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Abstract

Schizophrenia (SCZ) is a debilitating neuropsychiatric disorder with high heritability and complex 

inheritance. In the past decade, successful identification of numerous susceptibility loci has 

provided useful insights into the molecular etiology of SCZ. However, applications of these 

findings to clinical classification and diagnosis, risk prediction, or intervention for SCZ have 

been limited, and elucidating the underlying genomic and molecular mechanisms of SCZ 
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is still challenging. More recently, multiple Omics technologies – genomics, transcriptomics, 

epigenomics, proteomics, metabolomics, connectomics, and gut microbiomics – have all been 

applied to examine different aspects of SCZ pathogenesis. Integration of multi-Omics data has 

thus emerged as an approach to provide a more comprehensive view of biological complexity, 

which is vital to enable translation into assessments and interventions of clinical benefit to 

individuals with SCZ. In this review, we provide a broad survey of the single-omics studies of 

SCZ, summarize the advantages and challenges of different Omics technologies, and then focus 

on studies in which multiple omics data are integrated to unravel the complex pathophysiology 

of SCZ. We believe that integration of multi-Omics technologies would provide a roadmap to 

create a more comprehensive picture of interactions involved in the complex pathogenesis of SCZ, 

constitute a rich resource for elucidating the potential molecular mechanisms of the illness, and 

eventually improve clinical assessments and interventions of SCZ to address clinical translational 

questions from bench to bedside.

INTRODUCTION

Schizophrenia (SCZ) [1] affects ~1% of adults and poses for a huge health care burden 

worldwide [2]. Although SCZ results from changes in brain function, the underlying 

biological mechanisms are largely unknown [3]. In the past decade, new technologies 

combined with big data analytics have provided greater insights on its genetic architecture; 

this knowledge gained has exerted a profound impact on SCZ research. However, these 

advances have hitherto led to limited clinical applications [4].

Omic technologies aims at the collective characterization and quantification of pools of 

biological molecules at different levels (e.g., DNA variants, RNA transcript, epigenetic 

markers, proteins, metabolites, gut microbiota, and brain imaging) [5]. Multi-Omic data may 

provide system-level views with fine resolution, and identify key molecules, processes and 

events as potential targets for intervention through various integrative analytic approaches. 

Multi-Omic integration has already been used to identify potential treatment targets for SCZ 

symptoms [6]. Compared to individual-omics studies, multi-Omics can provide insights on 

disease mechanisms at multiple interacting levels, from genetic variation to molecular and 

cellular dysfunction [7].

Previous reviews have focused on the potential contribution of each single omic type, 

but few have comprehensively addressed the potential importance and value of integrative 

strategies. In this state-of-the-art review, we provide a broad survey of the individual-

omics studies of SCZ, summarize the advantages and challenges for each, and then focus 

on studies in which multiple omics data have been integrated to unravel the complex 

pathophysiology of SCZ. We hope this will contribute towards the development of multi-

Omic disease classification and risk prediction, and facilitate the translation of SCZ research 

from bench to bedside (Fig. 1).
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INDIVIDUAL-OMICS STUDIES OF SCHIZOPHRENIA

Genomics, transcriptomics, and epigenomics

As the heritability of SCZ is ~80% [8], genomics has provided the first powerful weapon to 

uncover disease mechanisms for SCZ [1, 9]. The most replicable genes from genome-wide 

association studies (GWAS), which focus on common variants, are ion-channel genes (e.g. 

CACNA2D2), neurotransmitter-related enzymes and receptors (e.g. DRD2), and genes in 

the major histocompatibility complex (MHC) regions [10, 11]. In parallel, investigations 

of rare or de novo mutations and copy number variations have revealed risk burden at the 

gene-set level (e.g. synaptic transmission networks) in SCZ development [12–14]. With the 

goal of using common variants to distinguish patients from controls, the polygenic risk score 

(PRS) was first developed for SCZ, and later became popularized across other complex 

phenotypes [15]. Recent efforts from large biobanks provide new hope for constructing 

actionable PRS that can be applied to personalize clinical intervention or management 

of SCZ symptoms [16]. Meanwhile, the studies of endophenotypes provide connections 

between genetic factors and disease onset [17], helping to identify causal mechanisms [18], 

and offering opportunities for early diagnosis and intervention [19].

