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Abstract

It has been estimated that nearly 80% of anticancer drug-treated patients receive potentially 

nephrotoxic drugs, while the kidneys play a central role in the excretion of anticancer drugs. 

Nephrotoxicity has long been a serious complication that hampers the effectiveness of cancer 

treatment and continues to influence both mortality and length of hospitalization among 

cancer patients exposed to either conventional cytotoxic agents or targeted therapies. Kidney 

injury arising from anticancer drugs tends to be associated with preexisting comorbidities, 

advanced cancer stage, and the use of concomitant non-chemotherapeutic nephrotoxic drugs. 

Despite the prevalence and impact of kidney injury on therapeutic outcomes, the field is 

sorely lacking in an understanding of the mechanisms driving cancer drug-induced renal 

pathophysiology, resulting in quite limited and largely ineffective management of anticancer 

drug-induced nephrotoxicity. Consequently, there is a clear imperative for understanding the basis 

for nephrotoxic manifestations of anticancer agents for the successful management of kidney 

injury by these drugs. This article provides an overview of current preclinical research on the 

nephrotoxicity of cancer treatments and highlights prospective approaches to mitigate cancer 

therapy-related renal toxicity.
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Introduction

The kidneys represent one of the major sites for the elimination of anticancer drugs. 

Approximately 80 percent of cancer patients are administered anticancer drugs that 

potentially have nephrotoxic effects (Launay-Vacher et al., 2007). The nephrotoxicity of 

anticancer drugs remains a serious complication of cancer therapy, leading to delayed 

treatment, the lengthening of hospital stays, as well as increased mortality rates for cancer 

patients (A. Kitchlu et al., 2019; Lameire, Flombaum, Moreau, & Ronco, 2005). Therefore, 

anticancer drug-induced renal toxicity is increasingly regarded as a principal factor that 

limits the efficacy of cancer treatments.
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Nephrotoxicity is defined as the loss of the kidneys’ ability to filtrate, detoxify and/or 

excrete harmful metabolites due to anticancer drugs-induced injuries to renal structure 

and/or function. Drug-induced renal toxicity can affect different cell types in the 

kidneys including glomerular, tubular, interstitial or vascular cells. Both conventional 

chemotherapy and targeted agents can cause a diversity of renal complications such as 

proteinuria, electrolyte imbalance, glomerulopathy, hypertension, interstitial nephritis, and 

tubulointerstitial damage. Consequently, in many cases, anticancer drugs require dose 

modification or discontinuation in the setting of renal impairment (Naughton, 2008).

It is also of critical importance to identify risk factors and associated pathogenic 

mechanisms for nonchemotherapeutic nephrotoxic therapies that could potentially contribute 

to the deterioration of renal function in cancer patients. In addition to radiation 

therapy-induced kidney injury (Klaus, Niyazi, & Lange-Sperandio, 2021), concomitant 

use of analgesics, bisphosphonates, or other chronic disease mediations are common 

factors leading to renal dysfunction, which need to be taken into consideration (Abhijat 

Kitchlu et al., 2018; Lameire et al., 2005). Moreover, cancer patients with underlying 

compromised renal function are prone to develop acute kidney injury (AKI) and 

subsequent long-term chronic kidney disease (CKD) during anticancer therapy (A. Kitchlu 

et al., 2019). Unfortunately, the biochemical, physiological and molecular mechanisms 

underlying anticancer drug-induced renal toxicities remain poorly understood. As 

nephrological management for most anticancer drugs largely depend on dosage adjustment, 

discontinuation of treatment and/or symptom management (Chiruvella, Annamaraju, & 

Guddati, 2020), a comprehensive understanding of nephrotoxic mechanisms of anticancer 

drugs is necessary to more effectively mitigate nephrotoxicity in cancer patients. This 

chapter presents an overview of fundamental risk factors associated with nephrotoxicity in 

cancer patients, findings during the last decade related to some novel molecular pathways 

putatively involved in the nephrotoxicity as well as efforts to minimize cancer therapeutics-

induced nephrotoxicity.

2. Risk factors for renal toxicities in cancer therapy

2.1 General risk factors for nephrotoxicity of anticancer drugs and treatment

A variety of risk factors can exacerbate the course of renal dysfunction and are likely to 

enhance the nephrotoxicity of cancer therapeutic agents. Renal toxicities can be initiated by 

the antitumor drugs themselves, elevated doses or prolonged treatment, formation of toxic 

crystals within intratubular lumens or concomitant use of other nephrotoxic drugs (including 

aminoglycosides, nonsteroidal anti-inflammatory drugs, radiographic ionic contrast media 

or other anticancer drugs). In addition, gene variants in hepatic and renal cytochrome 

P450 (CYP) enzymes or renal transporters that result in decreased metabolism or reduced 

drug excretion can increase intracellular anticancer drug concentrations, thereby elevating 

nephrotoxic risk (Miteva-Marcheva, Ivanov, Dimitrov, & Stoyanova, 2020). Fluid deficits 

are also one of the most common factors that potentiate nephrotoxic effects due to vomiting 

or diarrhea caused by antineoplastic drugs (Hassan Izzedine & Mark A. Perazella, 2017; 

Mark A. Perazella, 2009; Perazella, 2012; Perazella & Moeckel, 2010). A spectrum of risk 

factors for renal toxicity in cancer therapeutics are listed in Table 1.
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2.2 Patient-specific factors

Several patient-specific risk factors contribute to increased risk of anticancer agent-induced 

nephrotoxicity, including underlying disease, advanced age and (female) gender. Those 

factors can be associated with decreased estimated glomerular filtration rates (eGFR), 

reduced body water or lower serum albumin levels, resulting in increases in drug 

concentration. However, there is still no consensus as to sex difference in acute kidney 

injury (AKI) (Schiffl, 2020). Additionally, preexisting AKI and chronic kidney disease 

(CKD) may raise the risk for nephrotoxicity. For instance, AKI resulting from intravascular 

volume depletion results in increased drug exposure to renal cells. Nephrotic syndrome 

with hypoalbuminemia can lead to decreased drug binding and increased active unbound 

drug concentrations (Perazella, 2018). Patients with advanced hepatic failure are especially 

at high risk for drug-induced nephrotoxicity, given that advanced hepatic failure exhibits 

hypoalbuminemia, intravascular volume depletion, and underlying AKI or CKD (Yeung, 

Yong, & Wong, 2004). In addition to these factors, comorbidities in cancer patients such 

as multiple myeloma, lymphoma, leukemia, renal cancer, diabetes, sepsis and acid-base 

disturbances can also enhance the risk for nephrotoxicity (H. Izzedine & M. A. Perazella, 

2017).

2.3 Kidney-specific factors

The kidney and its segments are vulnerable to drugs-induced nephrotoxicity owing to the 

high renal blood flow rate (25% of cardiac output). The nephrotoxic potential of drugs 

is highly related to the renal microenvironment. High concentration of drugs or drug 

metabolites can present in the glomerular ultrafiltrate. Furthermore, the renal cortex is 

likely to be exposed to high concentrations of toxic metabolites as this portion of the 

kidney receives approximately 80% of total renal blood flow; consequently, many anticancer 

drugs can accumulate in proximal tubular cells through both apical uptake and basolateral 

transport (Drozdzik, Drozdzik, & Oswald, 2021; Enomoto & Endou, 2005; Hucke & 

Ciarimboli, 2016). In addition to the proximal tubules, epithelial membranes of distal 

and collecting tubules express several carriers and transporters that facilitate bidirectional 

movement of substrate molecules. In contrast to the cortex region, the loop of Henle 

and medullary collecting duct cells in the renal medulla require high metabolic rates for 

energy-consuming active transport of many solutes; these excess cellular workloads generate 

hypoxic environments, thereby increasing susceptibility to the nephrotoxicity of anticancer 

drug therapies (Hassan Izzedine & Mark A. Perazella, 2017; Perazella, 2010).

Renal biotransformation of drugs also plays a critical role in drug-related nephrotoxicity. 

Renal biotransformation involves several enzyme systems, where the generation of oxidative 

stress and the formation of injurious reactive oxygen species are likely to damage the 

kidney. For instance, Glutathione S-transferases (GSTs) are well-known to catalyze the 

conjugation of glutathione (GSH) to xenobiotics electrophilic compounds, a central step in 

drug detoxication and biotransformation (Townsend & Tew, 2003). On the other hand, this 

mechanism could also produce strong mutagens or carcinogens due to GST polymorphisms.

GST-α is primarily expressed in the convoluted proximal tubule with some existing 

in the thin loops of Henle (Bauchet, Masson, Guffroy, & Slaoui, 2011). GST-π is 
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mainly localized in podocytes, parietal cells of the Bowman’s capsule, distal convoluted 

tubules and collecting ducts, with significantly lower levels in proximal tubules (Harrison, 

Kharbanda, Cunningham, McLellan, & Hayes, 1989). Glutathione (GSH) has been found 

to protect against cisplatin-induced renal and systemic toxicity without affecting its 

antitumor activity (Y.-Y. Xu, Jiang, Liu, Qu, & Wang, 2012; Zunino et al., 1989); 

however, biotransformation of trichloroethylene (TCE) conjugated GSH can result in 

nephrotoxic metabolites such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC) through γ-

glutamyltransferase and subsequent β-elimination reaction as well as the metabolite 

trichloroethylene-cysteine S-conjugate sulfoxide (DCVCS , a highly reactive Michael 

acceptor) via flavin-containing monooxygenase 3. N-acetylcysteine (NAC, or acetylcysteine) 

is a widely available nutritional supplement and a medication that can rescue the GSH 

depletion. NAC has been extensively studied for its antioxidant effects against both cancers 

and kidney injuries (Kwon, 2021; Mlejnek, Dolezel, Kriegova, & Pastvova, 2021; D. 

Y. Zhang et al., 2021). NAC has been shown to prevent radiocontrast, cisplatin- and 

radiation-induced nephrotoxicity in preclinical studies (Güntürk et al., 2019; S. Huang et 

al., 2019; Mercantepe et al., 2019; Richter & Crannage, 2015). Moreover, a relatively recent 

study demonstrated the development of tumor-selective GSH-dependent Michael acceptor 

prodrugs of 6-Mercaptopurine (6-MP) and 6-thioguanine (6-TG) which can have antitumor 

effects with reduced toxicity in mice (X. Y. Zhang & Elfarra, 2018).

