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ABSTRACT
Distribution-free or nonparametric control charts are used for mon-
itoring the process parameters when there is a lack of knowledge
about the underlying distribution. In this paper, we investigate a
single distribution-free triple exponentially weighted moving aver-
age control chart based on the Lepage statistic (referred as TL chart)
for simultaneously monitoring shifts in the unknown location and
scale parameters of a univariate continuous distribution. The design
and implementation of the proposed chart are discussed using time-
varying and steady-state control limits for the zero-state case. The
run-length distribution of the TL chart is evaluated by performing
Monte Carlo simulations. The performance of the proposed chart is
compared to those of the existing EWMA-Lepage (EL) and DEWMA-
Lepage (DL) charts. It is observed that the TL chartwith a time-varying
control limit is superior to its competitors, especially for small to
moderate shifts in the process parameters. We also provide a real
example from a manufacturing process to illustrate the application
of the proposed chart.
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1. Introduction

Statistical Process Control (SPC) is one of the widely used techniques for keeping the
quality characteristics of a process in an acceptable and stable level. Control charts are
the most important tool of SPC and are used for monitoring shifts in the location and/or
scale parameter(s) of the underlying process distribution. Shewhart [56] first introduced a
memory-less control chart where the charting statistic is based on the current observation.
Shewhart’s control charts are easy to use and effective in detecting large shifts in the process
parameters; however, they do not have good detection ability for small andmoderate shifts.
For this reason, Page [50] and Roberts [53] proposed the cumulative sum (CUSUM) and
exponentially weighted moving average (EWMA) charts respectively, which are memory-
type as their charting statistics are based on both the past and current observations. Many
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other memory-type control charts have been proposed to improve the performance of
the CUSUM and EWMA charts, especially for small shifts. Shamma and Shamma [55]
proposed the double EWMA (DEWMA) chart with steady-state control limits by com-
bining two EWMA charts and they showed that it is superior to the Shewhart chart for
small and moderate shifts, while it has similar detection ability with the EWMA chart.
Zhang and Chen [65] studied the DEWMA chart using the time-varying control limits
and they found it more effective than the EWMA chart for small shifts. Sheu and Lin [56]
presented the generally weighted moving average (GWMA) chart which is an extension
of the EWMA chart with an additional adjustment parameter. Abbas et al. [2] developed
the mixed EWMA-CUSUM (MEC) chart, while Abbas [1] introduced the homogeneously
weighted moving average (HWMA) chart. Recently, Alevizakos et al. [5] developed the
triple EWMA (TEWMA) chart by combining three EWMA charts. Alevizakos et al. [5]
found that the TEWMA chart with time-varying control limits is more effective than the
EWMA, DEWMA, and GWMA charts for small shifts, while it is comparable with them
for moderate and large shifts. On the other hand, using steady-state control limits, it is
shown that the EWMA and GWMA charts have a slightly better detection ability than the
DEWMA and TEWMA charts, especially for small and moderate shifts.

In many real-life applications where a shift in both location and scale parameters exists,
practitioners use two independent control charts; one for detecting shifts in the loca-
tion parameter and one for the scale parameter. However, using two separate charts may
result in invalid conclusion about the state of the process because a simultaneously shift
in the location and scale parameters is a bi-aspect phenomenon. Thus, single charts for
joint monitoring of location and scale parameters have been introduced. Gan [25] devel-
oped an EWMA chart for joint monitoring of the process mean and variance of normally
distributed data while Chen and Cheng [15] proposed the max-chart by combining the
ShewhartX and S charts. An overview of the single charts for joint monitoring of themean
and variance is presented by Cheng and Thaga [16] andMcCracken and Chakraborti [41].
Recent papers about this topic are those of Mukherjee et al. [18], Zafar et al. [63], Chong
et al. [19] and Chatterjee et al. [14].

All the above-mentioned control charts assume that the underlying process distribu-
tion (the normal one in the most cases) is known. However, this assumption is often
violated. In recent years, researchers have introduced distribution-free (or nonparamet-
ric) control charts. We recommend Amin and Searcy [7], Li et al. [36], Graham et al. [27],
Chakraborty et al. [12], Li et al. [34,35] Alevizakos et al. [3,4] and Perdikis et al. [51]
for distribution-free Phase I charts for monitoring the location parameter and Das [22],
Das and Bhattacharga [23], Yang and Arnold [62] and Haq [29] for monitoring the scale
parameter. On the other hand, distribution-free Phase II charts for monitoring shifts in
the location parameter can be found in the works of Chakraborti and Van de Wiel [11],
Graham et al. [28], Malela-Majika and Rapoo [40], Mukherjee et al. [45], Mabube et al.
[37,38], Malela-Majika [39] and Letshedi et al. [33].

In the last decades, distribution-free Phase II control charts have been introduced
for joint monitoring the location and scale parameters using a reference sample from
Phase I. There are several types of statistics for these charts, such as the Cucconi, Lep-
age, Cramér–von Mises (CvM), and Kolmogorov-Smirnov (KS). Ross and Adams [54]
developed two distribution-free charts based on the CvM and KS statistics to detect a
general shift on the process distribution. Mukherjee and Chakraborti [44] presented the
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Shewhart-Lepage (SL) chart for jointmonitoring of the location and scale parameters while
Chowdhury et al. [20] presented the Shewhart-Cucconi (SC) chart and they found that it
performs better or similar to the SL chart. Chowdhury et al. [21] introduced the CUSUM-
Lepage (CL) chart and they showed that it is more effective than other distribution-free
CUSUM schemes and the SL chart. Zhang et al. [64] presented the EWMA chart based
on the CvM statistic (ECvM) which is robust to non-normality data and more sensitive
than the SL and SC charts. Mukherjee and Marozzi [44] introduced the CUSUM-Cucconi
(CC) chart where it outperforms the SL, SC, and CL charts for various shifts in loca-
tion and/or scale parameters. Mukherjee and Marozzi [47] presented a modified SL chart
and they introduced a new type of charts; the circular-grid charts. Mukherjee [43] pre-
sented the EWMA-Lepage (EL) chart using a structure of charting statistic for reducing
the inertia problem and comparing to the SL and CL charts, it was found more effec-
tive for several ranges of shifts. Mukherjee and Sen [49] investigated the optimal design
of SL type schemes while Chong et al. [17] presented four SL type schemes for monitor-
ing one-sided shifts in the location and scale parameters. Song et al. [59] presented several
EWMA schemes based on the Lepage and Cucconi statistics. Chong et al. [18] presented
distribution-free Shewhart-type charts based on the combination of p-values for simul-
taneously monitoring of shifts in location and scale parameters. Song et al. [60] studied
the EL and EWMA-Cucconi (EC) charts with dynamic fast initial response (FIR). Song
et al. [58] proposed several distribution-free circular-grid charts based on the Cucconi and
percentile modified Lepage (PML) statistics. Chan et al. [13] investigated the DEWMA-
Lepage (DL) and HWMA-Lepage (HL) charts with time-varying and steady-state control
limits and they showed that both of them are more effective than the EL chart when time-
varying control limits are used. For more discussion on distribution-free control charts,
the reader are referred to Gibbons and Chakraborti [26], Qiu [52] and Chakraborti and
Graham [9,10].

