalent to that presented in equation (14) of [58] if the nonlinearity parameter is called γ
rather then β and the two linear parameters have the values c1 = μ/γ and c2 = μ/2.

Since ultrasound imaging collects data in a single plane, an assumption must be made in 

order to reduce the problem from 3D to 2D. There are two classical 2D models of elastic 

behavior, plane stress and plane strain. In plane strain, the material is constrained in the out 

of plane direction preventing out of plane deformations, while in plane stress the material 

is unconstrained in the out of plane direction and an assumption is made that there are no 

loads in the out of plane direction. Since the breast tissue is neither loaded nor constrained 

in the out of plane direction, the plane stress approximation is used. Using the strain energy 

function defined in (6) under plane stress conditions gives the following expression for the 

stress,

S = μ 2eγ I1 + 1/I2 − 3 I − 1
I2

C−1 − 1
I2

I − I2 − I1
I2

C−1 .

(7)

Here, I is the 2 × 2 identity tensor.

The steps to solve the inverse elasticity problem are as follows:

1. For a given measured displacement field and an initial (constant) guess of 

the material property distribution, solve the forward problem (3-5) to obtain a 

predicted displacement field.

2. Solve the adjoint problem which is driven by the mismatch in predicted and 

measured displacements.

3. Evaluate the objective function and its gradient with respect to the material 

parameters using the solutions to the forward and adjoint problems.

4. Use the objective function value and gradient to update the material parameter 

distribution.

5. Repeat steps 1-4 until convergence.
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In order to reconstruct both the linear shear modulus and the nonlinearity parameter, 

the above process is performed twice, sequentially. First, the linear shear modulus is 

reconstructed at low deformation (around 2% mean axial strain), using an incompressible, 

plane stress, linear elasticity model. The reconstructed shear modulus is then used to 

reconstruct the nonlinearity at the maximum measured deformation in the image sequence 

using the nonlinear model described above. For a given regularization parameter, the inverse 

problem solution time is roughly 2 hours on a single core.

E. Repeatability evaluation

In order to compare elasticity maps of homologous regions to one another, repeat 

acquisitions are registered via the B-mode images. The alternative of registering elasticity 

images directly would be inappropriate, since it would ensure maximal similarity between 

material property images and thus potentially bias the outcome of the study. Therefore, 

the authors chose to, instead, register the corresponding B-mode images, and use this 

transformation directly on the material parameter images.

Therefore, the procedure followed is as follows:

1. Choose the B-mode image corresponding to zero strain for each acquisition.

2. Smooth the B-mode images using 7 × 7 pixel averaging filter.

3. Crop the outer 3 pixels to remove edge artifacts from the smoothing filter. 

After this, subtract the mean intensity to remove any overall intensity differences 

between the two acquisitions.

4. Register the smoothed B-mode images from two acquisitions to one another 

using rigid motion transformation (command “imregtform” in MatLab (TM).)

5. Apply the same transformation(s) to the corresponding material property maps.

6. Measure correlations between aligned B-mode images and material property 

maps as defined in equation (8) below.

Steps (1-4) for registering the B-mode images are illustrated in Figure 1 on subject 2.

The mean correlation between two fields, F1 and F2 is computed as:

Correlation F1, F2 = 1
2

Ω1F1F 2dA

Ω1
F1

2dA Ω1
F 2

2dA
+ Ω2F 1F2dA

Ω2
F 1

2dA Ω2
F2

2dA
.

(8)

Here, F1 represents the first field in its own region of imaging, F 2 represents the second field 

mapped to the domain of the first field, F 1 represents the first field mapped to the domain of 

the second field, F2 represents the second field in its own domain, Ω1 represents the domain 

of the first field, while Ω2 represents the domain of the second field.
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For correlating B-mode images, F  is the smoothed B-mode image intensity used to find the 

registration mapping. When correlating strain, F  is the strain field in the sequence whose 

frame-average is closest to 2%; this is the strain field used to recover linear elastic modulus. 

For correlating shear moduli, F = ln μ/μ0 − Cμ, where Cμ is chosen so that F  has zero mean.1 

When correlating nonlinearity, F = γ. All fields are computed and stored as floating point 

values.