P450 isoenzymes and UDP-glucuronosyltransferase (UGT) also play significant roles in 

drug biotransformation and detoxification in the kidneys. Of note, some of these enzymes 

are particularly expressed in the kidneys and specific renal segments (Bauchet et al., 2011; 

Knights, Rowland, & Miners, 2013). Consequently, alternations in transporter activity such 

as loss of function mutations and/or competition for carrier proteins/enzymes can hinder 

parent drug/metabolite excretion and induce nephrotoxicity. Alternation in the activity of 

these enzymes can be attributed to various factors, such as age, ethnicity, disease states and 

genetic polymorphisms.

2.3.1 Genetic polymorphisms, sex and other kidney-related factors in renal 
enzymes—The activity of metabolizing enzymes in the renal tubules can differ between 

individuals and sexes (Bozina, Bradamante, & Lovrić, 2009). Genetic polymorphisms may 

affect enzyme expression. Multiple single nucleotide polymorphisms (SNPs) for the organic 

cation transporter (OCT) genes (SLC22A1, SLC22A2 and SLC22A3) are found to alter 

their transport functions, where a gain-in-function mutation results in drug accumulation 

in renal proximal tubule cells (K. M. Huang et al., 2020; Yee et al., 2018; Zazuli et al., 

2020). However, Fujita et al showed that a polymorphism in renal ATP-binding cassette 

transporters (ABC transporters) or renal solute carrier (SLC) transporter did not directly 

affect cisplatin-induced nephrotoxicity in patients with esophageal cancer (Fujita K, 2016). 

A study of AKI outcome based on serum creatinine (SCr) showed associations between 

genetic variants of ERCC1, ERCC2, SLC22A2 and cisplatin-induced nephrotoxicity in 

adult testicular cancer, suggesting that genetic variations are involved in the inter-individual 

susceptibility to cisplatin-induced nephrotoxicity (Trendowski et al., 2019).

Interestingly, the expression levels of transporters in renal proximal tubules also differ across 

species and sexes. A recent study showed that the sex differences in protein abundance 
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of 12 transporters were only significant in rodents and dogs but not in humans (Basit, 

Radi, Vaidya, Karasu, & Prasad, 2019), indicating that cross-species and sex-dependent 

protein abundance data should be taken into consideration when evaluating interspecies 

scaling in drug clearance and assessing kidney toxicity for new therapeutic candidates under 

development.

2.4 Drug-specific factors

Nephrotoxicity can be augmented and prolonged with repeated drug dosing. Hartmann 

et al showed that patients who received 2 cycles of a single 50-mg/m2 dose of cisplatin 

had a 24% decrease in GFR after the second cycle (Hartmann, Kollmannsberger, Kanz, 

& Bokemeyer, 1999). Patients with higher doses and prolonged durations of treatment 

with aminoglycosides or amphotericin showed increase nephrotoxicity (M. A. Perazella, 

2009). In addition, the cumulative dose, rate of administration, and increased frequency 

of anticancer drug administration are associated with an increased risk for nephrotoxicity 

(Caglar et al., 2002; Kobayashi et al., 2016).

Combinations of nephrotoxic drugs with anticancer drugs also contribute to enhanced 

nephrotoxicity. Many drugs, including angiotensin-converting enzyme (ACE) inhibitors, 

angiotensin receptor blockers (ARBs), immunosuppressants such as cyclosporins, tacrolimus 

and nonsteroidal anti-inflammatory drugs (NSAIDs), can influence intraglomerular 

hemodynamics and decrease glomerular filtration rates (Ghane Shahrbaf & Assadi, 2015; 

Patel JB, 2021; Perazella, 2005). Furthermore, drugs such as aminoglycosides, amphotericin 

B, adefovir, foscarnet and cisplatin can potentiate tubular cell toxicity via the formation of 

free radicals, mitochondrial dysfunction, and transport systems damage (Perazella, 2018). 

Importantly, the use of drugs that cause drug-related acute interstitial nephritis (AIN) should 

not be ignored; these include the antituberculosis drug, rifampin, antibiotics, proton pump 

inhibitors (PPI), NSAIDs and many types of anticancer drugs (Martínez-Valenzuela et 

al., 2021; Mérida & Praga, 2019; Moledina & Perazella, 2016; Nagata, Ohji, & Iwata, 

2019; Perazella & Markowitz, 2010). In addition, chronic interstitial nephritis can arise 

from medications, including analgesics, lithium, anticancer drugs, and calcineurin inhibitors 

(Patel JB, 2021). Of note, despite the high frequency of NSAIDs-induced AIN, the 

occurrence of nephrotic syndrome does not appear to be similarly increased (González 

et al., 2008). This suggests that patients exposed to NSAIDs-related AIN rarely reach the 

nephrotic range; instead, they are prone to present increased proteinuria rather than other 

types of drug-induced AIN (Markowitz & Perazella, 2005). Therefore, monitoring of renal 

injury and function is crucial for patients receiving combinations of anticancer drugs and 

other nephrotoxic drugs.

Drugs or metabolites that are insoluble in the urine may cause acute crystalline nephropathy 

upon precipitation in distal tubular lumens and collecting ducts. This process can occur with 

or without an interstitial reaction and can result from the reduction of urinary flow rates, 

change of urine pH/drug pKa, excessive doses and rapid drug infusion rates (Markowitz & 

Perazella, 2005; Perazella, 2018). Agents such as the antiviral, acyclovir, and the antibiotic, 

ampicillin, have demonstrated common etiologies of insoluble crystal formation within renal 

tissue (Chávez-Iñiguez et al., 2018; Garnier et al., 2020; Yarlagadda & Perazella, 2008).
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Certain drugs that interfere with renal transporters may also enhance the nephrotoxicity 

of anticancer agents. For instance, cimetidine, trimethoprim, pyrimethamine and salicylates 

block tubular secretion of creatinine with or without affecting their glomerular filtration 

(Andreev, Koopman, & Arisz, 1999). In addition, a variety of drugs can act as substrates 

competing for a renal transporter and further increase drug deposition in kidneys (Drozdzik 

et al., 2021; S. Zhou, Zeng, & Shu, 2021). Moreover, Hong et al. demonstrated that repeated 

contrast-enhanced computed tomography (CECT) within 72 h can predispose cancer 

patients to contrast-induced nephropathy (CIN) (Hong et al., 2016). Therefore, concomitant 

use of radiocontrast and NSAIDs should be avoided with nephrotoxic anticancer drugs 

(Ozkok & Ozkok, 2017; Mark A. Perazella, 2009). The involvement of novel anticancer 

drugs in AIN and other kidney injuries has been discussed in previous review articles 

(Hassan Izzedine & Mark A. Perazella, 2017; Martínez-Valenzuela et al., 2021). Renal 

manifestations associated with commonly used anticancer drugs and recent novel cancer 

therapies are listed in table 2.

3. Nephrotoxicity of chemotherapeutic agents and management

As basic information describing anticancer drug-induced nephrotoxicity has been 

extensively reviewed and summarized elsewhere in the literature, this review will focus 

on the most recent findings related to the kidney damage and promising management for 

the nephrotoxicity of anticancer drugs. A summary of current and potential strategies for the 

management of cancer therapeutics-induced nephrotoxicity is provided in Table 3.

3.1 Platinum agents

Cisplatin has been used as an effective platinum-containing chemotherapeutic drug for 

several decades in a wide range of cancers (Brown, Kumar, & Tchounwou, 2019). 

Cisplatin elicits its antitumor effects through binding to DNA, generation of DNA cross 

links and damage, a blockade to cell division and, in many cases, the promotion of 

apoptosis (Tchounwou, Dasari, Noubissi, Ray, & Kumar, 2021). Nephrotoxicity has been 

recognized as the most critical side effect that limits the clinical use of cisplatin (Sandhya 

Manohar & Leung, 2018). Current measures to reduce cisplatin-induced nephrotoxicity are 

limited to hydration and magnesium preloading (McKibbin et al., 2016; Workeneh, Uppal, 

Jhaveri, & Rondon-Berrios, 2021; Yoshida et al., 2014). Unfortunately, the effectiveness 

of these approaches is modest, at best. The pathways that contribute to cisplatin-induced 

kidney damage are complex and include apoptosis, necrosis, necroptosis, oxidative stress, 

endoplasmic reticulum (ER) stress, mitochondrial dysfunction, autophagy, inflammatory 

responses, and cell cycle dysregulation (Duan, Cai, Li, & Chen, 2020; Sharp & Siskind, 

2017; Y. Xu et al., 2015; J. Zhang, Ye, Tew, & Townsend, 2021). In the course of 

the last decade, numerous studies have explored potential therapeutic strategies involving 

inhibition of drug uptake transporters such as organic cation transporter 2 (OCT2) and 

copper transporter 1 (CTR1), and reducing the inflammation response (McSweeney et al., 

2021).

Nonetheless, clinical applications by targeting the above mechanistic pathways in cisplatin-

induced kidney toxicity are challenging as many of these molecular pathways are at the 
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same time crucially involved in the cytotoxic activity of cisplatin against tumor cells; 

consequently, alterations in their functions could possibly interfere with cisplatin-induced 

anti-tumor effects (Volarevic et al., 2019). Notable efforts have also been made in the 

potential application of over-the counter (OTC) drugs and prescription drugs against 

cisplatin-induced nephrotoxicity. The most recent findings on the potential applications of 

clinically used drugs in cisplatin-induced nephrotoxicity are discussed below.

3.1.1 Prospective use of diabetes drugs—A retrospective study revealed that the 

dipeptidyl peptidase-4 (DPP-4) inhibitors reduced cisplatin-induced AKI in cancer patients 

with diabetes mellitus by suppressing inflammation and promoting tubular regeneration. 

(Takamasa Iwakura et al., 2020; T. Iwakura et al., 2019). Another DPP-4 inhibitor, 

gemigliptin, was shown to protect against cisplatin-induced nephrotoxicity through the 

inhibition of apoptosis and inflammatory responses by increasing heme oxygenase-1 (HO-1) 

and NAD(P)H:quinone oxidoreductase 1 (NQO1) expression (Choi, Leem, & Lee, 2017). 