In the SPC literature, the development and study of distribution-free charting schemes
is very popular in the recent years. To the best of our knowledge, a TEWMA chart for joint
monitoring of location and scale parameters has not been introduced. In this article, moti-
vated by the works of Alevizakos et al. [5], Mukherjee [43], and Chan et al. [13], we present
a distribution-free TEWMA chart based on the Lepage statistic (denoted as TL chart) for
jointmonitoring of shifts in the location and scale parameters.We study its performance in
terms of the run-length characteristics using time-varying and steady-state control limits
for the zero-state case and we also compare it with the EL and DL charts. Although, many
distribution-free control charts based on Lepage statistic have been developed, we decided
to compare the proposed TL chart with the DL and EL charts because (i) the TEWMA
scheme is an extension of the EWMA scheme and (ii) the EL and DL charts are more
effective than the Shewhart and CUSUM schemes in a wide range of shifts, as shown in
Mukherjee [43] and Chan et al. [13]

The rest of this article is organized as follows: In Section 2, we provide the statisti-
cal background of the Lepage statistic as well as the structure of the EL and DL charts.
In Section 3, we present the proposed TL chart and a step-by-step procedure for it. The
in-control (IC) and out-of-control (OOC) performances of the TL chart as well as a com-
parison study with EL and DL charts are given in Section 4. An illustrative example
is provided in Section 5 to demonstrate the application of the proposed chart. Finally,
conclusions and recommendations are given in Section 6.
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2. Distribution-free Phase II control charts based on the Lepage statistic

2.1. Lepage statistic for two-sample test

Assume that Xm = (X1,X2, . . . ,Xm) is a reference (or Phase I) sample of size m with
unknown continuous cumulative distribution function (cdf) F(x). Moreover, let Ytj =
(Y1j,Y2j, . . . ,Ynj), with t = 1, 2, . . . , n and j = 1, 2, . . ., denoted as Y, be the jth Phase II
(test) sample of size n with cdf G(y). Note that the Phase II samples are assumed to be
independent and identically distributed (iid) and mutually independent from the Phase I
sample. The cdf F andG satisfy the relationG(x) = F( x−θ

δ
), where θ ∈ R and δ > 0 repre-

sent the shifts in the location and scale parameters, respectively. The process is considered
to be IC if θ = 0 and δ = 1. When θ �= 0 and δ = 1, we have a pure location shift, while
θ = 0 and δ �= 1 indicates a pure scale shift. Finally, if θ �= 0 and δ �= 1, thenwe have a shift
in both location and scale parameters. In the above three cases, the process is declared as
OOC.

Wilcoxon [61] proposed a statistic, named asWilcoxon rank sum (WRS) statistic, to test
the equality of the two location parameters by merging the m observations of the Phase I
and the n observations of the jth test sample. Define an indicator variable Ik = 0 or 1 if the
kth order statistic of the combined sampleN = m+ n is aX orY observation, respectively.
The WRS statistic, say T1, is defined as

T1 =
N∑
k=1

kIk. (1)

The IC expected value and variance of the T1 statistic are given by

E (T1|IC) = μT1 = n(N + 1)
2

(2)

and

Var (T1|IC) = σ 2
T1 = mn(N + 1)

12
. (3)

Ansari and Bradley [8] proposed a statistic, named as AB statistic, to test the equality of
the two scale parameters. The AB statistic, say T2, is defined as

T2 =
N∑
k=1

∣∣∣∣k − 1
2
(N + 1)

∣∣∣∣ Ik. (4)

The IC expected value and variance of the AB statistic are given by

E(T2|IC) = μT2 =

⎧⎪⎪⎨
⎪⎪⎩
nN
4

, if N is even,

n(N2 − 1)
4N

, if N is odd
(5)
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and

Var(T2|IC) = σ 2
T2 =

⎧⎪⎪⎨
⎪⎪⎩
mn(N2 − 4)
48(N − 1)

, if N is even,

mn(N + 1)(N2 + 3)
48N2 , if N is odd.

(6)

For more information about the T1 and T2 statistics, the reader is referred to Gibbons and
Chakraborti [26]. Note that for the jth test sample, the WRS and AB statistics are denoted
as T1j and T2j, respectively, while the corresponding standardized statistics are denoted as

S1j = T1j − μT1
σT1

and S2j = T2j − μT2
σT2

.

Lepage [32] introduced a statistic to test the equality of both the location and scale
parameters of the two samples, given by

Lj = S21j + S22j. (7)

It should be pointed out that E(S1j|IC) = E(S2j|IC) = 0 and E(S21j|IC) = E(S22j|IC) = 1.
Thus, E(Lj|IC) = 2. The Lj statistic is non-negative by definition and a large value of Lj
means that a shift in the process location and/or scale parameter(s) exists. As a result, the
distribution-free Phase II control charts based on the Lepage statistic have been designed
with an upper control limit (UCL). Furthermore, there is no explicit formof the conditional
variance of the Lepage statistic and it depends on the values ofm and n.

2.2. The EL control chart

The charting statistic of the EL scheme, as proposed by Mukherjee [43], is given by

ELj = max{2, λLj + (1 − λ)ELj−1}, (8)

where 0 < λ ≤ 1 is the smoothing parameter and EL0 = 2. According to Song et al. [59],
this type of scheme helps in reducting the inertia problem of the EWMA chart. The chart-
ing statistic of the traditional EL chart, as discussed by Chakraborti and Graham [9] and
studied by Song et al. [59] and Chan et al. [13], is defined as

ELj = λLj + (1 − λ)ELj−1, (9)

where EL0 = E(Lj|IC) = 2. The time-varying UCL is given by

UCLj = 2 + L
√

λ

2 − λ

[
1 − (1 − λ)2j

]
ξ1 + [

1 − (1 − λ)j
]2

ξ2, (10)

where L>0 is the width of control limits, ξ1 = E[Var(Lj|Xm, IC)] and ξ2 =
Var[E(Lj|Xm, IC)]. Chan et al. [13] computed the values of ξ1 and ξ2 for m = 100, 300
and n = 5, 10, 15 by performing Monte Carlo simulations. Table 1 reproduces the values
of ξ1 and ξ2 from Table 1 of Chan et al. [13].
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Table 1. Values of ξ1 and ξ2 connected to the Lepage statistic.

m n ξ1 ξ2

100 5 3.5257 0.02665
100 10 3.6909 0.04684
100 15 3.7288 0.07875
300 5 3.5758 0.00755
300 10 3.7673 0.01052
300 15 3.8306 0.01474

For large values of j, the steady-state UCL becomes

UCLj = 2 + L
√

λ

2 − λ
ξ1 + ξ2. (11)

A process is considered to be OOC if a charting statistic exceeds the UCL; otherwise, the
process is said to be IC. Note that the EL chart reduces to the SL chart [44] for λ = 1.

2.3. The DL control chart

The DEWMA scheme is a combination of two EWMA schemes. The charting statistic of
the DL chart is given via the system of equations

⎧⎨
⎩
ELj = λLj + (1 − λ)ELj−1,

DLj = λELj + (1 − λ)DLj−1,
(12)

where EL0 = DL0 = 2. The time-varying UCL is given by

UCLj = 2 + L
√
KDjξ1 + [

1 − (1 + λj)(1 − λ)j
]2

ξ2, (13)

where

KDj =
λ4[1 + (1 − λ)2 − (j + 1)2(1 − λ)2j

+(2j2 + 2j − 1)(1 − λ)2j+2 − j2(1 − λ)2j+4]
[1 − (1 − λ)2]3

.

For large values of j, the steady-state UCL becomes

UCL = 2 + L

√
λ(2 − 2λ + λ2)

(2 − λ)3
ξ1 + ξ2. (14)

A process is considered to be OOC if a charting statistic DLj exceeds the UCL; otherwise,
the process is declared as IC.

As we mentioned earlier, the DL control chart was studied by Chan et al. [13] using
time-varying and steady-state control limits. They showed that the DL chart is superior to
the EL chart in detecting small and moderate pure or mixed shifts.