Transcriptomics aims to study quantitative expression changes (transcription abundance) or 

qualitative changes (e.g. novel transcripts) of all genes and their isoforms. Gene expression 

is spatiotemporally dynamic, and the most important tissue for SCZ research has been the 

postmortem brain [20]. Earlier microarray-based mRNA expression analysis highlighted 

the involvement of DISC1 and GABA-A receptor beta-2 in the diseased brain; however, 

crucial questions of SCZ pathophysiology were not addressed [21]. The PsychENCODE 

project recently published the most detailed transcriptome study on the normal human brain 

and its dysregulation in neuropsychiatric disease patients [22, 23]. For SCZ, they found 

4821 differentially expressed genes and 3803 isoforms; they also built a disease-specific 

co-expression network and trajectory [24]. In addition to dissecting the brain into different 

regions, new big data findings have also been augmented by single-cell and single-nucleic 

RNA sequencing (RNA-seq) data [25]. One study using single-cell RNA-seq found that 

different cell types have biologically distinct roles in SCZ [26]. The depiction of differences 

at the cellular level (i.e., GABAergic, glutamatergic, and glial neurons) will provide more 

meaningful biological insight into the pathogenesis of SCZ development [27].

Another mechanism that influences gene expression is epigenetics, which encompasses 

reversible but potentially transgenerational DNA changes (e.g., DNA methylation, histone 

modification, and MicroRNAs) without altering the underlying genetic sequences [28, 29]. 

Genome-wide epigenetic studies have been widely applied in SCZ research. Large public 

repositories (e.g., ENCODE, Roadmap, and FANTOM) have generated and accumulated 

context-specific epigenome maps corresponding to multiple tissues and cells at various 

developmental stages from humans and mice [30–32]. In another paper by PsychENCODE, 

DGCR5 long noncoding RNA was found to regulate the expression of several SCZ-related 

genes [33]. Paul et al. reconfirmed their finding of global hypomethylation in maternal 

immune activation-exposed mice and identified new pathways linked to neurodevelopmental 
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conditions [34]. Girhar et al. found that neuronal H3K4me3 and H3K27ac histones were 

significantly overrepresented in SCZ [35].

Proteomics and metabolomics

Analysis at the protein and metabolite levels may reflect influences of environmental, 

developmental, and genetic factors on disease states [36, 37]. Both proteomic and 

metabolomic investigations of SCZ have shown differentially expressed proteins (e.g., 

NEFL, GNB1, and GLUL) [38] and amino acids (e.g., glutamate and glutamine) [39, 40] in 

glutamatergic signaling, corroborating the hypothesis that glutamatergic neurotransmission 

dysfunction is a central contributor to the pathogenesis of SCZ. Moreover, accumulating 

proteomic and metabolomic studies have indicated that altered energy metabolism matches 

the occurrence of impaired glucose tolerance and metabolic syndrome in SCZ patients [41–

43].

Biomarkers are of highest clinical interest for comparative proteomics and metabolomics 

analysis, and central nervous system (CNS) activity has been shown influence gene 

expression in the peripheral blood of SCZ patients [44, 45]. More than 70% of potential 

proteomic biomarkers are involved in inflammatory responses [46]. Several studies have 

observed an association between the symptoms of SCZ and the cytokine expression 

levels in plasma [47, 48]. Saliva and sweat are other attractive body fluids for finding 

biomarkers, since their collection is non-invasive. Some studies have focused on differences 

in the saliva and sweat proteome between SCZ patients and controls [49, 50]. Several 

potential metabolomic biomarker signatures have been linked to both disease progression 

and treatment effectiveness in SCZ [51]. A recent review summarized results from 107 

metabolomic studies on psychosis, and reported differentially expressed metabolites (e.g., 

N-acetylcysteine [NAA], lactate, and creatine) as potential biomarkers in two or more 

independent studies [52].