The outcome of a clinical trial evaluating the effect of gemigliptin on cisplatin-induced 

nephrotoxicity is not yet known (ClinicalTrials.gov Identifier: NCT02250872). Cisplatin-

induced nephrotoxicity was also found to be prevented by the thiazolidinedione-type 

diabetes drugs, pioglitazone, via inhibition of the p53-mediated mitochondrial apoptotic 

pathway via SIRT1 activation (J. Zhang et al., 2020). These findings suggest the potential 

benefits of these drugs in cancer patient with diabetes, and possibly, non-diabetic cancer 

patients. However, more clinical data are needed for their use as a renoprotective strategy 

against cisplatin-induced nephrotoxicity.

3.1.2 Prospective use of antihypertensive agents—Several types of 

antihypertensive agents appear to represent potential strategies for mitigation of cisplatin 

nephrotoxicity. One study demonstrated protective effects of enalaprilat, an angiotensin-

converting enzyme inhibitor (ACEi), for cisplatin-induced renal toxicity in mice not only 

by reducing the formation of angiotensin II, but also by reversing cisplatin-induced 

upregulation of the kinin B1 receptor and decreased aminopeptidase P activity, thereby 

preventing tubular cell apoptosis and inflammation. (Estrela et al., 2020). In contrast, a 

recent single-center observational study revealed that patients exposed to target or above 

target dosage of ACEi or angiotensin II receptor blockers (ARBs) had a higher risk of AKI 

in emergency medical admissions (Feidakis et al., 2021). Hence, dosage adjustment of ACEi 

for cisplatin-treated patients should not be overlooked for future potential application in 

cisplatin-induced nephrotoxicity.

Amlodipine, a calcium channel blocker (CCB), was shown to inhibit the gamma-

glutamyl transpeptidase (GGT) enzyme, which metabolizes platinum-glutathione (Pt-GSH)-

conjugates to a reactive toxic thiol that causes tubular cell death. Amlodipine can also 

interfere with the GGT-associated inflammatory pathway (Azouz, Abdel-Nassir Abdel-

Razek, & Abo-Youssef, 2020). Although the β-adrenoceptor blockers carvedilol and high-

dose propranolol exhibited renoprotection against cisplatin renal dysfunction, they failed to 

improve cisplatin-induced electrolyte imbalance (Esmaeeli, Keshavarz, Dehdar, Assadi, & 

Seyedabadi, 2020). As a result, we should carefully interpret the effects of β-adrenoceptor 
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blockers on electrolyte levels in cisplatin-treated patients. Overall, these findings indicate 

potential uses of these antihypertensive agents in cisplatin-induced nephrotoxicity.

3.1.3 Prospective use of other clinically available drugs—Some other types 

of clinically available drugs are also found to mitigate cisplatin nephrotoxicity. A 

thrombin inhibitor, dabigatran (Pradaxa), may offer beneficial effects against cisplatin-

mediated nephrotoxicity through inhibiting the thrombin-associated apoptotic and oxidative 

effects (Ewees et al., 2021). In addition, proton pump inhibitors (PPIs), omeprazole 

and pantoprazole, were demonstrated to provide protection against cisplatin-induced 

kidney injury in both in vivo animal studies and randomized controlled clinical trial 

(ClinicalTrials.gov Identifier: NCT04217512) (Gao et al., 2020; Ghonaim, El-Haggar, & 

Gohar, 2021; Ismail, El-Awady, & Hassan, 2020). The underlying mechanism for the 

renoprotection of PPIs could be by suppressing the release and production of inflammatory 

cytokines stimulated by cisplatin. On the other hand, data from the US FDA adverse event 

reporting system showed a high correlation between PPIs use and the AKI and CKD 

events. Hence, monitoring of renal function and dosage modification of PPIs would be 

necessary in patients receiving cisplatin treatment. Finally, aprepitant is an antiemetic drug 

provided for cisplatin-treated patients. Interestingly, a novel role for aprepitant was revealed 

as an effective option for cisplatin-induced nephrotoxicity through anti-oxidative and anti-

inflammatory effects (Un et al., 2020).

3.1.4 Prospective targets and other compounds—Several novel mechanisms 

underlying protective effects against cisplatin-induced renal injury were discovered recently. 

Pregnane X receptor (PXR), a master transcription factor of xenobiotic detoxification, was 

shown to play a protective role in cisplatin-AKI mediated by activating the PI3K/AKT 

pathway (Luan et al., 2021). The hydrogen sulfide metabolite, sodium thiosulfate (STS), 

was identified as a promising candidate molecule that could protect against renal toxicity 

following hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin; this protection 

was possibly mediated by the binding of STS to free platinum (Laplace et al., 2020; 

M. Y. Zhang, Dugbartey, Juriasingani, & Sener, 2021). In addition, supplementation 

with the probiotics Lactobacillus reuteri and Clostridium butyricum was demonstrated 

to alleviate cisplatin nephrotoxicity by restoring gut microbiome dysbiosis, thus further 

reducing uremic toxin production in rats (Hsiao et al., 2021). Other compounds, such as the 

epoxyeicosatrienoic acid analog (EET-F01) by kidney-targeted delivery, and Pevonedistat, 

a NEDD8-activating enzyme inhibitor, were recently found to downregulate the expression 

of inflammatory mediators to relieve cisplatin-induced nephrotoxicity (El-Far & El-Mesery, 

2021; Imig et al., 2021).Tempol is a nitroxide that has an antioxidant property and is shown 

to reverse cisplatin AKI in mice through decreasing kidney injury markers and restoration of 

aquaporins (AQP2) (Afjal et al., 2020). Currently, Tempol is undergoing clinical trial in head 

and neck cancer patients with cisplatin and radiation treatment (ClinicalTrials.gov Identifier: 

NCT03480971).

Overall, the exploration of new targets and mechanism of mitigation by clinically available 

medications should provide a pathway for the discovery of novel and readily translatable 

treatments for kidney protection in cancer therapy. Also, targeting the prospective 
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signaling pathways, such as those discussed above, the transcription factor of xenobiotic 

detoxification, microbiome, supplementation of sodium thiosulfate and kidney-targeted drug 

delivery, are promising strategies to attenuate kidney injury caused by cisplatin.

3.2 Alkylating agents

Ifosfamide and cyclophosphamide are two of the most widely used alkylating 

chemotherapeutic drugs that are also currently undergoing clinical trials in combination 

treatment with different novel cancer therapies (Fox et al., 2021; S. Zhou et al., 2021; 

Zsiros et al., 2021). This class of drugs is quite frequently associated with kidney 

dysfunction (Bhat, Kalthur, Padmashali, & Monappa, 2018; Ensergueix et al., 2020). Either 

the prodrug forms, their metabolites or intermediates may mediate nephrotoxic effects to 

renal tubular cells (Dobrek, Nalik-Iwaniak, Fic, & Arent, 2020). A retrospective study 

revealed that in patients who received ifosfamide treatment, kidney biopsies showed tubular 

necrosis, vacuolation and nuclear atypias in renal epithelial cells, as well as interstitial 

inflammation and renal fibrosis (Ensergueix et al., 2020). Management of ifosfamide-

induced nephrotoxicity has generally been limited to supportive care. However, a growing 

body of reports have identified several new targets mediating alkylating agents-induced 

kidney injury through e.g. increased oxidative stress, mitochondrial dysfunction, apoptosis 

or activation of the arginine vasopressin V2 receptor that leads to anticancer drug-induced 

nephrogenic syndrome of inappropriate antidiuresis (NSIAD) (S. Kim, Jo, & Kim, 2021).

A recent study found that the antioxidant, Carnosine, alleviated ifosfamide-induced 

oxidative stress as well as mitochondrial impairment, and consequently attenuated renal 

injury and electrolyte imbalance (Ommati et al., 2020). Similarly, Annona species 

ethanolic extracts reduced the renal toxicity of ifosfamide by suppressing oxidative 

stress, inflammation and apoptosis in a rat kidney model (Abd-Elrazek, Shapana, Shukry, 

& Galilah, 2021). Mesna is the clinically approved drug to prevent ifosfamide- and 

cyclophosphamide-induced hemorrhagic cystitis; however, its preventive action towards 

tubular toxicity of ifosfamide and cyclophosphamide remains undetermined (Reddy V, 

2021). In the rat model of cyclophosphamide- and ifosfamide-induced cystitis, the 

antioxidant, acetylcysteine, which acts as a donor of -SH groups similar to the action 

of mesna, was reported to produce both uro- and nephron-protective effect against 

cyclophosphamide and ifosfamide treatment (Dobrek et al., 2020). Alogliptin, a selective 

inhibitor of the enzyme dipeptidyl peptidase-4 (DPP-4), is an FDA-approved drug for 

type 2 diabetes. Interestingly, Alogliptin was recently shown to produce beneficial effects 

in cyclophosphamide-induced nephrotoxicity as indicated by inhibiting the MAP3K/JNK/

SMAD3 signaling cascade, which can initiate oxidative stress and production of 

inflammatory and fibrotic mediators (Salama, Nasr, Abdelhakeem, Roshdy, & ElGamal, 

2020). The dual beneficial effects of Alogliptin could be a novel therapeutic approach for 

cancer patients with diabetes.

A pentadecapeptide derived from Cyclina sinensis was shown to mitigate 

cyclophosphamide-induced kidney injury by activating the antioxidative enzymes 

superoxide dismutase, glutathione peroxidase and catalase (Jiang et al., 2020). A more 

recent study reported that cyclophosphamide-induced inflammation and oxidative stress 
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could be ameliorated by pretreatment with gallic acid, a nature phenolic compound, in mice 

(Baharmi et al., 2021). Cyclophosphamide is known to be one of the major causes of the 

syndrome of inappropriate antidiuretic hormone secretion (SIADH) in cancer patients (M. 

I. Khan, Waguespack, & Ahmed, 2019; Abhijat Kitchlu & Rosner, 2019). Tolvaptan, a 

selective vasopressin V2 receptor antagonist, is used for the treatment of hyponatremia in 

patients with heart failure or SIADH in cancer patients. The protective effect of tolvaptan 

against cyclophosphamide-induced nephrotoxicity was recently demonstrated through the 

attenuation of apoptosis markers in rat models (El-Shabrawy et al., 2020). While this 

growing body of evidence does identify new potential strategies for mitigation of alkylating 

agents-induce nephrotoxicity, it should be noted that those findings need to be confirmed in 

clinical trials.