JOURNAL OF APPLIED STATISTICS 1177

3. The proposed TL control chart

3.1. Structure of the TL chart

The charting statistic of the TL control chart is defined via the system of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ELj = λLj + (1 − λ)ELj−1,

DLj = λELj + (1 − λ)DLj−1,

TLj = λDLj + (1 − λ)TLj−1,

(15)

where EL0 = DL0 = TL0 = 2. The charting statistic TLj can also be written as

TLj = λ3

2

j∑
i=1

(1 − λ)j−i(j − i + 1)(j − i + 2)Lj + (1 − λ)j
[
λj(λj + λ + 2) + 2

]
. (16)

Using Equation (16), it is easy to prove that E(TLj|IC) = 2, while following the approach
of Mukherjee [43] and Chan et al. [13], where Var(TLj|IC) = E[Var(TLj|Xm, IC)] +
Var[E(TLj|Xm, IC)], the IC variance of the statistic TLj is given by

Var(TLj|IC) = KTjξ1 +
[
1 − (1 − λ)j

2
[
λj(λj + λ + 2) + 2

]]2
ξ2, (17)

where

KTj =
[
d3λ6

4

[
− j(j2 − 1)(j − 2)dj−3

1 − d
− 4j(j2 − 1)dj−2

(1 − d)2
− 12j(j + 1)dj−1

(1 − d)3

−24(j + 1)dj

(1 − d)4
+ 24

(
1 − dj+1)

(1 − d)5

]
+ 2d2λ6

[
− j(j2 − 1)dj−2

1 − d

− 3j(j + 1)dj−1

(1 − d)2
− 6(j + 1)dj

(1 − d)3
+ 6

(
1 − dj+1)
(1 − d)4

]

+ 7dλ6

2

[
− j(j + 1)dj−1

1 − d
− 2(j + 1)dj

(1 − d)2
+ 2(1 − dj+1)

(1 − d)3

]

+ λ6
[
1 − dj+1

(1 − d)2
− (j + 1)dj

1 − d

]]
,

with d = (1 − λ)2. The proof is derived in the Supplementary Material. More information
about the mean and variance of the TEWMA statistic can be found in Alevizakos et al. [5].
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The time-varying UCL of the TL chart is given by

UCLj = 2 + L
√
Var(TLj|IC), (18)

where Var(TLj|IC) is given by Equation (17). For large values of j, the steady-state UCL
becomes

UCL = 2 + L

√[
6(1 − λ)6λ

(2 − λ)5
+ 12(1 − λ)4λ2

(2 − λ)4
+ 7(1 − λ)2λ3

(2 − λ)3
+ λ4

(2 − λ)2

]
ξ1 + ξ2.

(19)

The TL chart gives an OOC signal at the jth test sample if the charting statistic TLj plots
on or over the UCL.

3.2. Implementation of the TL chart

The proposed TL chart can be implemented using the following steps:

Step 1: Select a Phase I sample Xm = (X1,X2, . . . ,Xm) from an IC process.
Step 2: Select a Phase II (or test) sample Ytj = (Y1j,Y2j, . . . ,Ynj), where j = 1, 2, . . .

Note that the test samples are themselves independent and also independent
from the Phase I sample. When the process is IC, the distributions of the two
samples are the same (i.e. θ = 0 and δ = 1). On the other hand, when the process
is OOC, the distribution of the test sample is taken to be of the same form as that
of the Phase I sample, but with a shift in the location and/or scale parameters(s).

Step 3: Calculate the WRS (T1j) and AB (T2j) statistics using Equations (1) and (4)
respectively, the standardized S1j and S2j statistics and the Lepage Lj statistics
using Equation (7). After that, compute the TLj statistic using Equation (16).

Step 4: Compute the time-varying or steady-state UCL using Equation (18) or (19)
respectively, and compare each charting statistic with them.

Step 5: If TLj ≥ UCLj (or UCL), then the process is considered to be OOC at the jth test
sample. Otherwise, the process is considered to be IC and we proceed to the next
test sample.

Step 6: Follow-up procedure: When the process is OOC, compute the p-values for the
WRS test for location parameters (denoted as p1) and the AB test for scale
parameters (denoted as p2) on the basis of the Phase I sample with m obser-
vations and the jth test sample with n observations. The following four states are
considered:
• If p1 is significant (or low) but not p2, then only a shift in the location

parameter has been occurred.
• If p2 is significant but not p1, then only a shift in the scale parameter has been

occurred.
• If both p1− and p2−values are significant, then a shift in both the location

and scale parameters is indicated.
• If both p1− and p2−values are insignificant, then either there is an interaction

between location and scale shifts or because of a false alarm.
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The above follow-up procedure has also been used by Chowdhury et al. [20,21],
Mukherjee [43] and Chan et al. [13]. Note that the EL and DL charts can also be
implemented in a similar way.

4. Performance analysis and comparison

The performance of a control chart is usually measured in terms of the run-length distri-
bution and its associated characteristics. The average run-length (ARL) is themost popular
performance measure of a control chart and is defined as the expected number of charting
statistics that must be plotted before the chart gives an OOC signal [42]. When the pro-
cess is IC, the ARL is denoted as ARL0 and should be large to avoid false alarms. On the
other hand, when the process is OOC, the ARL is denoted as ARL1 and should be small
to detect the shift quickly. Except for the ARL, the standard deviation of the run-length
(SDRL) and several percentile points are also evaluated to obtain more information about
the run-length distribution.

In this Section, there are many tables which present the IC and OOC performance of
the TL, DL and EL control charts for several continuous distributions. In order to be more
easier for the reader to focus on the conclusions of this study, we have put tables into an
”Online Supplement”.

4.1. Monte Carlo simulation approach

The ARL0 is a function of the design parameters of a control chart and can be computed
using Markov chain approach, integral equations and Monte Carlo simulations. In this
study, we perform the latter method because the charting statistic and the time-varying
UCL are too complex. Thus, numerical computations in R software are used to determine
the value of L on the basis of 25,000 replications. As the proposed chart is distribution-
free, we generatem observations (Phase I) from a standard normal distribution and 15,000
Phase II samples, each of size n, from the same distribution; however any continuous prob-
ability distribution can be considered. Following the steps described in subsection 3.2 and
changing only the value ofL, we determine the appropriate one, so that theARL0 be approx-
imately equal to a desired value. We consider m = 100 and 300 for the Phase I sample,
n = 5, 10 and 15 for the Phase II sample and λ = 0.05, 0.10, 0.25 and 0.50 for the smooth-
ing parameter. Table 2 presents the L values for several combinations of (m, n, λ) for the
TL chart, so that the ARL0 be approximately equal to 500. From this table, we observe that
for a fixed value of m (n), the L value decreases (increases) as the value of n (m) increases
in order to achieve the desired ARL0 value. The same applies when the sample sizesm and
n are fixed and the λ value increases.

In order to compute the run-length characteristics of the TL chart under the OOC con-
dition, we consider that a shift in the location and/or scale parameter(s) occurs at the start,
ie, from the first Phase II sample. In addition, we follow the same steps as earlier to eval-
uate the zero-state run-length characteristics. The steady-state run-length characteristics
are computed in a similar way, but the shift in the process parameter(s) occurs not from
the first Phase II sample, but later. Steps 1 to 5 are repeated 25,000 times and the run-length
characteristics are evaluated using the 25,000 values of the run-length. In this study, like
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the majority of the cited papers on joint monitoring the unknown values of location and
scale parameters, we investigate the zero-state run-length characteristics.