Gut microbiomics

Rapid 16S RNA sequencing technologies for the study of microbial populations have found 

that an imbalance in intestinal flora may reduce protectants and increase neurotoxin and 

inflammatory mediators, causing neuronal and synaptic damage which may contribute 

to the development of SCZ [53]. Recently, researchers found differential components in 

the fecal lactobacilli and oropharyngeal microbiome between first-episode SCZ patients 

and controls [54, 55], which is hypothesized to facilitate CNS inflammation related to 

SCZ [56]. Additionally, germ-free mice receiving SCZ microbiome fecal transplants were 

shown to have lower glutamate and higher glutamine and GABA, and displayed SCZ-

relevant behaviors [57], suggesting that intestinal flora may influence neurotransmitters and 

pathogenesis of SCZ [58].

Differences in gut microbiota between individuals can be used to develop microbiota-based 

diagnostics for SCZ. A large number of studies have shown that the specific microbial panel 

enabled discriminating medication-free patients with SCZ from controls [59, 60]. Moreover, 

recent literature suggest that certain characteristics of the microbiome may be associated 

with the severity of psychiatric symptoms (negative symptoms and sleep) [61, 62]. Although 
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no study has yet examined the relationship between the microbiota and cognition in SCZ, 

seropositivity for C. albicans has been associated with reduced memory abilities and overall 

cognition [63]. Recent work has shown that in some individuals, up to 70% of the drug 

transformation activity that occurs in their bodies can be ascribed to bacterial enzymes [64]. 

Hence, gut microbiota can be a major source of interpersonal variation in both drug efficacy 

and tolerability for SCZ patients.

Connectomics

The “connectome” describes human brain network of elements and connections [65], and 

connectomics is an approach to understand SCZ as a brain network disorder [66, 67]. 

Converging evidence suggests an abnormal connectome organization in SCZ patients and 

their relatives [67]. In line with white matter (WM) connectivity reductions reported from 

early to chronic stages of SCZ [68], structural connectome reductions affect the whole 

brain and span prominent associations and commissural WM pathways [69]. However, WM 

abnormalities vary in severity across different WM tract regions [70]. This aids in the 

development of tools to identify individuals at risk of transitioning to psychosis [71]. By 

means of WM fiber integrity measures to assess brain network architecture, a few findings 

have suggested that a disruption of rich-club organization and functional dynamics may 

reflect an early feature of SCZ pathophysiology [72]. A possible link between cortical 

myelination in the prefrontal cortex and structural connectome architecture in SCZ has been 

established [73]. Structural connectome impairments were more severe in SCZ subjects of 

clinical stages following the first episode than in first episode patients [74, 75]. The fragility 

of hubs to disconnection shows a significant association with the acceleration of gray 

matter loss in SCZ [76], suggesting that fragile prefrontal hub connections and topological 

volatility likely act as evolutionary influences on brain networks. Additionally, the disturbed 

connectome is involved in cognitive dysfunction in SCZ [76]. Structural and functional 

connectomes may be useful in clinical applications, having been shown to perform well in 

predicting treatment response [77]. Some multisite studies have successfully discriminated 

SCZ patients with relatively high accuracy using connectomic profiles [68, 78].

The most notable issue is that the specificity of the disrupted connectome to SCZ has not 

been addressed. A multiscale neuroscience framework may underlie alterations observed 

at the connectome level in SCZ [79]. Magnetic resonance imaging (MRI) studies have 

identified genetic contributions to structural [80] and functional [81] connectome deficits 

for SCZ. Moreover, studies targeting glial pathology may offer a unified gliocentric model 

to better understand the complex neural substrates underlying the disturbed connectome of 

SCZ [82].