3.3 Antitumor antibiotics

Patients receiving antitumor antibiotics such as mitomycin C, actinomycin and doxorubicin 

can develop nephrotoxicity (Groff, Kozak, Boehmer, Demko, & Diamond, 1997; Y. B. 

Sun et al., 2013). While mitomycin C was described to be involved in end-stage renal 

disease, a retrospective report showed that the combination of cisplatin and mitomycin C in 

laparoscopic hyperthermic intraperitoneal chemotherapy (HIPEC) did not, in fact, increase 

the incidence of AKI in gastric cancer (Kapoor et al., 2019).

Doxorubicin (adriamycin) has been reported to cause AKI and nephrotic syndrome (Carron, 

Padilla, & Maurizi Balzan, 2014; Yemm, Alwan, Malik, & Salazar, 2019). More recent 

studies identified several new compounds/agents to protect against doxorubicin-induced 

nephropathy, such as omega-3 fatty acids, flavonoids, Acacia hydaspica tannin-rich 

ethyl acetate fraction and naringenin, through mechanisms of reducing oxidative stress, 

inflammation, apoptosis as well as renal podocyte detachment (Afsar, Razak, Almajwal, & 

Al-Disi, 2020; T. H. Khan et al., 2020; Navarro-Hortal et al., 2020; Saleh et al., 2020). A 

novel compound, YH0618, was reported to reduce renal toxicity of adriamycin through a 

FOXO4-mediated Bcl-2 Bax/Bcl-2 mechanism (You et al., 2019). Curcumin demonstrated 

improvement of doxorubicin-induced toxicity in renal podocytes through the activation of 

Nrf2, inhibition of NF-κB activity, and the upregulation of podocin (Fan et al., 2020). Loss 

of podocytes is one of the mechanisms involved in adriamycin-induced glomerulosclerosis; 

however, the mechanistic pathway is unclear. Deficiency of angiopoietin-like-3 (ANGPTL3) 

was found to protect against adriamycin-induced glomerulosclerosis and podocyte loss in 

mice (Dai et al., 2019). Though inhibition of ANGPTL3 seems a promising approach 

against adriamycin nephrotoxicity, it might block the beneficial effect of ANGPTL3 in renal 

cell carcinoma metastasis (Y.-j. Zhang, Zhang, Feng, & Cao, 2021; Zhao et al., 2019). 

Therefore, the prospective treatment using the ANGPTL3 inhibitor, evinacumab, which is 

currently tested in patients with homozygous familial hypercholesterolemia (Raal et al., 

2020), in adriamycin-induced nephropathy should be carefully evaluated in patients with 

renal cell carcinoma metastases (Wilson et al., 2021).

3.4 Antimetabolites cancer drugs

Antimetabolites including methotrexate, 5-fluorouracil, clofarabine, and gemcitabine have 

been shown to cause renal insufficiency and tubular injury. Methotrexate (MTX) is a 
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classical antifolate, which interferes with folate metabolism. MTX is used to treat a broad 

range of cancers such as acute lymphoblastic leukemia, head and neck cancer, and breast 

cancer, among others (Koźmiński, Halik, Chesori, & Gniazdowska, 2020). In addition to 

plasma MTX concentration monitoring, hydration, and alkalinization to prevent/ameliorate 

the MTX-induced nephrotoxicity (Howard, McCormick, Pui, Buddington, & Harvey, 

2016), recent consensus guidelines and case reports have suggested that glucarpidase 

(Carboxypeptidase G2) can provide nonrenal elimination of MTX and should be used with 

folic acid rescue to attenuate MTX-induced nephrotoxicity (Misra, Santagostino, Dine, & 

Bonhomme Faivre, 2019; Ramsey et al., 2018; Young et al., 2019).

A number of studies have identified natural compounds and other potential approaches to 

mitigate nephrotoxicity of MTX. Natural compounds such as Rosmarinic Acid and Apigenin 

that exhibit antioxidant and anti-inflammatory properties have been reported to attenuate 

MTX nephrotoxicity in rodent models (Jafaripour et al., 2021; Sahindokuyucu-Kocasari, 

Akyol, Ozmen, Erdemli-Kose, & Garli, 2021). Another natural product, Dioscin, can relieve 

MTX-induced kidney damage via inhibiting miRNA-145–5p-mediated oxidative stress (Y. 

Li et al., 2021). A MTX metabolite, 7-OH MTX, has been considered as a primary toxic 

metabolite responsible for nephrotoxicity due to its lower water solubility than MTX 

(Holmboe, Andersen, Mørkrid, Slørdal, & Hall, 2012). A study found that Nobiletin, a 

flavonoid isolated from Citrus aurantium L, could reduce 7-OH MTX nephrotoxicity via 

endoplasmic reticulum stress-dependent PERK/CHOP signaling and protect tubular cell 

survival (Song et al., 2021). A compound modified from Paeoniflorin, paeoniflorin-6′-O-

benzene sulfonate (CP-25), showed protection against MTX-renal toxicity by preventing 

tubular cells apoptosis and facilitating MTX excretion through recovering OAT3 expression 

(Wei et al., 2021).

Rebamipide is a gastroprotective drug for the treatment of gastric ulcers and gastritis. It was 

found that Rebamipide could potentially mitigate nephrotoxicity of MTX through activation 

of NRF-2/SIRT-1/FOXO-3 and mTOR/PI3K/AKT signaling while inhibiting NF-κB-p65/

TLR-4 (Elmansy, Seleem, Mahmoud, Hassanein, & Ali, 2021). Moreover, using HA-230 

adsorber in hemadsorption procedure was found to be a new therapeutic approach to reduce 

MTX toxicity in pediatric patients with acute lymphocytic leukemia who had delayed MTX 

clearance after high-dose MTX treatment (Sazonov et al., 2021).

5-fluorouracil (5-FU), another antimetabolite cancer drug, has multiple mechanisms of 

action through inhibition of DNA synthesis and misincorporation into DNA. Although 

patients with renal impairment do not require dose adjustment of 5-FU (Lexicomp, 2022), 

there is increasing in vivo and in vitro evidence that 5-FU can cause renal dysfunction as 

indicated by the promotion of apoptosis, induction of oxidative stress, and tubular injury. 

Recent studies have demonstrated potential approaches to mitigate 5-FU nephrotoxicity. 

Inhibition of miR-181a has been found to attenuate 5-FU-induced mesangial cell apoptosis, 

inflammation and kidney injury (X.-Y. Liu et al., 2018). Camel milk is shown to have 

renoprotection against 5-FU, which could be mediated by suppressing MAPKs, NF-kappaB 

and PI3K/Akt/eNOS (Arab, Salama, & Maghrabi, 2018). In addition, hesperidin and 

curcumin play beneficial roles in 5-FU-induced nephrotoxicity by inhibiting oxidative stress, 

lipid peroxidation, apoptosis, and renal dysfunction (Gelen et al., 2021). Herein, we have 
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summarized some recently discovered targets and pathways, such as nonrenal metabolizing 

enzyme, transporter, the utilization of HA-230 adsorber and natural compounds, which 

could be used as potential therapeutic strategies in MTX and 5-FU nephrotoxicity in the 

future.

3.5 Epidermal growth factor receptor pathway inhibitors (EGFR inhibitors)

EGFR inhibitors have been used in the treatment of various malignancies including 

colon, head, neck, and non-small cell lung cancers. Monoclonal antibodies such as 

cetuximab and panitumumab are EGFR inhibitors associated with tubular toxicity, 

glomerulopathies and electrolyte disorders. (H. Izzedine, Boostandoost, & Mathian, 2017; 

Jhaveri, Wanchoo, Sakhiya, Ross, & Fishbane, 2017). Panitumumab-induced immune 

complex glomerulonephritis could be mitigated by drug discontinuation and glucocorticoids 

treatment (H. Izzedine et al., 2017). Hypomagnesaemia of EGFR inhibitors is the most 

common side effect that could lead to renal toxicity (Jhaveri et al., 2017). Therefore, 

electrolyte disturbances should be carefully monitored and managed with subsequent 

fluid and sodium restriction, diuretics treatment, and magnesium supplementation or 

discontinuation of EGFR inhibitors.

3.6 Vascular endothelial growth factor pathway inhibitors (VEGF inhibitors)

The vascular endothelial growth factor (VEGF) plays an essential role in angiogenesis, 

which provides oxygen and nutrients to support tumor growth and metastasis. The VEGF 

inhibitors bevacizumab, sorafenib and sunitinib are clinically used for metastatic colon 

cancer, rectal cancer, non-small cell lung cancer, and breast cancer, among others (Qin et al., 

2019). Common renal toxicities of VEGF inhibitors include proteinuria, glomerular disease 

and thrombotic microangiopathy (TMA) (Hanna et al., 2019; Shye et al., 2020). Currently, 

there are no molecule-specific targeted therapies for VEGF inhibitor-induced renal adverse 

effects, except for supportive care, dose reduction, medication discontinuation or treatment 

with ACEi or ARBs for proteinuria. It should be noted that ACEi and ARBs also contribute 

to an increased risk of AKI under certain conditions. Hence, it would be appropriate to 

monitor renal function and individualize treatment in patients with VEGF inhibitor if using 

ACEi or ARBs for renal side effects (Porta et al., 2020).