4.2. The IC run-length distribution

The TL chart is distribution-free, so the IC run-length characteristics remain the same
for all continuous distributions. To investigate the IC and OOC performance of the pro-
posed TL chart, we consider two symmetric and two asymmetric distributions. Those are:
(i) the normal distribution with location parameter θ and scale parameter δ, denoted by
N(θ , δ), (ii) the Laplace or double exponential distribution with location parameter θ and
scale parameter δ/

√
2, denoted by L(θ , δ/

√
2), (iii) the shifted exponential distribution

with shift parameter θ and scale parameter δ, denoted by SE(θ , δ) and the Gumbel dis-
tribution with location parameter θ and scale parameter δ, denoted by Gumbel(θ , δ). We
remind that the IC values of location and scale parameters are θ = 0 and δ = 1, respec-
tively. Table 3 presents the probability density functions (pdf) as well as the mean and the
variance of the above distributions. Note that γ in the mean value of Gumbel distribution
represents the Euler-Mascheroni constant. Based on the L values of Table 2, we evaluated
the IC run-length characteristics of the TL chart under theN(0, 1) distribution. These val-
ues are approximately the same for any continuous distribution because the proposed chart
is distribution-free. This can be concluded from Tables S2-S9, where ARL0 and IC SDRL
(SDRL0) are approximately the same for all considered distributions. The results are pre-
sented in Table S1.More specifically, the first row of each cell in Table S1 presents the ARL0

Table 2. Values of L for different combinations of (m, n, λ) for the TL control chart in order to achieve an
ARL0 ≈ 500.

Time-varying UCL Steady-state UCL

m n λ = 0.05 0.10 0.25 0.50 0.05 0.10 0.25 0.50

100 5 0.648 1.236 2.140 3.020 0.500 1.161 2.114 3.011
100 10 0.462 1.045 1.971 2.892 0.325 0.966 1.945 2.883
100 15 0.261 0.804 1.753 2.716 0.137 0.721 1.722 2.707
300 5 1.127 1.670 2.461 3.306 0.999 1.607 2.433 3.297
300 10 1.101 1.628 2.424 3.256 0.953 1.560 2.399 3.247
300 15 1.007 1.562 2.375 3.213 0.871 1.493 2.347 3.202

Table 3. Distributions used in the OOC performance study.

Distribution pdf Mean Variance

Normal f (x) = 1
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and the SDRL0 while the second row presents the 5th, 25th, 50th, 75th and 95th percentile
points of the IC run-length distribution. From Table S1, we observe the following:

(1) The IC run-length distribution is highly positively skewed as the ARL0 is larger than
the 50th percentile point (MRL0). The difference between the ARL0 and the MRL0
is large when the TL chart is designed with a time-varying UCL and a small value
of λ (0.05 or 0.10) and a practitioner uses a small value of m and a large value of n.
For example, when a time-varying UCL is used, the MRL0 of a TL chart with (m =
100, n = 15, λ = 0.05, L = 0.261) is 15 while the corresponding value of the TL chart
with (m = 300, n = 5, λ = 0.25, L = 2.461) is 284.

(2) Generally, for fixed values ofm andλ, the SDRL0 and the 95th percentile point increase
as the value of n increases while the 5th, 25th and 50th percentile points decrease.
As regard as the 75th percentile point, we observe that it decreases, especially for
small values of λ. For instance, when a steady-state UCL is used, the SDRL0 and
the percentile points of the TL chart with (m = 100, n = 5, λ = 0.10, L = 1.161) are
1133.47, 22, 70, 184, 472 and 1872while the corresponding values of theTL chartswith
(m = 100, n = 10, λ = 0.10, L = 0.966) and (m = 100, n = 15, λ = 0.10, L = 0.721)
are 1202.85, 19, 58, 165, 451, 1923 and 1242.44, 16, 44, 138, 427, 2054, respectively.

(3) For fixed values of n and λ, the SDRL0 and the 95th percentile point decrease as the
value of m increases while the other percentile points increase. For example, when
a time-varying UCL is used, the SDRL0 and the percentile points of the TL chart
with (m = 100, n = 5, λ = 0.25, L = 2.140) are 953.59, 3, 68, 210, 547, 1882 while the
corresponding values of the TL chart with (m = 300, n = 5, λ = 0.25, L = 2.461) are
673.52, 8, 101, 284, 640, 1697.

(4) For fixed values of m and n, the SDRL0 and the 95th percentile point decrease as the
λ value increases and vice versa for the other percentile points. For example, when a
time-varying UCL is used, the SDRL0 and the percentile points of the TL chart with
(m = 300, n = 10, λ = 0.05, L = 1.101) are 998.59, 1, 20, 175, 559, 2015while the cor-
responding values of the TL chart with (m = 300, n = 10, λ = 0.25, L = 2.424) are
661.54, 6, 97, 277, 643, 1720.

(5) For fixed values of (m, n, λ), most of the percentile points, except for the 95th, are
larger when one uses a steady-state UCL instead of a time-varying UCL. Moreover,
the SDRL0 value is smaller. For example, when (m = 100, n = 5, λ = 0.05), the SDRL0
and the percentile points of a TL chart with a time-varying UCL and L = 0.648 are
1560.69, 1, 3, 65, 329, 2185 while the corresponding values of a TL chart a steady-state
UCL and L = 0.500 are 1340.46, 25, 56, 150, 404, 1873.

To sum up, a small value ofm and a large value of n in combination with a small value of λ
may result in a large number of false alarms as the SDRL0 value is very high. For this reason,
we recommend practitioners to use a large value ofm (say,m = 300) and a medium value
of λ to avoid many OOC signals.

4.3. The OOC performance

To study the effect of shift(s) in the location and/or scale parameter(s), we consider
35 combinations of (θ , δ) where θ ∈ {0, 0.1, 0.25, 0.5, 1, 1.5, 2} and δ ∈ {1, 1.1, 1.25, 1.5, 2}.
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Tables S2-S9 present the ARL and SDRL (given in the parenthesis) values of the TL, DL and
EL charts when m = 100, n = 5 and ARL0 ≈ 500 for both time-varying and steady-state
UCL.Moreover, the performance of the TL chart is evaluated for λ ∈ {0.05, 0.10, 0.25, 0.50}
while the performance of the DL and EL charts for λ ∈ {0.05, 0.25}.

4.3.1. OOC performance under a normal distribution
Tables S2 and S3 show the OOC performance of the TL, DL and EL charts with a time-
varying and a steady-state UCL respectively, under a N(θ , δ) distribution. Bold fonts in
Table S2 indicate the smallest ARL1 values for each shift.

From Table S2, we observe that the TL chart with λ = 0.05 is the most effective con-
trol chart at almost all levels of shifts, except for (θ , δ) = (0.1, 1) and (0.5, 1.5) where the
DL chart with λ = 0.05 has the best detection ability. The OOC performance of all charts
deteriorates as the value of λ increases. However, a larger value of λ results in a smaller
SDRL0, ie, in a smaller probability of false OOC signal. We notice that when λ = 0.25,
the TL chart is superior to the DL chart, especially for a pure scale shift (θ = 0, δ �= 1) and
small shifts in both parameters (0.1 ≤ θ ≤ 0.5, 1.1 ≤ δ ≤ 1.25). For the rest range of shifts,
the TL chart performs a slightly better or similarly to the DL chart. Both of the TL and DL
charts outperform the EL chart over the entire ranges of shifts.

FromTable S3, where the charts are designedwith a steady-stateUCL, the results are dif-
ferent from those observed in Table S2. It is seen that a small value of λ is preferred to detect
a pure small shift in one of two parameters or a small shift in both parameters simultane-
ously while a larger value of λ is more effective for moderate to large shifts. For example,
a TL chart with λ = 0.50 outperforms the other TL charts with smaller values of λ for a
pure andmoderate to large location shift (1 ≤ θ ≤ 2, δ = 1), formoderate to large location
shifts and small scale shifts (1 ≤ θ ≤ 2, 1.1 ≤ δ ≤ 1, .25), for moderate to large location
shifts and a moderate scale shift (0.5 ≤ θ ≤ 2, δ = 1.5) and for a pure and large scale shift
(δ = 2). Comparing with the DL and EL charts, the DL chart with λ = 0.05 is the best-
performing scheme for a pure and small location shift (0.1 ≤ θ ≤ 0.5, δ = 1), for small
shifts in both parameters (0.1 ≤ θ ≤ 0.25, δ = 1.1) and for (θ , δ) = (0, 1.25), (0.1, 1.25).
On the other hand, the TL chart is the most effective chart for a pure and very small shift
in scale parameter, ie, (θ = 0, δ = 1.1). Finally, the EL charts are superior to its competi-
tors for the rest ranges of shifts, especially for mixed shifts with a moderate to large scale
shift (δ ≥ 1.5).