Summary of individual-omics studies

Coverage of SCZ individual-omics studies in this review is purposefully brief, since each 

of them have been reviewed more in-depth by other groups (see Supplementary Table 1 for 

detail; also including Omics not mentioned here [e.g., Pharmacogenomics, Cellulomics, and 

Phenomics]). Those selected findings in each section above are based on the authors’ prior 

knowledge in psychiatry research and/or on consistent highlights from previous literature 

reviews. When piecing different aspects of omic evidences together, we arrive at the 
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following summary: (1) SCZ is determined by the joint effects of environmental exposures 

and variation at multiple molecular/neural levels [83–85]; (2) the accumulated evidences 

highlights three different pathways (i.e., dopaminergic, glutamatergic, and inflammatory) as 

pivotal to understanding SCZ [86–88]; (3) as the main player and driver of SCZ research 

in the last decade, genomics (i.e., study of genome-wide variants and sequences) has not 

only revealed novel genes to understand disease etiology, but also generate resources and 

anchoring points (for other omics data) for translational medicine [89–91]. Nevertheless, 

a few unsolved questions still remain when restricting to genomics or other single-omics 

design alone. A major obstacle is the lack of clear annotation of noncoding GWAS hits. The 

integration of static genetic data and other dynamic omics data is necessary to define better 

biomarkers for clinical management of SCZ. In addition, the regulatory networks involved 

in SCZ development remain unclear [91], and the understanding of human microbiota and 

signaling for microbe-host interactions in SCZ is still in its infancy. These limitations and 

unsolved translational questions have propelled the application of multi-Omics approaches 

in SCZ research.

MULTI-OMICS STUDIES OF SCHIZOPHRENIA

As a multifactorial disorder, SCZ is likely to involve multiple gene regulatory networks that 

operate across different contextual levels [92]. Novel approaches included system genetics 

and integrative omics may be necessary for fully characterizing such complex etiology and 

mechanisms [93, 94], and enable translation to clinically actionable disease classification 

and management in mental health [91]. However, omics data from multiple sources 

are heterogeneous in formats and structures, and their integration has been facilitated 

by the creation of public data repositories and statistical tools (examples in Table 1). 

When designing a real multi-Omics study, we also need to take a few assumptions into 

consideration before collecting and analyzing data. One assumption corresponds to how 

multiple levels of molecular variation contribute to disease etiology (i.e., linear vs nonlinear/

interactive) [95]. Another assumption deals with the initial focus of the investigation (i.e., 

genome-, phenotype-, or environment-first) [96]. We hypothesize the effects of different 

Omics data on SCZ are nonlinear and interactive, but genome-first approach provides an 

easier direction to disentangle the “Chicken or Egg” complexity (Fig. 1). To have a better 

view on where SCZ multi-Omics studies currently stand, we performed a systematic search 

using PubMed (see Supplementary Method) and identified 83 relevant publications listed in 

Supplementary Table 2. As we expected, the majority of the studies (75 out of 83) center 

around genomics data (i.e., genome-first). In the following sections, we summarize them 

according to four different categories; specifically, we highlight eight representative findings 

by integrative Omics in Fig. 2.

Discovering and understanding the pathogenesis of SCZ

First, the combination of genomics and transcriptomics will lead to a better understanding 

of the associated noncoding SNPs and characterization of the molecular biology of the 

disease states. One recent study sequenced the polyA+ transcriptomes from the prefrontal 

cortex of 495 individuals and found widespread expression quantitative trait loci (eQTLs) 

that were also independently replicated [97]. Another study found that a few noncoding 
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SNPs can disrupt transcription factor binding and change gene expression (POLR2A and 

CTCF) in human brain tissues [98]. Around 20% of SCZ-associated loci have variants that 

could contribute to altered gene expression and liability [99]. Most recently, PrediXcan 

model trained from CMC dorsolateral prefrontal cortex (DLPFC) omics data was applied 

to identify 413 genetic associations (67 non-MHC genes) with SCZ across 13 brain regions 

[100].