Results from a rat experimental model demonstrated that the phosphodiesterase type 

5 (PDE5) inhibitor, sildenafil, reduced sunitinib-induced proteinuria (S. Lankhorst et 

al., 2014). Unfortunately, the clinical application of sildenafil in sunitinib-induced 

nephrotoxicity has not yet been verified. A better understanding of the underlying 

mechanism(s) of VEGF inhibitor-induced nephrotoxicity could lead to the development 

of a selective compound or adjuvant drug to minimize the off-target effects of VEGF 

inhibitors. The side effects of VEGF inhibitors are partially attributed to the off-target 

effect from VEGF inhibitors-induced circulating endothelin-1 levels (Stephanie Lankhorst 

et al., 2015). A recent study showed that sunitinib-induced albuminuria can be improved 

by a selective endothelin (ETA) receptor antagonist (sitaxentan) but not ETA/B receptor 

antagonist (macitentan) in rats. Sitaxentan and ambrisentan are FDA-approved selective 

ETA receptor antagonists for pulmonary hypertension treatment. Despite the withdrawal 

of Sitaxentan, ambrisentan seems a promising therapeutic approach against VEGF inhibitor-
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induced nephrotoxicity. Moreover, it is possible that targeting downstream of the ET-1 

signaling pathway could also provide the renoprotection against VEGF inhibitors (Mirabito 

Colafella et al., 2020). Therefore, it is clear that additional research is needed to develop new 

strategies for mitigation of VEGF inhibitor-induced nephrotoxicity.

3.7 Immune checkpoint inhibitors

Immune checkpoint inhibitors (CPIs) directly target inhibitory receptors on immune and 

tumor cells, allowing for the activation of T cells and antitumor action. These receptors 

include programmed cell death 1 ligand (PD-L1) and cytotoxic T-lymphocyte-associated 

antigen 4 (CTLA-4). CPIs can reactivate the immune cells to attack the cancer cells 

(Robert, 2020; Weber, 2010). Immune checkpoint inhibitors such as CTLA-4 antagonists 

(ipilimumab) and PD-L1 antagonists (nivolumab and pembrolizumab) are approved by the 

FDA for treatment of renal cell cancer, non-small lung cancer, and melanoma (Wanchoo, 

Karam, et al., 2017). Extensive evidence has shown that CPIs are often associated with the 

incidence of AKI and acute interstitial nephritis (AIN) (Belliere et al., 2016; Cortazar et 

al., 2020; Gupta et al., 2021; Oleas et al., 2020; Patel et al., 2020). Current management 

for CPIs-induced AIN involves treatment with glucocorticoids (GCs) or discontinuation of 

the medications (S. Manohar et al., 2019; Oleas et al., 2020; Qu et al., 2021). A recent 

multicenter study recommends that patient can return to CPIs treatment after renal injury 

has been relieved (Cortazar et al., 2020; Koks et al., 2021); nonetheless, fewer than 50% of 

patients receiving GCs can fully recover from kidney injury. A retrospective study reported 

that infliximab, an TNF-α (tumor necrosis factor) blocker, would be another treatment 

option for relapsed CPI-AIN in patients who do not respond to or tolerate the side effects of 

GCs (J. S. Lin et al., 2021). However, a larger sample size and standardization in the timing 

of the infliximab treatment in CPI-AIN are required for future clinical studies.

A study suggested that the checkpoint inhibition was not a major mechanism for efficacy 

of anti-CTLA-4 antibodies. The investigators identified a weak checkpoint blockade by the 

anti-CTLA-4 antibody, GIGA-564, which had reduced kidney damage compared with the 

CTLA-4 antagonist, ipilimumab, in murine models without affecting antitumor effects. This 

finding suggests a novel strategy for optimizing anti-CTLA-4 drugs based on regulatory 

T cells instead of checkpoint inhibition (Stone et al., 2021). Considering the very limited 

strategies available for mitigation of CPIs-induced kidney adverse effects, further research 

should emphasize the structure or affinity-guided design of antagonist/inhibitors for immune 

cells or tumor cells.

3.8 Proteasome inhibitors

Carfilzomib is a proteasome inhibitor used to treat patients with relapsed and refractory 

myeloma. Carfilzomib-induced renal manifestations include thrombotic microangiopathy 

(TMA), proteinuria and AKI (Fotiou, Roussou, Gakiopoulou, Psimenou, & Gavriatopoulou, 

2020). The pathophysiology behind carfilzomib-induced nephrotoxicity is associated with 

tumor lysis syndrome, endothelial injury, and podocyte injury (Fotiou et al., 2020). Current 

management for acute renal function impairment is achieved by hydration and drug 

discontinuation (Bringhen et al., 2019). A case report showed that acetylcysteine could 

prevent carfilzomib-induced vasoconstriction-related renal injury (Wanchoo, Khan, Kolitz, 
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& Jhaveri, 2015). Rutin, a bioflavonoid, ameliorates carfilzomib-induced oxidative stress 

and inflammation in nephrotoxicity through the inhibition of the iNOS-mediated NF-κB 

signaling pathway (Al-Harbi et al., 2019).

Another proteasome inhibitor, Bortezomib, is effective in multiple myeloma and mantle cell 

lymphoma. Common renal side effects of bortezomib include TMA and acute interstitial 

nephritis (AIN) (Chiruvella et al., 2020). A case reported showed that the bortezomib 

renal impairment was improved after glucocorticoid therapy and discontinuation, but AKI 

reoccurred following reinitiating bortezomib (Cheungpasitporn et al., 2015). Therefore, the 

utilization of glucocorticoid therapy for bortezomib-induced AIN remains undetermined.

3.9 mTOR protein kinase inhibitors

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase, which regulates 

many biological processes, including cell survival, proliferation, autophagy, and metabolism 

(Hua et al., 2019). Inhibitors of mTOR, sirolimus and everolimus, are used for the treatment 

of breast cancer, renal cell carcinoma and pancreatic neuroendocrine tumors (Roskoski, 

2019). It has been shown that both everolimus and sirolimus induce proteinuria and AKI. 

Although the chances of mTOR inhibitors leading to life-threatening AKI is minimal, 

they may cause development of CKD and other long-term complications (Chandra, Rao, 

Malhotra, Rastogi, & Khurana, 2017; Paluri et al., 2019; Wanchoo, Abudayyeh, et al., 2017). 

Novel therapeutics and strategies are not currently available. Current strategies to mitigate 

mTOR inhibitors-induced nephrotoxicity depend primarily on monitoring of renal injury and 

proteinuria, early use of ACEi and ARBs and drug discontinuation.

3.10 Biologic agents

Biologic agents such as interleukin-2 (IL-2) and interferon alpha (IFN-α) have utility in 

cancer therapy. High-dose interleukin-2 (IL-2) is effective in metastatic renal cancer, and 

metastatic melanoma (Marabondo & Kaufman, 2017; Perazella & Shirali, 2018). However, 

high-dose IL-2 causes severe hypotension and cytokine-mediated inflammation, leading 

to AKI (Guleria et al., 1994; Marabondo & Kaufman, 2017). Current managements for 

IL-2 nephrotoxicity are primarily reliant on urine output monitoring and fluid management, 

which can improve mild oliguria or increased serum creatinine caused by IL-2 (Marabondo 

& Kaufman, 2017). Low and intermediate-dose of vasopressors such as dopamine can also 

be used in the treatment of hypotension and oliguria (Perazella & Shirali, 2018). However, 

advanced therapeutic approaches are limited.

A novel mechanism underlying IL-2-induced vascular leak syndrome is associated with 

increased circulating angiopoietin-2 levels. Endothelial damage is one of the major causes 

of AKI. A study revealed that diabetes mellitus can increase angiopoietin-2. Angiopoietin-2 

is the competitive antagonist for angiopoietin-1 and a partial agonist/antagonist of the 

receptor tyrosine kinase TIE2 in endothelial cells (Yuan, Khankin, Karumanchi, & Parikh, 

2009). Increased circulating angiopoietin-2 leads to vascular wall destabilization and 

promotes neovascularization (Fiedler & Augustin, 2006). Vascular endothelial protein 

tyrosine phosphatase (VE-PTP) is involved in balancing TIE2 signaling to stabilize the 

vasculature. Inhibition of VE-PTP by AKB-9778 can reset TIE2 signaling and therefore 
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decrease serum angiopoietin-2 level and rescue vascular stability (G. Li, Sachdev, Peters, 

Liang, & Lotze, 2019). In addition, targeting VE-PTP phosphatase was demonstrated to 

protect against diabetic kidney injury (Carota et al., 2019).

Therefore, VE-PTP inhibitor AKB-9778 could be a promising candidate to attenuate IL-2-

induced vascular leak and endothelial dysfunction which could lead to AKI.

3.11 BRAF inhibitors

BRAF is a member of rapidly accelerated fibrosarcoma kinase family proteins, and also 

a proto-oncogene. BRAF inhibitors (dabrafenib and vemurafenib) are approved for the 

treatment of BRAF V600E mutation-positive melanoma (Holderfield, Deuker, McCormick, 

& McMahon, 2014). BRAF inhibitors can cause tubular interstitial nephritis, acute tubular 

necrosis, increases of serum creatinine, proteinuria, and electrolyte disorders, including 

hypophosphatemia, hyponatremia and hypokalemia (Wanchoo, Jhaveri, Deray, & Launay-

Vacher, 2016). Overall, compared with vemurafenib, dabrafenib is associated with a lower 

incidence of kidney disease (Wanchoo et al., 2016). A vemurafenib-induced increase in 

serum creatinine is usually immediate and reversible (Hurabielle et al., 2016). Routine 

monitoring of electrolytes and serum creatinine are recommended during treatment with 

BRAF inhibitors (Hurabielle et al., 2016). A recent study showed that combined therapy of 

MEK inhibitor, cobimetinib, and BRAF inhibitor, vemurafenib, in the treatment of BRAF 

V600-mutated metastatic melanoma exhibited a 60% reduction of AKI compared with 

BRAF inhibitor monotherapy (Teuma et al., 2017). Therefore, it is important to note that 

patients with different combined therapies of BRAF and MEK inhibitors could result in 

different responses in renal disorders (Meirson, Asher, Bomze, & Markel, 2020). In this 

regard, future investigations should also highlight the optimal timing of drug switching and 

the best combination therapy to reduce renal toxicities.

3.12 Anaplastic lymphoma kinase inhibitor

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase, which regulate diverse 

cellular process, including cellular proliferation, survival, and proliferation. Mutation of 

ALK is associated with the development of neuroblastoma, diffuse large B-cell lymphoma, 

anaplastic large-cell lymphoma, myofibroblastic tumor, esophageal and squamous cell 

carcinoma, as well as other malignancies (Webb et al., 2009). Crizotinib is an ALK inhibitor 

for the treatment of non-small cell lung cancer with the ALK mutation. To this point in time, 

only a few cases of crizotinib-associated nephrotoxicity have been described. Electrolyte 

disorder and renal cyst are common adverse events in crizotinib treatment, which can be 

reversed after crizotinib discontinuation (H. Izzedine, El-Fekih, & Perazella, 2016; Y. T. 