Finally, comparing each scheme with a time-varying UCLwith its corresponding with a
steady-state UCL for the same value of λ, we observe that the differences between the ARL1
values are largewhenλ = 0.05. These differences decrease as the value of λ increases. How-
ever, a TL chart with λ = 0.25 and a time-varying UCL provides a good detection ability
for a large range of shifts comparing to DL and EL charts while it also has an acceptable
SDRL0 value.

4.3.2. OOC performance under a Laplace distribution
The OOC performance of the TL, DL and EL charts with a time-varying and a steady-state
UCL under a L(θ , δ/

√
2) distribution is presented in Tables S4 and S5, respectively. Note

that using θ and δ/
√
2 as location and scale parameters for the Laplace distribution, the

mean/median and variance are equal to the corresponding values under a N(θ , δ) distri-
bution, ie, θ and δ2, respectively. Bold fonts in Table S4 indicate the smallest ARL1 values
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for each shift. Generally, the results are similar to the results observed under the N(θ , δ)
distribution, but with some minor differences.

From Table S4, it is seen that the TL chart with λ = 0.05 outperforms the other charts
over the entire ranges of shifts, except for a pure and large location shift (θ = 0, δ = 2)
and mixed small to moderate location and large scale shifts (0.1 ≤ θ ≤ 0.5, δ = 2) where
the DL chart with λ = 0.05 performs a slightly better. Like to the N(θ , δ) distribution,
the detection ability of all charts deteriorates as the value of λ increases. Furthermore,
the TL chart with λ = 0.25 is more effective than the DL chart with λ = 0.25 for the
same ranges of shifts with those under the normal distribution, ie, (θ = 0, δ �= 1) and
(0.1 ≤ θ ≤ 0.5, 1.1 ≤ δ ≤ 1.25).

The results about the OOC performance of control charts with a steady-state UCL
are very close to those under the N(θ , δ) distribution. A minor difference is that the
TL chart with λ = 0.05 is the most effective chart for pure and small location shifts
(0.1 ≤ θ ≤ 0.25, δ = 1) and for very small shifts in both parameters (θ = 0.1, δ = 1.1)
while the DL chart with λ = 0.05 is the most sensitive for a pure and small scale shift
(θ = 0, 1.1 ≤ δ ≤ 1.25) and for small shifts in both parameters, ie, (θ = 0.25, δ = 1.1) and
(0.1 ≤ θ ≤ 0.25, δ ≤ 1.25). The EL chart is superior to its competitors for the rest ranges
of shifts.

Finally, we observe that the ARL1 values under the Laplace distribution are smaller than
those under the normal distribution for a pure location shift and for mixed shifts with
θ ≥ 0.5 and vice versa for the rest ranges of shifts.

4.3.3. OOC performance under a shifted exponential distribution
The results about the OOC performance of the TL, DL and EL charts with a time-varying
and a steady-state UCL under a SE(θ , δ) distribution are shown in Tables S6 and S7, respec-
tively where bold fonts in Table S6 indicate the smallest ARL1 values for each shift. The
results are quite similar to those of the symmetric distributions; however, there are some
differences.

From Table S6, we observe that the TL chart with λ = 0.05 is the best-performing
chart, especially for pure and small to moderate location shifts (θ ≤ 1, δ = 1) and for
mixed shifts with a small to moderate location shift, except for the cases of (θ , δ) =
(0.1, 1) and (0.1, 1.1) where the TL chart with λ = 0.5 and the EL chart with λ = 0.25
are the most sensitive, respectively. Moreover, the control charts are ARL-biased for a pure
and small shift in the location parameter (θ = 0.1, δ = 1) and in some cases for mixed
small shifts in both parameters (θ = 0.1, δ = 1.1). It is to be noted that the ARL1 val-
ues for (θ , δ) = (0.1, 1), (0.1, 1.1) and (0.1, 1.25) are larger than the corresponding values
of (θ , δ) = (0, 1), (0, 1.1) and (0, 1.25), respectively. The performances of control charts
deteriorate as the value of λ increases, except for shifts of (θ = 0.1, δ ≤ 0.1) where charts
with large values of λ perform better. Finally, the TL chart with λ = 0.25 is more effective
than the DL and EL charts with λ = 0.25 for pure and small to moderate location shifts
(0.1 ≤ θ ≤ 0.5, δ = 1) or mixed shifts with a small to moderate location shift (0.1 ≤ θ ≤
0.5, δ �= 1), except for shifts of (θ = 0.1, δ ≤ 1.1) where the EL chart is more effective.

Among the charts with a steady-state UCL, it is seen that a small value of λ is preferred
to detect small shifts in parameters and medium to large values of λ are more effective for
detectingmoderate to large shifts. The TL chart with λ = 0.50 has the smallest ARL1 value
for (θ = 0.1, δ = 1) while the TL chart with λ = 0.05 is the most effective for (θ = 0, δ =
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1.25).On the other hand, theDL chartwithλ = 0.05 is very sensitive for a pure and small to
moderate scale shift [(θ = 0, δ = 1.1) and (θ = 0, δ = 1.5)] aswell as formixed small shifts
in both parameters; those are (θ , δ) = (0.25, 1), (0.25, 1.1), (0.1, 1.25), (0.25, 1.25). The EL
chart outperforms the other charts for the rest ranges of shifts, ie, for mixed moderate to
large shifts in both parameters.

4.3.4. OOC performance under a Gumbel distribution
The OOC performance of the competing charts with a time-varying and a steady-state
UCL under a Gumbel(θ , δ) distribution is provided in Tables S8 and S9, respectively. Bold
fonts indicate the smallest ARL1 values for each shift. The results are similar to those under
the SE(θ , δ) distribution.

From Table S8, we observe that the TL chart with λ = 0.05 outperforms the DL and
EL charts over the entire ranges of shifts, except for (θ = 0.1, δ = 1) and (θ ≤ 0.1, δ = 2)
where the EL chart with λ = 0.25 and DL chart with λ = 0.05 respectively, are the most
effective. The charts are ARL-biased only for (θ = 0.1, δ = 1) while the ARL1 values of
shifts with θ = 0.1 are always larger than those with θ = 0 for the same amount of scale
shift. Comparing the charts with λ = 0.25, the proposed TL chart ismore effective than the
DL chart, especially for pure and small tomoderate location shifts (0.1 ≤ θ ≤ 1, δ = 1) and
for mixed small shifts in both parameters (0.1 ≤ θ ≤ 1, 1.1 ≤ δ ≤ 1.25). The two charts
perform similarly for pure and large location shifts (θ ≥ 1.5, δ = 1) and mixed large shifts
in both parameters (θ ≥ 1.5, δ ≥ 1.5). We note that both of TL and DL charts are more
effective than the EL chart at the whole of shifts.

From Table S9, we observe that the TL chart with λ = 0.05 is the most effective chart
for the cases of (θ , δ) = (0.25, 1), (0.1, 1.1) and (0.25, 1.1)while theDL chart with λ = 0.05
has the best detection ability against the other charts for (θ , δ) = (0.5, 1), (0, 1.1), (0.5, 1.1)
and (θ ≤ 0.25, δ = 1.25). The EL chart outperforms its competitors for the rest ranges of
shifts.