III. RESULTS

Numerical values of the correlation coefficients for all results considered are shown in Table 

I. These are shown on a scatter plot in Figure 2.

Figure 2 shows the correlation between B-mode images for different acquisitions versus 

the correlation between strain and modulus fields. The correlation between smoothed B-

mode images can be interpreted as a measure of whether the two acquisitions represent 

the same region of tissue. Correlations between strain fields are presented as triangles; 

correlations between shear modulus fields are presented with squares, and correlations 

between nonlinearitier are presented with circles. Correlations between nonlinearities 

obtained from repeat acquisitions where the average final strain was less than 14% are 

also marked with a cross in order to remind the reader that values of nonlinearity obtained at 

low strain are less trustworthy.

We might expect that the correlations between repeated acquisitions of B-mode images 

and repeated acquisitions of the elasticity images would be correlated. A t-test for the 

null-hypothesis that they are not correlated yields p-values of 0.0005, 0.001, 0.12, for 

strain images, shear modulus images, and nonlinearity parameter images, respectively. 

When excluding nonlinearity maps reconstructed from strain fields with frame-average 

strain less than 14%, however, the last p-value decreases from 0.12 to 0.009. In there 

cases, therefore, we rejrct the null-hypothesis, and conclude that the correlations between 

repeated acquisitions of B-mode images is statistically significantly correlated with repeated 

acquisitions of the elasticity images, provided the elastic nonlinearity parameter maps 

are recovered from strain fields of sufficiently high magnitude. We found no significant 

difference between these results for benign vs. malignant cases.

Correlations between reconstructed shear modulus and nonlinearity from repeated 

acquisitions tended to be relatively high, overall, and so the authors considered whether this 

might be an accident of the processing steps used2. Therefore, Figure 2 contains 2 sets of 

points: those representing acquisitions in the same ROI and subject (presented in blue), and 

those comparing acquisitions in two different subjects (shown in orange). The expectation 

was that comparisons of different subjects would show low correlations, while comparisons 

1Recall that μ is recovered only up to a multiplicative constant. That is, in the forward model (3-5), a guess of shear 
modulus μ = μ1 x, y  and a guess of shear modulus C times that, μ = Cμ1 x, y , gives identical predicted displacement. Since 

ln Cμ1 x, y = ln μ1 + ln C , subtracting a constant from the log is equivalent to multiplying the original shear modulus by eC. 
Furthermore, μ x, y  should be recognized to be a Jeffrey’s parameter [59], which is appropriately measured through its logarithm.
2For example, a sufficiently high regularization will yield a homogeneous reconstructed field regardless of the data, and thus be highly 
“repeatable.”
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of the same ROI in the same subject would show higher correlations. This trend is evident 

in the figure. If the high correlation between reconstructed fields from repeated acquisitions 

were indeed an accident, then both the orange and the blue markers would be concentrated 

near the top. That is not the case.

There are dozens of images whose comparisons are summarized in Figure 2. To aid the 

interpretation of that figure, we now present several examples representative of different 

locations on the scatter plot in Figure 2.

Figure 3 shows an example with high agreement between acquisitions. It shows excellent 

agreement between B-mode images, which suggests that the same ROIs were well targeted 

in both acquisitions. The correlations between the strain, shear modulus, and elastic 

nonlinearity were correspondingly high. We note that the final strains used to recover 

the elastic nonlinearity parameters were higher than 14%, and therefore we also see high 

agreement between the elastic nonlinearity fields. Data points from this comparison would 

appear as blue points in the top right of the chart in Figure 2.

By comparison, Figures 4 and 5 show examples of high repeatability in ROIs, but low 

repeatability in the nonlinearity images. As with the previous example, the high B-mode 

image correlation suggests that the same ROIs were well targeted in both acquisitions. The 

correlations between the strain, shear modulus, are correspondingly very high (i.e. all > 0.8, 

most > 0.9), while the correlation between nonlinearity images is below 0.6. In these image 

sequences, the maximum measured frame-average strain was less than 14%. Therefore, there 

was insufficient strain to observe nonlinear tissue behavior, from which to infer the elastic 

nonlinearity parameter. These and similar points in the chart, Figure 2, are marked with an 

X.