Lin et al., 2014). Crizotinib was reported to increase serum creatinine and reduce the 

eGFR, which could be recovered after cessation of therapy (Brosnan et al., 2014; Camidge, 

Brosnan, DeSilva, Koo, & Chonchol, 2014; Martín Martorell, Huerta Alvaro, Solís Salguero, 

& Insa Molla, 2014). Recently, kidney biopsy data on cirzotinib-induced renal injury 

showed that cirzotinib induced acute tubular necrosis and glomerular mesangiolysis after 

drug rechallenge (Gastaud et al., 2013). Another case study described arteriolar myocyte 

vacuolization following crizotinib treatment (Hassan Izzedine, Brocheriou, Amoura, & 

Mathian, 2021). However, the mechanism of crizotinib-induced kidney damage remains 
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unknown. In a rodent study, it was demonstrated that long-term crizotinib treatment could 

induce fibrosis and renal dysfunction via activating the TNF-α/NF-κB signaling pathway 

(Yasuma et al., 2018). It is also speculated that the crizotinib-induced kidney damage can 

be mediated by the inhibition of the mesenchymal epithelial transition growth factor (c-Met) 

pathway (Hassan Izzedine et al., 2021). Due to limited data and unclear pathophysiological 

explanations for the kidney damage induced by crizotinib, careful monitoring of renal 

function and examination of kidney biopsies during crizotinib therapy are recommended.

4. Renoprotective effects of some novel anticancer therapeutics

Because emerging preclinical and clinical studies are devoted to developing and testing 

promising novel anticancer drugs, efforts should be made to prevent/reduce the potential 

nephrotoxicity. Developing and discovering an anticancer drug that exhibits dual action 

of anti-tumor and renoprotection would be very beneficial for cancer patients. Therefore, 

identifying the common targets and mechanisms shared by both carcinogenesis and 

nephrotoxicity could serve to develop a novel and effective drug that simultaneously 

provides anticancer as well as renoprotective activities. Herein, we discuss some strategies 

associated with novel anticancer therapies in mitigating renal toxicities in the context of the 

immune system, sphingolipid signaling, DNA repair, histone modifications, and non-coding 

RNAs.

4.1 The immune system

The innate immune system contributes to the destruction of tumor cells that present 

tumor antigens through various pattern recognition receptors (PRRs), including toll-like 

receptors (TLRs) and macrophage-inducible C-type lectin (Mincle). TLRs can regulate 

immune responses both positively and negatively (Bai et al., 2020). A specific TLR2 

agonist designed by Feng et al can generate macrophages that have strong anti-tumor 

properties in mice (Feng et al., 2019). Furthermore, the combination of TLR9 agonists and 

immune checkpoint inhibitors can maximize TLR9-incduced T-cell activity and provoke 

the antitumor immune response (Buss & Bhatia, 2020; Chuang et al., 2020). TLRs have 

been recognized to play multifaceted roles in AKI (Habib, 2021). TLR-2 and TLR-9 were 

shown to protect against cisplatin-caused nephrotoxicity in mice (Alikhan et al., 2016; 

Andrade-Silva et al., 2018). However, recent studies showed that depletion of TLR9 reduced 

renal ischemia-reperfusion injury and that nanoparticle-mediated selective targeting of renal 

tubular TLR9 decreased renal tubular inflammation, apoptosis and necrosis after ischemia 

reperfusion (Han et al., 2020; Zheng et al., 2021). These apparent discrepancies could be 

due to disease/cells-dependent effects of TLR9. In addition to the anticancer effects, TLR 

agonists may at the same time exert renal protective effects. However, care should be taken 

in the interpretation of these preclinical data because either overaction of TLRs by agonist 

or deletion/blockade of TLRs can dysregulate tissue repair during different phases of AKI in 

human.

Mincle (Macrophage-inducible C-type lectin), a pattern recognition receptor, was recently 

demonstrated as a novel target for cancer treatment (C. Li et al., 2020). Furthermore, 

it was found to be associated with M1 macrophage activation during cisplatin-induced 
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AKI. Interestingly, adoptive transfer of Mincle-knockdown macrophages reduced the 

nephrotoxicity caused by cisplatin (Inoue, 2017). Additionally, the natural anti-inflammatory 

compound curcumin elicits inhibitory effect on the Mincle-maintained M1 macrophage 

phenotype, providing a promising therapeutic strategy for cisplatin-induced nephrotoxicity 

(Tan et al., 2019).

Cytokines released from innate immune cells are responsible for regulating the host innate 

immune response toward tumor cells and promoting their apoptosis. Cytokine therapy has 

drawn attention to treat cancers in recent years (Xue, Hsu, Fu, & Peng, 2021). Interestingly, 

an IL-2 and IL-33 hybrid cytokine, IL233, was shown to protect mice from cisplatin- and 

doxorubicin-induced nephrotoxic injury in mice (Sabapathy, Cheru, Corey, Mohammad, & 

Sharma, 2019; Stremska et al., 2017). Thus, modulation of the immune system could be a 

promising strategy for mitigation of nephrotoxicity in cancer treatment.

4.2 Sphingolipid signaling

Sphingolipids, including ceramide, sphingosine and sphingosine-1-phosphate (S1P) have 

been proposed to participate in important cellular functions, such as cell growth, cell 

senescence, differentiation, cellular inflammation and cell cycle regulation (Hannun & 

Obeid, 2018). It has been increasingly recognized that inflammatory mediators, growth 

factors, and cellular stress could disrupt the balance between ceramide-induced cell 

death and S1P-induced cell growth, which are responsible for the cell fate. Sphingosine 

kinases (SPHKs) represent two isoforms, SPHK1 and SPHK2, that catalyze the conversion 

of sphingosine to sphingosine-1-phosphate (S1P). SPHKs are shown to be involved in 

tumorigenesis in many types of cancers (Pitman, Oehler, & Pitson, 2021; Pyne & Pyne, 

2020). Recently, SPHK1 and SPHK2 inhibitors have been under development to treat 

breast cancer, ovarian cancer and cholangiocarcinoma (Alshaker, Thrower, & Pchejetski, 

2020; Ding et al., 2016; F. I. Khan, Lai, Anwer, Azim, & Khan, 2020). ABC294640, a 

specific SPHK2 inhibitor, enhanced the antitumor effects of TNF-related apoptosis-inducing 

ligand (TRAIL) by inducing apoptosis in non-small-cell lung cancer (Yang et al., 2015). 

Moreover, ABC294640 (Yeliva ®) is currently being tested in a phase IIa clinical trial 

with hydroxychloroquine sulfate in treatment of patients with advanced cholangiocarcinoma 

(ClinicalTrials.gov Identifier: NCT03377179). It has also been reported that the antitumor 

action of ABC294640 can be enhanced by sorafenib, a multiple tyrosine kinase inhibitor in 

human cholangiocarcinoma cells (Ding et al., 2016; Evangelisti et al., 2016).

Despite the role of sphingolipids in cancers, they are increasingly being viewed as bioactive 

factors in the regulation of renal physiology. It has been shown that the activation of the 

sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) pathway contributes to different 

kidney diseases (Lyu, Wang, Ji, Ritter, & Li, 2020; Yokota, Bhunu, Toba, & Intapad, 

2021; Xiwen Zhang, Ritter, & Li, 2018; X. Zhang, Wang, Ji, Ritter, & Li, 2019). A more 

recent study demonstrated that oral administration of ABC294640 could attenuate cisplatin-

induced nephrotoxicity in mice (Xie et al., 2020). Therefore, sphingolipid signaling is a 

novel potential target for anticancer agent-induced nephrotoxicity in combination with the 

antitumor effect.
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4.3 DNA repair pathway

Many antitumor therapies, including antimetabolites (5-fluorouracil, Methotrexate), DNA 

cross linking and alkylating agents (cisplatin, temozolomide, ifosfamide), topoisomerase 

II inhibitors (etoposide, doxorubicin), and radiotherapy, target proliferating cells. Several 

inhibitors of DNA damage repair have been tested in clinical trials; these include 

poly (ADP-ribose) polymerase (PARP) inhibitors, ataxia-telangiectasia mutated (ATM) 

inhibitors, checkpoint kinases (CHK1/2) inhibitor and DNA methyltransferases (DNMT1) 

inhibitor (Chan, Tan, & Cornelissen, 2021; Isono, Okubo, Asano, & Sato, 2021; Smith, 

Southgate, Tweddle, & Curtin, 2020; Wong, 2020; Yap et al., 2021). Generally, these agents 

could impair DNA repair ability or cause excessive DNA damage resulting in cell death 

following DNA replication (R. Huang & Zhou, 2021). Herein, we discuss the current 

inhibitors targeting DNA damage repair and their role in kidney injury.

Poly (ADP-ribose) polymerase (PARP), PARP-1: Poly (ADP-ribose) polymerase 

(PARP) is responsible for single-stranded DNA break (SSB) or double-strand DNA break 

(DSB) repair. The occurrence of SSB or DSB will increase the activity of PARP-1, 

enhancing poly (ADP-ribose) (PAR) activity, which in turn helps synthesize long branched 

PAR chains in order to recruit base excision repair (BER) enzymes to the damage site 

(Cerrato, Morra, & Celetti, 2016; Y. Huang et al., 2018). Several PARP inhibitors have been 

approved for the treatment of breast and ovarian cancers. However, three PARP inhibitors 

(olaparib, rucaparib, and velaparib) also increase serum creatinine by inhibiting proximal 

tubular transporter channels such as multidrug and toxin extruder 1 and 2 (MATE1 and 

MATE 2) and the organic cationic transporters 1and 2 (OCT 1 and OCT 2) (LaFargue, 

Dal Molin, Sood, & Coleman, 2019). A more recent study showed that creatinine-derived 

eGFR may not actually reflect the renal function affected by olaparib. An alternative renal 

marker, cystatin C should be considered to more accurately measure eGFR in patients taking 

olaparib (Bruin et al., 2021), which would be more helpful in the evaluation of kidney 

damage by this class of drugs. A clinical trial is active to test whether cystatin C could be an 

early renal function marker for children with nephrotoxic chemotherapy (ClinicalTrials.gov 

Identifier: NCT02822404).