Second, genetic variations can regulate various cellular functions including DNA 

methylation and chromatin structure. The overlap between GWAS loci and differentially 

methylated sites can further annotate the extended genomic regions identified by SCZ 

GWAS and highlight potential regulatory variation causally involved in SCZ through co-

localization [101]. Recently, many studies have focused on integrating methylome-wide 

association study (MWAS) results with GWAS findings and found that SCZ-associated DNA 

methylation differences overlapped with genetic susceptibility loci [101–103]. In parallel, 

the integration of GWAS and ATAC-seq of brain samples comprehensively identifies 

active gene regulatory elements in a brain region relevant to SCZ and quantifies how 

genetic variation alters functions, such as SNPs that modulate chromatin accessibility (i.e., 

chromatin QTL) [104]. From the perspective of gene regulation, transcription factor 4 

(TCF4) binding sites were found in 39 of the 108 GWAS loci published by the Psychiatric 

Genomic Consortium (PGC) SCZ workgroup, showing their importance as regulators of 

neural genes and suggesting their functional interactions with potential relevance for SCZ 

[105, 106].

Third, the analysis of protein quantitative trait loci (pQTLs) can help elucidate causal 

pathways for genetic variants associated with neurological phenotypes and prioritize 

candidate targets for therapeutic intervention. Several studies have integrated pQTLs derived 

from human brain tissue and large-scale SCZ GWAS so as to provide a comprehensive 

functional annotation for all SCZ loci [107], and prioritized differentially expressed protein-

coding genes between SCZ cases and controls [108]. These results may serve as an 

encyclopedia of SCZ susceptibility SNPs and offer holistic guides for post-GWAS functional 

experiments. Squires et al. summarized studies that combined rare variants of Regulators of 

G protein signaling (RGS) with bioinformatics and proteomic tools, finding that rare variants 

in functionally sensitive regions of RGS proteins could confer profound change-of-function 

phenotypes and lead to diseases, especially SCZ [109]. Metabolomics can also be used to 

bridge genotype to phenotype. For instance, a linkage disequilibrium (LD) score regression 

study, which calculated genetic correlations between SCZ and 172 medical, psychiatric, 

personality, and metabolomic phenotypes, has found a potential link between rare cases of 

SCZ (with 22q11.2 deletions) and serum citrate [110].

Fourth, human genetic profiles have been shown to influence overall gut microbiota 

composition [111], which may explain putative roles of some SCZ-associated genetic 

loci in this illness. Recently, some studies have combined 16S sequencing and omics to 

determine the effect of inflammatory bowel disease and dysregulated cytokines [112, 113]. It 

is now possible to identify the microbes present in the human body (membership) and their 

relative abundance using genomics; characterize their genetic potential (or gene pool) using 

metagenomics; and describe their ongoing functions using transcriptomics, proteomics, and 
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metabolomics. However, current studies of microbiomes still mainly focus on intestinal 

disease; hence, further investigations using multi-Omics and including measures of the 

microbiomes on SCZ are needed.

Lastly, combining connectomics studies and genetics has not been commonly done for 

SCZ. Gurung and Prata systematically reviewed the effect of SCZ and bipolar disorder 

GWAS risk genes on the structure and function of the brain, including structural connectivity 

(ankyrin-G [ANK3] and zinc finger protein 804 A [ZNF804A]) and functional connectivity 

during executive tasks (calcium voltage-gated channel subunit alpha1C [CACNA1C] and 

ZNF804A) [114]. Imaging genetics aims to explain the genetic mechanisms behind brain 

changes associated with SCZ [115], but there have been only a few connectomics-genetics 

studies, indicating the effects of SNPs from ZNF804A, cholinergic receptor, muscarinic 

3 (CHRM3), and D-amino acid oxidase activator (DAOA) on the connectome [116–118]. 

These findings suggest involvement of brain hubs (e.g. precuneus) and global graph metrics 

in SCZ genetic architecture.