5. Illustrative example

In order to demonstrate the application of the proposed TL chart, we use a dataset, given
by Figueiro and Gomes [24], about the lengths (in mm) of cork stoppers. The dataset is
presented in Table 4. The first 100 observations represent the Phase I sample and therefore,
m = 100. The Phase II dataset consists of 10 samples, each of size n = 5. It should be
noted that according to Figueiro and Gomes [24] and Song et al. [60] who also studied
this dataset, the lengths of cork stoppers can be considered to be right-skewed. It is not
necessary to estimate the unknown values of process parameters from the Phase I dataset
because the proposed chart does not require the knowledge of them. The Lepage statistic
uses the Phase I and each of Phase II samples to test the equality of both the location and
scale parameters. Setting an ARL0=500 and using (m, n, λ) = (100, 5, 0.25), we construct
the TL, DL and EL charts with a time-varying UCL. Table 5 shows the charting statistics of
the control charts with the corresponding UCLj values while Figure 3 displays the control
charts. Bold fonts in Table 5 and red dots in Figure 1 indicate the charting statistics that
lie over the corresponding UCLj values. From Figure 1, we observe that the TL chart gives
OOC signals at test samples 2, 3 and from 6 until 10, while the DL chart produces OOC
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Table 4. Lengths (in mm) of cork stoppers.

Sample
number Phase I

Sample
number Phase II

1 44.55 44.78 44.88 44.78 44.73 1 45.25 45.12 44.65 45.02 45.08
2 44.68 44.96 45.20 44.72 45.21 2 44.80 44.86 45.03 44.86 44.84
3 44.82 44.88 45.65 44.48 44.76 3 44.68 45.10 45.02 44.79 44.79
4 45.15 44.79 45.11 44.51 44.92 4 45.00 45.00 44.95 45.01 45.12
5 44.73 44.69 44.93 44.98 45.47 5 44.77 45.06 45.27 45.23 44.94
6 44.78 44.48 44.89 44.77 45.03 6 45.21 45.16 45.07 45.21 45.17
7 44.78 44.96 44.77 45.19 45.12 7 45.18 45.14 45.01 44.96 44.93
8 45.09 44.83 44.98 45.05 44.75 8 45.00 44.93 45.06 45.06 44.86
9 44.91 44.76 44.83 44.77 45.08 9 44.86 44.70 45.21 44.59 44.96
10 44.90 45.34 44.84 44.94 44.90 10 44.82 44.95 44.79 45.05 44.76
11 44.86 44.79 45.07 44.90 44.99
12 44.98 44.61 44.75 44.82 44.86
13 45.18 44.64 45.10 45.02 44.87
14 45.02 44.84 44.93 44.66 44.78
15 44.75 44.83 44.89 44.72 44.82
16 44.85 44.73 44.73 44.80 44.90
17 44.78 44.82 44.99 45.15 45.32
18 44.68 45.07 44.79 44.86 45.04
19 44.52 45.02 44.85 44.79 45.19
20 44.90 44.89 44.91 45.24 44.86

Table 5. Charting statistics and UCLj values of control charts and follow-up procedure.

EL chart DL chart TL chart p1-value p2-value

j Lj ELj UCLj DLj UCLj TLj UCLj p−
1 p+

1 p−
2 p+

2

1 5.4666 2.8667 3.6478 2.2167 2.2912 2.0542 2.0630 0.9358 0.0661 0.9629 0.0371
2 5.2706 3.4677 4.0671 2.5294 2.5268 2.1730 2.1556 0.5390 0.4670 0.0183 0.9817
3 0.1635 2.6416 4.2742 2.5575 2.7241 2.2691 2.2648 0.4254 0.5805 0.6602 0.3398
4 3.8564 2.9453 4.3864 2.6544 2.8802 2.3654 2.3774 0.9757 0.0252 0.4911 0.5089
5 4.2515 3.2719 4.4499 2.8088 2.9994 2.4763 2.4848 0.9562 0.0452 0.8786 0.1214
6 13.5538 5.8423 4.4869 3.5672 3.0882 2.7490 2.5816 0.9988 0.0013 0.9822 0.1780
7 4.3909 5.4795 4.5089 4.0452 3.1532 3.0731 2.6656 0.9818 0.0189 0.5866 0.4134
8 2.8446 4.8207 4.5222 4.2391 3.2002 3.3646 2.7362 0.9386 0.0633 0.2419 0.7581
9 0.5946 3.7642 4.5305 4.1204 3.2337 3.5535 2.7942 0.3760 0.6297 0.7758 0.2242
10 0.3383 2.9077 4.5358 3.8172 3.2576 3.6195 2.8409 0.4461 0.5598 0.3077 0.6923

signals at test samples 2 and from 6 until 10. Finally, the EL chart offers OOC signals at test
samples 6, 7 and 8.

Next, we apply a follow-up procedure by computing the p1 and p2 values for the WRS
and AB tests, respectively. In order to specify the direction of shift (upward or downward),
we compute the p+

k and p−
k , k = 1, 2, values. The test sample 2 shows an OOC behavior for

the TL and DL charts. As p−
2 -value is significantly lower than 5% (p−

2 = 0.0183) and p+
1 ,

p−
1 and p+

2 -values are significantly higher than 5%, we conclude that there is an evidence
of a downward shift in the scale parameter and no evidence in the location parameter.
Similarly, for the test samples 6 and 7, p+

1 -values are significantly lower than 5%, while p−
1 ,

p+
2 and p−

2 -values are significantly higher than 5%. Thus, there is an evidence of an upward
shift in the location parameter. For the test sample 8, the p+

1 -value is marginally higher
than 5% (p+

1 = 0.0633) and p−
1 , p

+
2 and p−

2 -values are significantly higher than 5%; thus,
one may conclude that there is an evidence of an upward shift in the location parameter.
Finally, for the test samples 3, 9 and 10, the p-values are not significant and either there is
an interaction between location and scale shifts or there is a false alarm.
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Figure 1. Distribution-free Phase II control charts for the lengths of cork stoppers data (a) the TL chart,
(b) the DL chart, and (c) the EL chart).

To sum up, TL and DL charts are more effective than the EL chart as they detect an
OOC earlier than the EL chart. Moreover, the TL chart gives more OOC signals than the
DL chart.

6. Conclusions and recommendations

In this article, we propose a distribution-free Phase II TEWMA control chart based on the
Lepage statistic for joint monitoring the location and scale parameters of an unknown and
continuous distribution. The proposed chart is referred as TL chart. Performing Monte
Carlo simulations, we evaluated its IC and OOC performances with time-varying and
steady-state UCL in terms of the run-length characteristics. We also compared its perfor-
mance with other distribution-free Phase II charts based on the Lepage statistic, such as the
EL and theDL charts. Using a time-varyingUCL,we observe that the TL chart outperforms
its competitors, especially for small to moderate shifts in one of two parameters or in both
parameters simultaneously. Due to a large value of SDRL0 for small values of smoothing
parameter λ, we recommend practitioners to implement the TL chart with medium values
of λ, such as λ = 0.25. On the other hand, using a steady-state UCL, the DL and TL charts
are more effective than the EL chart for a pure and small shift in one of parameters or in
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small shifts in both of parameters while the EL chart is the best-performing for moderate
to large shifts.