Among the blue markers in Figure 2, Subject 15 provided three sets near the top left of that 

grouping. These comparisons show relatively poor correlation between the B-mode images, 

but moderately good correlation in the elasticity images. One example is shown in Figure 6. 

In none of the acquisitions with subject 15 was the final strain above our threshold of 14%.

The images corresponding to the greatest outlier in the chart are shown in Figure 7. These 

data suffered from two shortcomings in the repeat acquisitions. First, the ROIs were not 

strongly similar between the two acquisitions, as suggested by a B-mode image correlation 

coefficient of only 0.70. This is a relatively low correlation for B-mode images; in some 

cases, the correlation between B-mode images from different subjects was higher than this 

value. Second, the final strain was relatively low, preventing accurate reconstruction of the 

nonlinearity. Nevertheless, certain similar features in the images are discernible.

IV. DISCUSSION

The goal of this study is to answer the question: If the same region of tissue is imaged and 

measured twice, do we recover the same mechanical properties? By registering the B-mode 

images in our data sets, we sought to suppress variability in ROI targeting, so as to focus on 

the variability inherent in the in vivo mechanical property measurement itself.
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There are several observations to be made about Figure 2. The first is that all repeat 

acquisitions (all the blue markers) are clustered in the upper right corner of the plot, showing 

a relatively high degree of correlation. It was for this reason that we asked the question 

whether any pair of images of two breast masses would show similarly high degrees of 

correlation. This question motivated computing comparisons of images of different masses, 

shown in orange. The general separation of these groups shows that the high correlation 

between repeat acquisitions is not coincidental.

The second pattern that may be noticed in Table I and in Figure 2 is that the 

correlation between modulus estimates from repeat acquisitions is consistently greater than 

the correlation between strain fields from repeat acquisitions in every subject, without 

exception. Hence the linear elastic modulus is a more repeatable characterization of tissue 

behavior. This may be due to the fact that the modulus contains extra information from 

the physical model that leads to greater repeatability, or it may be due to the fact that the 

modulus reconstruction is regularized and is thus smoother and less variable.

A third observation is that the correlations between nonlinearity distributions varied greatly. 

In many cases, correlations between nonlinearity were lower than those of strain and shear 

modulus, as might be expected as it is a noisier measurement. In some cases, however, 

nonlinearity correlation was higher. In those, the nonlinearity images showed little contrast 

and structure, and so high correlations were accidental. Finally, we note some cases where 

the nonlinearity correlation was very low (i.e. ≤ 0.6) despite the B-mode image correlation 

being quite high (≥ 0.9). All of these extreme outliers came from cases where the final 

measured strain was low (< 14%), and therefore are marked with an ×. In those cases, the 

tissue was not deformed enough to exhibit nonlinear behavior, and hence the nonlinearity 

parameter was not recovered accurately.

Finally, we note that Figure 2 shows that the correlation between modulus fields has a 

positive relationship with correlations between the respective B-mode images, with a few 

outliers. That is, greater similarity between the initial B-mode images leads to greater 

similarity between the moduli, and lower correlation between B-mode images implies lower 

correlation between the elastic fields. An illustration of this can be seen in Figure 3. Here the 

initial B-mode images are nearly identical and the reconstructed modulus distributions are 

also nearly identical. By contrast, Figure 7 shows an example in which the initial B-mode 

images are noticeably different, and consequently, the modulus reconstructions are also 

noticeably different. The differences in B-mode image suggest that the two acquisitions 

represent two slightly different regions of tissue. Consequently, the elasticity maps show 

properties of slightly different regions of tissue and are therefore themselves slightly 

different from each other. Finally, we note that there are a few cases in which B-mode 

images of distinct masses show relatively high correlations; we ascribe this to coincidence. 

The fact that the correlation between elastic fields is low in these cases demonstrates that 

the elastic fields show information not contained in the B-mode images. It is possible that 

a different image similarity metric would be able to identify the general similarities present 

between B-mode images of breast masses.
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The present study on repeatability of NEM imaging provides a necessary step toward 

evaluating NEM on a larger cohort of subjects. Because imaging large deformations in 
vivo is much more challenging than doing so in phantoms, it was necessary to do such a 

repeatability study with human subjects. Finally, the results here provide some assurance 

that if the same region of tissue is imaged twice, the same material parameter maps will 

result. The NEM mapping capability used here is currently implemented at only one site, 

and therefore inter-site variability was not considered. Furthermore, interobserver variability 

was not evaluated.