Recently, niraparib (ZEJULA), a PARP inhibitor, was approved in 2020 for patients with 

advanced ovarian cancer following front-line platinum treatment (González-Martín et al., 

2019). Based on previous studies, it is not necessary for the renal adjustment of niraparib 

dosage in patients with mild or moderate declines in kidney function (Deshpande, Perazella, 

& Jhaveri, 2021; Zibetti Dal Molin et al., 2020). However, it remains undetermined to 

what extent dosing modification for PARP inhibitors might be indicated in cancer patients 

with advanced CKD and end stage kidney disease (ESKD). It is still unclear about the 

long-term effects of PARP inhibitors on kidney function and proteinuria (Deshpande et 

al., 2021). Therefore, it should be noted that patients could develop nephrotoxicity due 

to preexistent changes in intrarenal homeostasis (Lazareth et al., 2020). While PARP-1 

inhibition was demonstrated to attenuate ischemic AKI (Jang et al., 2020), one study 

revealed that PARP-1 deficiency promoted an alkylating agent methyl methanesulfonate 

(MMS)-induced nephrotoxicity in alkyladenine DNA glycosylase-transgenic mice, which 

was sex dependent, i.e. MMS-induced nephrotoxicity was observed in male, but not female 
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mice (Calvo et al., 2016). This discrepancy of PARP inhibition impact in kidney damage 

could be due to different phases of AKI caused by different insults. Therefore, more studies 

are required to determine the role of PARP on anticancer agents-induced nephrotoxicity.

4.4 Histone modifications

4.4.1 Histone acetyltransferases (HATs)—Histone acetyltransferases (HATs) are 

the enzymes responsible for transferring an acetyl group to the lysine residue of cellular 

proteins, including transcription factors and histones, to promote gene expression. p300, a 

member of HATs, plays a definitive role in cell proliferation, differentiation, and apoptosis. 

p300 has been implicated in tumorigenesis and epithelial-mesenchymal transition in non-

small cell lung cancer cells (Hou et al., 2018; Iyer, Özdag, & Caldas, 2004). Cisplatin 

was reported to induce kidney injury through activating one member of HATs, p300 

activity, thereby increasing acetylation of histone H3 and further enhancing oxidative stress, 

inflammation, and apoptosis. It was shown that a potent p300 inhibitor, Garcinol, reversed 

cisplatin-induced kidney injury (J.-Y. Kim, Jo, Leem, & Park, 2020). It is speculated that 

targeting HAT could be a potential strategy to treat anticancer drug-induced kidney damage. 

Interestingly, p300 inhibition has demonstrated anticancer effects (Liu et al., 2020; Y. M. 

Wang et al., 2017). Targeting p300 may provide dual action of protection against renal 

chemotoxicity and an enhanced antitumor effect.

4.4.2 Histone deacetylases (HDACs)—Histone deacetylases (HDACs) are enzymes 

involved in the removal of acetyl group from lysine residue of histones or non-histones 

proteins. HDACs are grouped into four classes, which have distinct functions. HDACs 

participate in tumorigenesis in several cancers (Pant, Peixoto, Richard, & Gradilone, 2020; 

P. Wang, Wang, & Liu, 2020). HDAC inhibitors have shown synergistic antitumor effects 

in combination with other cancer drugs in preclinical and clinical tests (Hontecillas-Prieto 

et al., 2020; Jenke, Reßing, Hansen, Aigner, & Büch, 2021). Emerging studies suggest that 

HDAC inhibitors are a potential strategy to decrease the AKI induced by cisplatin. For 

example, HDAC inhibitors such as trichostatin A (TSA) and suberoylanilide hydroxamic 

acid (SAHA) are effective in reducing cisplatin-induced AKI through increasing autophagy 

in renal tubular cells (J. Liu et al., 2018; Tang et al., 2018). More recently, a highly 

selective HDAC6 inhibitor, 2-Methylquinazoline derivative 23BB, was demonstrated to 

improve cisplatin-induced AKI (Hao et al., 2020). Another selective HDAC6 inhibitor, 

Ricolinostat (ACY-1215), elicited suppressive effects on TGF-β and EGFR signaling 

pathways to mitigate kidney damage in obstructive nephropathy (Chen et al., 2020). Given 

their antitumor potential, HDAC inhibitors could represent an additional candidate to protect 

against renal chemotoxicity and simultaneously enhance the antitumor action of cisplatin.

4.4.3 Sirtuins (SIRT)—Sirtuins (SIRT) are NAD+-dependent histone deacetylases 

belonging to class III HDACs. Unlike other HDACs, the SIRT are not affected by the 

inhibitors of HDACs. Different SIRTs have distinct roles in cancers as some SIRTs act as 

oncoproteins or as tumor suppressors. Accumulating evidence have indicated diverse roles 

of SIRT in kidney injuries (Peasley, Chiba, Goetzman, & Sims-Lucas, 2021). Activation of 

SIRT1, SIRT3 or SIRT6 has demonstrated attenuation of cisplatin-induced kidney damage 

through various mechanisms such as repressing apoptosis, inflammation and oxidative stress 
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(J. Y. Kim et al., 2019; Z. Li et al., 2018; Yoon & Kim, 2016). Additionally, SIRT5 mediates 

the balance between mitochondrial and peroxisomal fatty acid oxidation in proximal tubular 

epithelial cells, which protect against injury in AKI (Chiba et al., 2019). Downregulation of 

SIRT3 by cisplatin can be restored through PARP-1 inhibition, which mediates protection 

against cisplatin-induced oxidative stress in tubular cells (Yoon & Kim, 2016). Consistent 

with this finding, deletion of SIRT3 exacerbates cisplatin nephrotoxicity via increasing 

apoptosis and inflammatory response (D. Kim et al., 2018). Moreover, upregulation of 

SIRT6 inhibits ERK1/2 expression and thereby mitigates renal dysfunction, inflammation 

and apoptosis caused by cisplatin (Z. Li et al., 2018). Recently, SIRT2 overexpression 

was show to reverse cisplatin-downregulated mitogen-activated protein kinase phosphatase-1 

(MKP-1) and further ameliorate renal injury (Jung, Park, Kang, & Kim, 2020). Hence, 

manipulation of SIRT could be a potential approach to simultaneously mitigate cancer and 

anticancer drugs-induced nephrotoxicity by targeting various pathways. However, it should 

be noted that either overactivation or deactivation of HDAC or SIRT could lead to opposing 

effect in cancers and kidneys. Further testing in animal studies and human are needed due to 

distinct functions of HDACs and SIRTs.

4.5 Non-Coding RNAs

Non-Coding RNAs, such as miRNA, lncRNAs, and circRNAs, are believed to account 

for a variety of physiological and pathological functions at both transcriptional and 

posttranscriptional regulations. In addition to numerous studies in cancers, they have gained 

increasing attentions from researchers in the kidney area in the recent decade. Their roles 

in cisplatin-induced renal injuries have also been extensively studied (Du et al., 2017; Guo 

et al., 2018; Loren et al., 2021; Pavkovic et al., 2016). A natural steroid saponin, Dioscin, 

exerts antioxidant effect against cisplatin-induced nephrotoxicity through a mechanism of 

increased SIRT1 expression regulated by microRNA-34a (Y. Zhang et al., 2017). Urolithin 

A (UA) is a gut metabolite of dietary polymeric polyphenols ellagitannins. Oral gavage 

of biocompatible nanoparticle urolithin A attenuates the reduction of miRNA (miR-192–

5p and miR-140–5p) by cisplatin and reduces renal oxidative stress. Liposomes carrying 

microRNA-500a-3P elicit inhibitory effect on necroptosis-related protein expression and 

inflammatory responses by cisplatin (S. Zhang, Sun, Kong, & Zhang, 2020). Several 

potential agents such as scutellarin, puerarin, curcumin and pentoxifylline also show 

renoprotective effect involving miRNAs regulation (El Magdoub, Schaalan, Rahmo, Farag, 

& Khedr, 2020; S. J. Huang et al., 2020; C. Y. Sun et al., 2019; Wu, Li, Li, Li, & Lu, 2020).

Ginkgo Biloba extract mediates renoprotection against methotrexate-induced renal injury 

by interrupting the PI3K/Akt/mTOR signaling and the expression of long non-coding 

RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) (Sherif, 

Al-Shaalan, & Sabry, 2019). Overexpression of lncRNA XLOC_032768 is revealed to 

repress the gene expression of TNF-α thus attenuating cisplatin-induced apoptosis and 

inflammatory effects of renal tubular cells (X. Zhou et al., 2020). Interestingly, cisplatin-

induced IL-1β upregulates lncRNA9884 expression via the NF-κB pathway; lncRNA9884 

subsequently activates transcription of macrophage migration inhibitory factor (MIF) gene 

via binding to MIF promoter region, which in turn promotes IL-1β/NF-κB signaling 

and triggers a cytokine storm (Y. Zhang et al., 2020). Furthermore, lncRNA PRNCR1 
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overexpression is shown to reduce cisplatin-induced renal epithelial cell apoptosis through 

interference with the miR-182–5p/EZH1 axis (J. Li, Fan, Wang, Gong, & Guo, 2021).

Besides microRNAs and lncRNAs, circular RNAs (circRNAs) have recently attracted 

increasing attention as promising targets in both cancers and kidney diseases (van 

Zonneveld, Kölling, Bijkerk, & Lorenzen, 2021). One study uncovered that 368 circRNAs 

were expressed differentially in cisplatin treatment mice (C.-M. Li et al., 2019). Another 

study demonstrated that the elevated circRNA, circ-0114427, was found in the early stage 

of a cisplatin-AKI model, which was implicated in the binding of miR-494 and the increase 

of ATF3 expression; as a result, circ-0114427 led to a decrease in the production of 

inflammatory cytokines. Therefore, circ-0114427 could be a novel target for early treatment 

strategies for cisplatin-induced AKI (Cao et al., 2020). Overall, studies have demonstrated 

that the non-coding RNAs, including miRNA, lncRNAs, and circRNAs, are involved in 

both cancer therapy and kidney chemotoxicity, indicating that non-coding RNAs could be 

promising targets for developing novel drugs in the management of anticancer agent-induced 

nephrotoxicity, and intriguingly, bear potential dual action of renoprotection and anticancer.