Disease subtyping and clinical classification for SCZ

The ambiguity of SCZ classification causes difficulty for precise treatment plans and also 

hinders identifications of underlying disease mechanisms [90]. One possible solution is to 

improve subtyping and stratification within this disease [119]. However, subtyping based 

solely on clinical symptoms is almost an impossible task as the latest DSM-V has eliminated 

subtyping definitions previously present in the DSM-IV. Genetic information is still one of 

the five key elements for the on-going Research Domain Criteria [120] promoted by the 

National Institute of Mental Health in the United States [121]. However, there are several 

important limitations (i.e., unknown functional roles and high dimensionality) regarding a 

purely SNP-based approach. Integration across multi-Omics data may provide new clues 

towards a biologically based subtype classification for SCZ.

PsychENCODE investigators were among the first to examine how GWAS hits are 

distributed across transcriptomic or epigenomic systems in brain tissues, and identified 

different regulatory networks and expression subtypes of SCZ [23, 24]. Integration of 

genomics data with cell type-specific functional genomics annotation or data is also 

useful to distinguish SCZ from healthy controls or other mental disorders, as shown by 

a few single-cell Omics studies [26, 122]. Clustering on high-dimensional data is the 

most straightforward approach to derive molecular subtypes of complex diseases. A recent 

study proposed an analytic framework capable of identifying complex disease subgroups by 

leveraging both GWAS-predicted gene expression levels and clinical data using a multiview 

biclustering analysis [123], with predicted SCZ subgroups having different prognoses and 

treatment responses. This approach connects SNPs to genes via their effects on expression 

and is more biologically relevant and interpretable than a pure SNP-based analyses. Recent 

innovations also include overlaying (i.e., enrichment) different omics data onto the same 

expression network by unsupervised consensus clustering [124].

Alternatively, information borrowed from molecular endophenotypes can also be used to 

gain classification knowledge for SCZ. The Consortium on the Genetics of Schizophrenia 

(COGS) has conducted candidate gene and linkage analyses of many SCZ-related 
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endophenotypes [125, 126]. These new perspectives can supplement traditional analyses 

of SCZ diagnosis and provide additional biological insights into the disease. Integration of 

GWAS with the peripheral blood proteome further sheds light on the functional role of these 

risk loci, and helps to determine how these associations map onto particular endophenotypes 

that could be useful for classifying SCZ. A recent study conducted enrichment analyses 

in peripheral blood samples and ascertained the overlap between proteomic findings and 

genetic loci identified in GWAS, finding that complement factors C3 and C4-related 

molecules were associated with an increased risk of SCZ [44]. Cheng et al. [127] utilized 

the latest pQTL data of blood proteins and GWAS data from the PGC, finding a significant 

association between insulin-like growth factor-binding protein 6 and SCZ. These results 

suggest that GWAS might benefit from integration with post-proteomics workflows to 

further classify and subtype SCZ.

Metabolic biomarkers correlate with exposures [128] and/or biological outcomes, and are 

therefore easily affected by the external environment. Integration of genetic studies with 

metabolomics may reduce the confounding of other factors. Several disease-loci associations 

have been identified in clinical settings by conducting a GWAS with metabolomics in blood 

serum samples [129]. A recent study conducted a two-sample Mendelian randomization 

analysis to assess the causal effects of 486 human serum metabolites on 5 major psychiatric 

disorders, and found that 2-methoxyacetaminophen sulfate had a robust effect on SCZ and 

identified a significant association between the glycine, serine, and threonine metabolism 

pathways and SCZ [130]. These results reveal that metabolomics is a new strategy for 

endophenotyping and early diagnosis of SCZ.

In the field of connectomics, a neuroimaging biomarker for SCZ identification, prognosis 

and subtyping has been developed based on functional striatal abnormalities (intrinsic 

and extrinsic connectome), recapitulating the distribution of dopamine and the expression 

profiles of polygenic risk in SCZ [131]. The conceptualization of ways to utilize genetic, 

epigenetic, and neuroimaging data in diagnosis and prediction of SCZ has gained ground 

[132, 133]. Disease subtyping and classification could also benefit from studies identifying 

brain markers of SCZ through combining connectomics with genomics analyses.