The study here has a number of limitations. First, our focus is on the repeatability inherent 

in linear and nonlinear elasticity mapping. Thus efforts were made to diminish all other 

contributions to variability. For example, we neglect inter-observer variability, inter-site 

variability, and by registering our B-mode images, we diminish variability due to ROI 

targeting. Second, image correlation fails to acknowledge similarity between images that 

share similar features and thus be similar enough for clinical practice. Figure 7 shows an 

example where certain similar features are discernible, but the correlations between the 

corresponding images is low. Image correlation was chosen here because it is applicable 

independent of the features being compared, and since clinically relevant features of 

nonlinear elasticity images have yet to be identified.

V. CONCLUSIONS

In this study, repeatability of modulus image reconstructions was evaluated through a 

correlation metric. Correlation was found to be an adequate measure of repeatability as 

the correlation between reconstructions obtained from repeat acquisitions was consistently 

higher than the correlation between reconstructions from distinct subjects.

Overall with few exceptions, when the same region of tissue was imaged (defined as 

having a B-mode image correlation of greater than 0.9), the shear modulus reconstructions 

had a correlation of greater than 0.9. This shows the repeatability of the shear modulus 

reconstructions. The repeatability of the nonlinearity reconstructions was lower, but still 

typically above 0.8, provided a final strain > 14% is available in the data and used in the 

reconstruction. Correlation between B-mode image similarity and elasticity image similarity 

was statistically significant under these conditions.

We conclude that linear elastic shear modulus images may be repeatably recovered, and 

nonlinearity may be repeatably measured provided a final strain greater than 14% is used 

in the acquisition and reconstruction. Results of this study pave the way for the nonlinear 

elastography mapping as a modality for breast cancer applications.
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Fig. 1: 
The process of registering B-mode images for acquisitions 1 and 2 of subject 2. a) The 

initial B-mode images for acquisitions 1 and 2 respectively. b) The initial B-mode images 

smoothed to avoid registering speckle noise and cropped to avoid edge artifacts from the 

smoothing. c) The smoothed B-mode image for acquisition 1 is reproduced from line (b); 

the smoothed B-mode image for acquisition 2 is shifted to be in the domain of acquisition 1. 

d) The smoothed B-mode image for acquisition 2 is reproduced from line (b); the smoothed 

B-mode image for acquisition 1 is shifted to be in the domain of acquisition 2.
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Fig. 2: 
Comparison of correlations between initial B-mode images, strain fields, shear modulus 

maps, and elastic nonlinearity maps, for both repeat acquisitions (blue markers), and those 

between distinct subjects (orange markers).
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Fig. 3: 
B-mode images, strain images, linear elastic shear modulus images, and elastic nonlinearity 

parameter images for subject 12. (ROI: 24 × 28mm) This panel shows excellent agreement 

between B-mode images (correlation 0.966), which suggests that the same ROIs were 

well targeted in both acquisitions. The correlations between the strain images (0.853) 

and between the shear modulus images (0.933) were correspondingly high. Furthermore 

sufficiently high strain (≥ 14%) was available to reliably reconstruct the elastic nonlinearity, 

which also shows excellent agreement (correlation 0.988). All color bars are dimensionless; 
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strain and nonlinearity parameters are shown in absolute terms; linear shear modulus is 

normalized to unit geometric mean.
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Fig. 4: 
B-mode images and reconstructions for repeat acquisitions of subject 10, (ROI: 22 × 

36mm) showing strong agreement between B-mode echo data acquisitions (correlation 

0.934), between linear strain fields (0.935), and between linear elastic shear modulus 

reconstructions (0.976). A low level of maximum frame-average strain, however, gave 

nonlinearity parameters that were quite different (correlation 0.359).
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Fig. 5: 
B-mode images and reconstructions for repeat acquisitions from subject 13 (ROI: 21 × 