Knoth et al. [30,31] advised practitioners against the use of the TEWMA scheme, as well
as many other memory-type control charts, such as DEWMA, GWMA,HWMA andMEC
charts, when the process parameters are assumed to be known. They put emphasis on the
weights of data and they compared different control charts with design parameters which
have been arisen from the equality of the asymptotic variances of the different charting
statistics. They considered only the ARL value and not other run-length characteristics.
This criterion should be considered as arbitrary. In our opinion, a holistic approach should
take into consideration not only the ARL, but also other characteristics of the run-length
distribution, as well as the properties of control charts in robustness and inertia problem,
where the DEWMA and TEWMA schemes have better properties rather than the EWMA
scheme [5]. This topic has been studied byAlevizakos et al. [6] who concluded that some of
the extensions andmodifications of the EWMAchart aremore effective than the traditional
EWMA chart, especially for small and moderate shifts for both the zero-state and steady-
state cases.

For future research, it would be of interest to study distribution-free Phase II TEWMA
charts for joint monitoring the process parameters based on the Cucconi or Cramér–von
Mises statistics.

Acknowledgments

The authors would like to thank the Editor and the referees for their useful comments which resulted
in improving the quality of this article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Christos Koukouvinos http://orcid.org/0000-0003-1907-2031

References

[1] N. Abbas,Homogeneously weightedmoving average control chart with an application in substrate
manufacturing process, Comput. Ind. Eng. 120 (2018), pp. 460–470.

[2] N. Abbas, M. Riaz, and R.J.M.M. Does,Mixed exponentially weighted moving average cumula-
tive sum charts for process monitoring, Qual. Reliab. Eng. Int. 29 (2013), pp. 345–356.

[3] V. Alevizakos, K. Chatterjee, and C. Koukouvinos, A nonparametric triple exponentially
weighted moving average sign control chart, Qual. Reliab. Eng. Int. 37 (2021), pp. 1504–
1523.

[4] V. Alevizakos, K. Chatterjee, and C. Koukouvinos,Nonparametric triple exponentially weighted
moving average signed-rank control chart for monitoring shifts in the process location, Qual.
Reliab. Eng. Int. 37 (2021), pp. 2622–2645.

[5] V. Alevizakos, K. Chatterjee, and C. Koukouvinos, The triple exponentially weighted moving
average control chart, Qual. Technol. Quant. Manag. 18 (2021), pp. 326–354.

[6] V. Alevizakos, K. Chatterjee, and C. Koukouvinos, On the performance and comparison of
various memory-type control charts, (2022), submitted.

http://orcid.org/0000-0003-1907-2031


1188 V. ALEVIZAKOS ET AL.

[7] R.W. Amin and A.J. Searcy, A nonparametric exponentially weighted moving average control
scheme, Commun. Stat. – Simul. Comput. 20 (1991), pp. 1049–1072.

[8] A.R. Ansari and R.A. Brandley, Rank-sum tests for dispersions, Ann. Math. Stat. 31 (1960),
pp. 1174–1189.

[9] S. Chakraborti andM.A. Graham,Nonparametric (distribution-free) control charts: An updated
overview and some results, Qual. Eng. 31 (2019), pp. 523–544.

[10] S. Chakraborti and M.A. Graham, Nonparametric Statistical Process Control, John Wiley &
Sons, Hoboken, NJ, 2019.

[11] S. Chakraborti and M.A. Van de Wiel, A nonparametric control chart based on the
Mann–Whitney statistic, in Beyond Parametrics in Interdisciplinary Research: Festschrift in
Honor of Professor Pranab K. Sen, IMS, Beachwood, Ohio, USA, 2008, pp. 156–172.

[12] N. Chakraborty, S. Chakraborti, S.W. Human, and N. Balakrishnan, A generally weighted
moving average signed-rank control chart, Qual. Reliab. Eng. Int. 32 (2016), pp. 2835–2845.

[13] K.M. Chan, A. Mukherjee, Z.L. Chong, and H.C. Lee, Distribution-free double exponentially
and homogeneously weighted moving average Lepage schemes with an application in monitoring
exit rate, Comput. Ind. Eng. 161 (2021), Article ID 107370.

[14] K. Chatterjee, C. Koukouvinos, and A. Lappa, A sum of squares triple exponentially weighted
moving average control chart, Qual. Reliab. Eng. Int. 37 (2021), pp. 2423–2457.

[15] G. Chen and S.W. Cheng, MAX chart: Combining X-bar chart and S chart, Stat. Sin. 8 (1998),
pp. 263–271.

[16] S.W. Cheng and K. Thaga, Single variables control charts: An overview, Qual. Reliab. Eng. Int.
22 (2006), pp. 811–820.

[17] Z.L. Chong, A. Mukherjee, and M.B.C. Khoo, Some distribution-free Lepage type schemes for
simultaneous monitoring of one-sided shifts in location and scale, Comput. Ind. Eng. 115 (2018),
pp. 653–669.

[18] Z.L. Chong, A. Mukherjee, and M.B.C. Khoo, Some simplified Shewhart-type distribution-free
joint monitoring schemes and its application in monitoring drinking water turbidity, Qual. Eng.
32 (2020), pp. 91–110.

[19] Z.L. Chong, A. Mukherjee, and M. Marozzi, Simultaneous monitoring of origin and scale of a
shifted exponential process with unknown and estimated parameters, Qual. Reliab. Eng. Int. 37
(2021), pp. 242–261.

[20] S. Chowdhury, A.Mukherjee, and S. Chakraborti,A new distribution-free control chart for joint
monitoring of unknown location and scale parameters of continuous distributions, Qual. Reliab.
Eng. Int. 30 (2014), pp. 191–204.

[21] S. Chowdhury, A. Mukherjee, and S. Chakraborti, Distribution-free Phase II CUSUM control
chart for joint monitoring of location and scale, Qual. Reliab. Eng. Int. 31 (2015), pp. 135–151.

[22] N. Das, Non-parametric control chart for controlling variability based on rank test, Econ. Qual.
Control 23 (2008), pp. 227–242.

[23] N.Das andA. Bhattacharga,Anewnon-parametric control chart for controlling variability, Qual.
Technol. Quant. Manag. 5 (2008), pp. 351–361.

[24] F. Figueiredo and M.I. Gomes, The skew-normal distribution in SPC, Revstat Stat. J. 11 (2013),
pp. 83–104.

[25] F.F. Gan, Joint monitoring of process mean and variance using exponentially weighted moving
average control charts, Technometrics 37 (1995), pp. 446–453.

[26] J.D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference, 5th ed., Taylor and
Francis, Boca Rator, FL, 2010.

[27] M.A. Graham, S. Chakraborti, and S.W. Human,A nonparametric exponentially weighted mov-
ing average signed-rank chart for monitoring location, Comput. Stat. Data. Anal. 55 (2011),
pp. 2490–2503.

[28] M.A.Graham,A.Mukherjee, and S. Chakraborti,Distribution-free exponentially weightedmov-
ing average control charts for monitoring unknown location, Comput. Stat. Data Anal. 56 (2012),
pp. 2539–2561.

[29] A. Haq, A new nonparametric EWMA control chart for monitoring process variability, Qual.
Reliab. Eng. Int. 33 (2017), pp. 1499–1512.



JOURNAL OF APPLIED STATISTICS 1189

[30] S. Knoth, N.A. Saleh, M.A. Mahmoud, W.H. Woodall, and V.G. Tercero-Gómez, A critique of
a variety of ‘memory-based’ process monitoring methods, J. Qual. Technol. 55 (2022), pp. 18–42.
https://doi.org/10.1080/00224065.2022.2034487

[31] S. Knoth, V.G. Tercero-Gómez,M. Khakifirooz, andW.H.Woodall,The impracticality of homo-
geneously weighted moving average and progressive mean control chart approaches, Qual. Reliab.
Eng. Int. 37 (2021), pp. 3779–3794.

[32] Y. Lepage, A combination of Wilcoxon’s and Ansari-Bradley’s statistics, Biometrika 58 (1971),
pp. 213–217.