5. Conclusions

There are currently no effective drugs targeting specific biochemical or molecular pathways 

associated with anticancer therapy-induced nephrotoxicity in clinical use or clinical trials, 

although several clinically used drugs, such as gemigliptin (DPP-4 inhibitor), pantoprazole 

(proton pump inhibitor) and Tempol, are under clinical trials for renal chemotoxicity. This 

chapter reviews and summarizes the kidney- and drug-associated risk factors of anticancer 

drug-induced nephrotoxicity that will allow clinicians and researchers to carefully assess the 

risk and benefits of treatments. This review also proposes prospective strategies to diagnose/

mitigate nephrotoxicity arising from cancer therapeutics. In addition to the assessment 

of route of drug administration, timing of drug treatments, and pharmacodynamics, 

pharmacokinetics and pharmacogenetics among patients with cancer, future studies should 

also focus on identifying novel mechanisms and targets that may lead to the development of 

new approaches in the management of chemotherapy-induced nephrotoxicity.

Abbreviations

ABC transporters ATP-binding cassette transporters

ACEi angiotensin-converting enzyme inhibitors

AIN acute interstitial nephritis

AKI acute kidney injury

ARBs angiotensin receptor blockers

CCB calcium channel blocker

CECT contrast-enhanced computed tomography

CIN contrast-induced nephropathy
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CKD chronic kidney disease

CPIs immune checkpoint inhibitors

CYP450 cytochrome P450

DPP-4 dipeptidyl peptidase-4

eGFR estimated glomerular filtration rate

FSGF focal segmental glomerulosclerosis

5-FU 5-fluorouracil

GCs glucocorticoids

GGT gamma-glutamyl transpeptidase

GSTs glutathione S-transferases

HDACs histone deacetylases

IL-2 interleukin-2

MCD minimal change disease

mTOR mammalian target of rapamycin

MTX methotrexate

NAC N-acetylcysteine or acetylcysteine

NSAIDs nonsteroidal anti-inflammatory drugs

OAT organic anion transporters

OCT organic cation transporters

PDE5 phosphodiesterase type 5

PPI proton pump inhibitors

SLC renal solute carrier transporter

TLR toll-like receptor

TMA thrombotic microangiopathy

TNF-α tumor necrosis factor-α
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Table 1.

Risk factors for renal toxicities in cancer therapy

Patient-specific factors

Older age

Female sex

Preexisting AKI or CKD

Hepatic failure

Other comorbidities (multiple myeloma, lymphoma, leukemia, renal cancer, diabetes, sepsis, and acid-base disturbances)

Kidney-specific factors

High rate of blood delivery (20–25% of cardiac output)

Proximal tubular uptake of toxins apical tubular uptake by endocytosis/pinocytosis basolateral tubular transport through OAT and OCT 
pathways

Relatively hypoxic renal environment high metabolic rate of tubular cells in the loop of Henle Increased drug/toxin concentration in renal 
medulla and interstitium

Biotransformation of substances to reactive oxygen species causing oxidative stress

Sex difference/ species difference

Tumor cell-induced alternation in expressions of renal transporters

Drug-specific factors

Prolonged dosing periods, rapid infusion rates of drugs

Potent direct nephrotoxic effects of the drug or compound

Concomitant use of nephrotoxic drugs

Competition between endogenous and exogenous toxins for transporters, increasing toxin accumulation within the tubular cell

Insoluble parent compound and metabolite with intratubular crystal precipitation (urine pH/drug pKa)

AKI: acute kidney injury; CKD: chronic kidney disease; OAT: organic anion transporters; OCT: organic cation transporters. Modified from (Mark 
A. Perazella, 2009).
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Table 2.

Renal manifestation associated with commonly used anticancer drugs and recent novel cancer therapies

Renal manifestation

Tubular injury Glomerular injury TMA Fanconi 
syndrome

Proteinuria AKI Tubulointerstitial 
disease

Anticancer agents

Ifofamide MitomycinC Ipilimumab Ifosfamide Bevacizumab Doxorubicin Ipilimumab

Cisplatin Doxorubicin Bevacizumab Lenalidomide Carfilzomib Nivobumab Nivobumab

Doxorubicin Actinomycin Carfilzomib Everolimus Pembrolizumab Pembrolizumab

Cetuximab Bevacizumab Bortezomib Sirolimus Cisplatin Sorafenib

Panitumumab Carfilzomib Clofarabine Carfilzomib Sunitinib

Methotrexate IFN-α Vemurafenib Sirolimus Vemurafenib

Vemurafenib Lenalidomide Clofarabine

Cirzotinib Dabrafenib

Everolimus Vemurafenib

TMA: thrombotic microangiopathy; AKI: acute kidney injury; IFN-α: interferon alpha
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Table 3.

Summary of current and potential strategies for the management of cancer therapeutics- induced 

nephrotoxicity

Agent Nephrotoxicity Management Potential Strategies

Platinum agents (Cisplatin)

AKI; CKD; Fanconi-like 
syndrome (hypomagnesemia, 
fanconi-like syndrome, 
hypocalcemia, proteinuria, 
hyperuricemia)

Hydration; Mannitol; 
Furosemide; Magnesium 
supplement

N-acetylcysteine; Inhibition of renal 
uptake transporters; Reducing inflammation 
response and cellular death; Use of DPP-4 
inhibitors and pioglitazone; Appropriate dose 
of ACEi, ARB, CCB, aprepitant, thrombin 
inhibitor or PPI; Targeting GGT enzyme 
and GGT-associated inflammatory pathway; 
Activation of Pregnane X receptor; Use of 
sodium thiosulfate or probiotics; Tempol (an 
antidoxant)

Alkylating agents 
(Ifosfamide, 
cyclophosphamide)

Tubular damage (glucosuria, 
aminoaciduria; Polyuria, 
and proteinuria); Interstitial 
inflammation and renal fibrosis

Control total dose 
usage; Monitor and 
supplementation of 
electrolyte

N-acetylcysteine; Targeting oxidative stress, 
mitochondrial dysfunction, apoptosis, DPP-4 
or vasopressin V2 receptor and use of 
acetylcysteine

Antitumor antibiotics 
(Mitomycin C, 
Doxorubicin, Actinomycin)

AKI; Nephrotic syndrome; 
Endothelial cell and podocyte 
injury

Control total dose usage

Combination of cisplatin with mitomycin 
C, targeting oxidative stress, inflammatory, 
apoptosis. Inhibition of renal podocyte 
detachment (angiopoietin-like-3).

Antimetabolites cancer 
drugs (Methotrexate, 
Clofarabine)

Decreased GFR; Tubular injury; 
AKI; Proteinuria

Hydration; 
Alkalinization; 
Hemodialysis

Use of Glucarpidase; Targeting oxidative 
stress and inflammation, apoptosis; Inhibiting 
miRNA-145–5p-mediated oxidative stress; 
Targeting ER stress signaling; Restoring 
OAT3 expression; Use of Rebamipide or 
HA-230 adsorber; Targeting miR-181a; Use 
of camel milk, hesperidin and curcumin

EGFR inhibitors 
(Etuximab, Panitumumab

Tubular injury; Glomerupathy; 
Nephritic syndrome; Electrolyte 
disorder

Glucocorticoid; 
Discontinuation; Monitor 
and supplementation of 
electrolyte

Sodium restriction and diuretics treatment

VEGF inhibitors 
(Bevacizumab, Sorafenib, 
Sunitinib)

Proteinuria; TMA; 
Hypertension; Glomerulopathy; 
Electrolyte disorder; Interstitial 
nephritis

ACEi or ARBs
Use of PDE5 inhibitor or selective ETA 
receptor antagonists; Targeting downstream 
of ET-1 signaling

Immune checkpoint 
inhibitors (Ipilimumab, 
Nivolumab, 
Pembrolizumab)

AKI; Acute tubulointerstitial 
nephritis; Electrolyte 
disturbance and TMA

Glucocorticoids; 
Discontinuation

Use of weak checkpoint blockade; TNF-α 
blocker

Proteasome inhibitors 
(Carfilzomib, Bortezomib)

TMA; Proteinuria; AKI; 
Podocyte injury

Anti-hypertension; 
Intravenous hydration; 
Reduction of dose; ACEI 
or ARBs

Use of acetylcysteine or glucocorticoid; 
Targeting oxidative stress and inflammation

mTOR protein kinase 
inhibitors (Sirolimus, 
Everolimus)

AKI; Proteinuria ACEI or ARBs; 
Discontinuation NA

Biologic agents (IL-2, IFN-
α)

Hypotension; Edema; Oliguria; 
MCD; FSGF; TMA

Fluid management; 
Discontinuation Urine 
output monitoring

Low and intermediate-dose of vasopressors 
(dopamine); Targeting vascular endothelial 
protein tyrosine phosphatase (VE-PTP)

BRAF inhibitors 
(Dabrafenib, Vemurafenib)

Hyperkalemia; Fanconi 
syndrome; MCD; AKI; Crystal 
nephropathy

Routine monitoring of 
electrolytes and serum 
creatinine

Combined therapy of MEK inhibitor, 
cobimetinib and vemurafenib

ALK inhibitor (Crizotinib)
Electrolyte disorder; Renal 
cyst; Acute tubular necrosis; 
Glomerular mesangiolysis;

Discontinuation Monitoring of renal function and 
examination of kidney biopsy

AKI: acute kidney injury; TMA: thrombotic microangiopathy; CKD: chronic kidney disease; ACEi: angiotensin-converting enzyme inhibitors; 
ARBs: angiotensin receptor blockers; DPP-4: dipeptidyl peptidase-4; CCB: calcium channel blocker; GGT: gamma-glutamyl transpeptidase; PPI: 
proton pump inhibitors; PDE5: phosphodiesterase type 5; MCD: minimal change disease; FSGF: focal segmental glomerulosclerosis; GGT: 
gamma-glutamyl transpeptidase; ET: endothelin, NA: not available; OAT: organic anion transporters
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