31mm) This panel shows excellent agreement between B-mode images (correlation 0.967), 

which suggests that the same ROIs were well targeted in both acquisitions. The correlations 

between the strain images (0.828) and shear modulus images (0.956) are correspondingly 

high. The correlation between elastic nonlinearity reconstructions, however, was relatively 

low (0.528), mostly likely due to an insufficiently high final strain to recover nonlinearity 

well.
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Fig. 6: 
B-mode images and reconstructions for repeat acquisitions of subject 15 (ROI: 23 × 24mm) 

showing relatively poor agreement between the acquisitions (B-mode image correlation 

0.665). The correlations for the strain (0.735), linear shear modulus (0.848), and nonlinearity 

parameter (0.785) images show moderately good agreement, despite a low level of 

maximum frame-average strain.
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Fig. 7: 
B-mode images, strain images, linear elastic shear modulus images, and elastic nonlinearity 

parameter images for repeat acquisitions of subject 18 showing exceptionally poor 

agreement between the acquisitions. In this example, the original ROI was poorly targeted 

in the repeat acquisition, and so all four image types show large differences. Correlations 

between repeat acquisitions are 0.704, 0.259, 0.415, −0.155, between repeated acquisition 
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of B-mode images, strain images, shear modulus images, and elastic nonlinearity parameter 

images. We note in particular that the nonlinearity maps are negatively correlated.
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TABLE I:

Table of correlation values for subjects with repeat acquisitions sorted by subject ID. Some subjects, e.g. 13, 

were scanned more than twice, permitting more than one comparison. For example, subject 13 was scanned 

three times, permitting us to compare acquisitions 1 and 2, 2 and 3 , and 1 and 3, thus giving three 

comparisons. We obtained 6 comparisons from 4 scans of subject 15 . μ is the linear elastic shear modulus; γ is 

the nonlinear elastic parameter; B/M indicates benign or malignant on pathology; Y /N indicates whether 

frame-average strain used to recover γ was ≥ 14%. Example images are shown for those entries listed in bold 

font.

ID B-Mode Correl Sirain Correl μ Correl γ Correl B/M Final Strain ≥ 14%?

1 0.922 0.830 0.952 0.963 B Y

2 0.820 0.709 0.808 0.910 B Y

3 0.894 0.852 0.932 0.878 M Y

4 0.709 0.685 0.791 0.821 M Y

4 0.751 0.708 0.847 0.776 M Y

4 0.924 0.812 0.903 0.945 M Y

5 0.910 0.797 0.873 0.880 B Y

6 0.927 0.801 0.950 0.918 B N

7 0.951 0.877 0.927 0.702 B N

8 0.865 0.666 0.761 0.464 M Y

9 0.932 0.826 0.915 0.739 B N

10 0.934 0.935 0.976 0.359 M N

11 0.947 0.627 0.702 0.644 M N

12 0.966 0.853 0.933 0.988 B Y

13 0.0967 0.828 0.956 0.528 B N

13 00.852 0.590 0.772 0.200 B N

13 0.851 0.569 0.818 0.313 B N

14 0.920 0.678 0.792 0.605 M N

14 0.900 0.641 0.763 0.651 M N

14 0.881 0.565 0.741 0.827 M N

15 0.918 0.794 0.926 0.926 M N

15 0.873 0.797 0.925 0.897 M N

15 0.587 0.718 0.856 0.826 M N

15 0.866 0.791 0.889 0.833 M N

15 0.665 0.735 0.848 0.785 M N

15 0.762 0.775 0.888 0.840 M N

16 0.680 0.532 0.658 0.304 B Y

17 0.753 0.435 0.488 0.670 B N

18 0.704 0.259 0.415 −0.155 B N

19 0.915 0.740 0.827 0.844 B Y

20 0.875 0.716 0.793 0.947 B Y

20 0.796 0.672 0.782 0.852 B Y

20 0.789 0.636 0.725 0.910 B Y
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ID B-Mode Correl Sirain Correl μ Correl γ Correl B/M Final Strain ≥ 14%?

20 0.785 0.616 0.768 0.786 B Y

20 0.814 0.619 0.765 0.842 B Y

20 0.900 0.741 0.847 0.914 B Y

Avg 0.847 0.706 0.820 0.706

Std 0.095 0.B3 0.121 0.133
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