[33] T.I. Letshedi, J.C. Malela-Majika, P. Castagliola, and S.C. Shongwe, Distribution-free triple
EWMA control chart for monitoring the process location using the Wilcoxon rank-sum statistic
with fast initial response feature, Qual. Reliab. Eng. Int. 37 (2021), pp. 1996–2013.

[34] C. Li, A. Mukherjee, and M. Marozzi, A new distribution-free Phase-I procedure for bi-aspect
monitoring based on the multi-sample Cucconi statistic, Comput. Ind. Eng. 149 (2020), Article
ID 106760.

[35] C. Li, A. Mukherjee, and Q. Su, A distribution-free Phase I monitoring scheme for subgroup
location and scale based on the multi-sample Lepage statistic, Comput. Ind. Eng. 129 (2019),
pp. 259–273.

[36] S.-Y. Li, L.-C. Tang, and S.-H. Ng, Nonparametric CUSUM and EWMA control charts for
detecting mean shifts, J. Qual. Technol. 42 (2010), pp. 209–226.

[37] K. Mabube, J.C. Malela-Majika, P. Castagliola, and S.C. Shongwe, Distribution-free mixed
GWMA-CUSUM and CUSUM-GWMA Mann–Whitney charts to monitor unknown shifts in
the process location, Commun. Stat. – Simul. Comput. 51 (2022), pp. 6667–6690.

[38] K. Mabube, J.C. Malela-Majika, and S.C. Shongwe, A new distribution-free generally weighted
moving average monitoring scheme for detecting unknown shifts in the process location, Int. J.
Ind. Eng. Comput. 11 (2020), pp. 235–254.

[39] J.C. Malela-Majika, New distribution-free memory-type control charts based on the Wilcoxon
rank-sum statistic, Qual. Technol. Quant. Manag. 18 (2021), pp. 135–155.

[40] J.C. Malela-Majika and E.M. Rapoo, Distribution-free mixed cumulative sum-exponentially
weighted moving average control charts for detecting mean shifts, Qual. Reliab. Eng. Int. 33
(2017), pp. 1983–2002.

[41] A.K. McCracken and S. Chakraborti, Control charts for joint monitoring of mean and variance:
An overview, Qual. Technol. Quant. Manag. 10 (2013), pp. 17–36.

[42] D.C.Montgomery, Introduction to StatisticalQuality Control, 7th ed.,Wiley andsons,NewYork,
2013.

[43] A. Mukherjee, Distribution-free Phase-II exponentially weighted moving average schemes for
joint monitoring of location and scale based on subgroup samples, Int. J. Adv. Manuf. Technol.
92 (2017), pp. 101–116.

[44] A. Mukherjee and S. Chakraborti, A distribution-free control chart for joint monitoring of
location and scale, Qual. Reliab. Eng. Int. 28 (2012), pp. 335–352.

[45] A. Mukherjee, Z.L. Chong, and M.B.C. Khoo, Comparisons of some distribution-free CUSUM
and EWMA schemes and their applications in monitoring impurity in mining process flotation,
Comput. Ind. Eng. 137 (2019), Article ID 106059.

[46] A. Mukherjee and M. Marozzi, A distribution-free Phase-II CUSUM procedure for monitoring
service quality, Total Qual. Manag. Bus. Excell. 28 (2017), pp. 1227–1263.

[47] A. Mukherjee and M. Marozzi, Distribution-free Lepage type circular-grid charts for joint
monitoring of location and scale parameters of a process, Qual. Reliab. Eng. Int. 33 (2017),
pp. 41–274.

[48] A.Mukherjee, A.K.McCracken, and S. Chakraborti,Control charts for simultaneousmonitoring
of parameters of a shifted exponential distribution, J. Qual. Technol. 47 (2015), pp. 176–192.

[49] A. Mukherjee and R. Sen, Optimal design of Shewhart-Lepage type schemes and its application
in monitoring service quality, Eur. J. Oper. Res. 266 (2018), pp. 147–167.

[50] E.S. Page, Continuous inspection schemes, Biometrika 41 (1954), pp. 100–115.
[51] T. Perdikis, S. Psarakis, P. Castagliola, and G. Celano, An EWMA-type chart based on signed

ranks with exact run length properties, J. Stat. Comput. Simul. 91 (2021), pp. 732–751.

https://doi.org/10.1080/00224065.2022.2034487


1190 V. ALEVIZAKOS ET AL.

[52] P.Qiu, Some perspectives on nonparametric statistical process control, J. Qual. Technol. 50 (2018),
pp. 49–65.

[53] S.W. Roberts, Control chart tests based on geometric moving averages, Technometrics 1 (1959),
pp. 239–250.

[54] G.J. Ross andN.M. Adams,Two nonparametric control charts for detecting arbitrary distribution
changes, J. Qual. Technol. 44 (2012), pp. 1–15.

[55] S.E. Shamma and A.K. Shamma, Development and evaluation of control charts using double
exponentially weighted moving averages, Int. J. Qual. Reliab. Manag. 9 (1992), pp. 18–25.

[56] S.H. Sheu and T.C. Lin, The generally weighted moving average control chart for detecting small
shifts in the process mean, Qual. Eng. 16 (2003), pp. 209–231.

[57] W.A. Shewhart, Quality control charts, Bell Syst. Tech. J. 5 (1926), pp. 593–603.
[58] Z. Song, A. Mukherjee, N. Ma, and J. Zhang, A class of new nonparametric circular-grid charts

for signal classification, Qual. Reliab. Eng. Int. 37 (2021), pp. 2738–2759.
[59] Z. Song, A. Mukherjee, M. Marozzi, and J. Zhang, A class of distribution-free exponentially

weighted moving average schemes for joint monitoring of location and scale parameters, in
Distribution-free Methods for Statistical Process Monitoring and Control, M. V. Koutras and I. S.
Triantafyllou, eds., Springer, Switzerland, 2020, pp. 183–217.

[60] Z. Song, A. Mukherjee, and J. Zhang, An efficient approach of designing distribution-free expo-
nentially weightedmoving average schemes with dynamic fast initial response for jointmonitoring
of location and scale, J. Stat. Comput. Simul. 90 (2020), pp. 2329–2353.

[61] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bull. 1 (1945), pp. 80–83.
[62] S.F. Yang and B.C. Arnold, A new approach for monitoring process variance, J. Stat. Comput.

Simul. 86 (2016), pp. 2749–2765.
[63] R.F. Zafar, T. Mahmood, N. Abbas, M. Riaz, and Z. Hussain, A progressive approach to joint

monitoring of process parameters, Comput. Ind. Eng. 115 (2018), pp. 253–268.
[64] J. Zhang, E. Li, and Z. Li, A Cramér-von Mises test-based distribution-free control chart for joint

monitoring of location and scale, Comput. Ind. Eng. 110 (2017), pp. 484–497.
[65] L. Zhang and G. Chen, An extended EWMA mean chart, Qual. Technol. Quant. Manag. 2

(2005), pp. 39–52.


	1. Introduction
	2. Distribution-free Phase II control charts based on the Lepage statistic
	2.1. Lepage statistic for two-sample test
	2.2. The EL control chart
	2.3. The DL control chart

	3. The proposed TL control chart
	3.1. Structure of the TL chart
	3.2. Implementation of the TL chart

	4. Performance analysis and comparison
	4.1. Monte Carlo simulation approach
	4.2. The IC run-length distribution
	4.3. The OOC performance
	4.3.1. OOC performance under a normal distribution
	4.3.2. OOC performance under a Laplace distribution
	4.3.3. OOC performance under a shifted exponential distribution
	4.3.4. OOC performance under a Gumbel distribution


	5. Illustrative example
	6. Conclusions and recommendations
	Acknowledgments
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