Disease risk prediction for SCZ

Risk prediction and stratification is another important task for clinical management of 

SCZ [90]. Although PRS was invented and first applied to SCZ [15], genotype data alone 

is not sufficient for predicting SCZ risk for individual patients [89]. Genomic risk and 

molecular endophenotypes are gaining increasing attention to refine risk models. Integration 

of genetics and other omics data together can increase the precision and sensitivity for 

SCZ risk stratification. A few new tools have been developed to handle new computation 

problems across different data resources, such as Omic Kriging and conditional deep 

Bolzmann machine [134, 135]. For applications in SCZ, Ayalew et al. [136] first used a 

convergent functional genomics approach, which borrowed information from the literature 

and tissue-specific gene expression to identify candidate genes with higher functional impact 

to achieve better predictive ability in independent cohorts. Ursini et al. found that PRSs 

for individuals with early-life complications (i.e., indication by placental gene expression) 
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had more than five times greater risk than those without the complications [137]. Based 

on PsychENCODE integrative omics data, Wang et al. [22] improved the accuracy of 

the predictive model by 6-fold by adding expression data to additive genotype data, and 

the proposed machine learning algorithm ‘DSPN’ could further incorporate microRNA 

epigenetic data and neuroimaging data.

In addition to genomic risk scoring, a few other nongenetic predictors (i.e., childhood 

trauma and substance abuse) are also considered promising in developing risk prediction 

models for SCZ [138]. Another nonnegligible factor is family history of SCZ, which 

usually has an independent influence other than shared genetic effects [139]. Although 

an optimal risk stratification model for SCZ is not available yet, the emergence of the 

biggest-ever biobanks and electronic medical record (EMR) databases (e.g. UK Biobank 

and All of US in Table 1) is accelerating the effort [140, 141], from which detailed 

data of disease phenotypes, epidemiology, drug exposure, and genetics can be obtained 

for better views of disease onset and progression. Recently a cross-disorder PRS-pheWAS 

study that combined PGC and UK Biobank data together has shown strong correlation (or 

even possible causation) between schizophrenia genetic liability and psychological health, 

lifestyle, and socio-demographic factors [142]. Meanwhile, advanced statistics and deep 

learning algorithms designed for large-scale data with deep phenotyping and multi-Omics 

data allow better prediction of SCZ risk. On one hand, other versions of PRS calculation 

(e.g., polygenic transcriptome risk score [PTRS], and PleioPred) that leverage Omics 

annotation or phenome-wide correlations can further increase the accuracy of polygenic 

risk prediction in complex diseases [143, 144]. On the other hand, multivariate gene-

environment interactions can be modeled and estimated by generalized mixed models. For 

instance, StructLMM is a new method to investigate gene-environment interaction in a high-

throughput manner (i.e., multiple genes and environmental factors can be analyzed together) 

[145]. Taken together, the intriguing advancements in both resources and methodologies 

warrant better applications of omics data in future disease subtyping and risk prediction for 

SCZ.

Proteomic and metabolomic data can be used for mapping early biochemical changes in 

diseases, hence these data may offer an opportunity to develop predictive biomarkers for 

SCZ. SCZ-related biochemical processes, which can be traced in the cerebrospinal fluids 

(CSF) of prodromal patients, could serve as risk prediction indices [146]. When integrating 

lipid concentration levels with transcriptomic expressions from human prefrontal cortex, Yu 

et al. [147] found the relevance of lipidome organization and changes to SCZ progression. 

In addition, the disturbance of microbial metabolism may influence neurotransmitters in 

early developmental stages and contribute to subsequent onset of many human diseases 

[58]. For example, the pivotal roles of microbiome in the development and progression of 

colorectal cancer [148] and fibromyalgia [149] have been confirmed. Hence, integration of 

metabolome and microbiome may also help identify potential biomarkers for early diagnosis 

of SCZ.

In spite of these new opportunities, we are also facing the challenge of PRS (e.g., at DNA, 

RNA, or protein level) portability across different ethnic groups. Though heterogeneity of 

effect sizes and directions of GWAS hits across ancestral populations are relatively small for 
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SCZ (European vs East Asian vs African), polygenic risk models trained in one population 

have reduced performance in the other population [11, 150, 151]. These differences may be 

attributable to differences in allele frequencies, LD structure, and varying interactions with 

other environmental risk factors in different populations [150]. This also caution us to match 

target populations with reference populations when applying risk models consisting of omics 

predictors.

A recent study combined PRS from genomics data with fMRI data in the Human 

Connectome Project, and identified connectivity associations serving as neural phenotype 

for understanding SCZ pathogenies and future risk prediction [81]. In addition, the 

integrative perspective involving gene-brain-environment relationships has also been proven 

valuable in investigating human behavioral health and mental diseases [85]. Future 

endeavors applying multi-Omics methods in SCZ may give us unprecedented power to study 

its neural mechanisms and identify new diagnostic and predictive tools.

Precise intervention for SCZ

SCZ is a heterogeneous syndrome with various clinical features (including psychosis, social, 

and mood symptoms) in individual patients, hence the management stratified by subtypes of 

different patients or risk stratification groups (e.g. those derived by methods in previous 

sections on “Disease subtyping and clinical classification for SCZ” and “Disease risk 

prediction for SCZ”) will also lead to personalized interventions and promisingly increase 

therapeutic success [90, 152]. Though psychological and social support is also used to 

manage SCZ symptoms, we limit the precise intervention here to antipsychotic drugs as it is 

still the main treatment option and has been mostly studied by genetics or omics approaches 

[84].

Pharmacogenomics that links genetic variants to antipsychotics response (e.g., drug 

metabolism genes CYP2C9, SLC22A1, and ABCB1) or to their adverse reactions (e.g. 

HLA genes and DRD2) are widely performed in research labs or clinics [153], and its 

progress has been already reviewed by other groups (see Supplementary Table 1). We 

highlight here a few representative findings from unbiased and hypothesis-free screening 

at genome-wide scale. Pardiñas et al. performed the first GWAS of clozapine metabolite 

plasma concentrations and identified CYP* and UGT* genes that may help in the clinical 

management of patients with treatment-resistant schizophrenia [154]. Another group studied 

clozapine-induced agranulocytosis/granulocytopenia (CIAG) by GWAS and identified HLA-

B*59:01 as a risk factor for CIAG in the Japanese population [155]. With collaboration 

through Chinese Antipsychotics Pharmacogenomics Consortium, Yu et al. [156] identified 

five novel genes in association with response to different antipsychotics (e.g., olanzapine, 

risperidone, and aripiprazole) by two-stage GWAS; and Wang et al. [157] found rare 

genetic variations in glutamatergic or NMDA neurotransmission are implicated in short-term 

antipsychotic medication efficacy by whole exome sequencing. Compared to GWAS on SCZ 

itself, genome-wide pharmacogenomics studies are usually based on much smaller sample 

size (due to restricted drug medications) and will need more resources.

In parallel, other types of omics data have also been used to identify biomarkers underlying 

treatment response to antipsychotics. For instance, Readhead et al. [158] used human 
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induced pluripotent stem cell (hiPSC)-based models and proved transcriptomic-based drug 

screening is helpful for SCZ drug discovery. Findings from epigenetics in antipsychotic 

response suggest that pharmacoepigenetic marker (e.g. histone deacetylases) can be 

promising new target to improve schizophrenia treatment [152, 159]. Proteomics and 

metabolomics studies have repeatedly demonstrated the significance of lipid metabolites’ 

quantities and/or alterations in schizophrenia patients receiving different antipsychotics 

[160, 161]. Another recent paper identified a number of SCZ-associated bacterial species 

representing potential microbial targets for future treatment [59], further consolidating the 

possibility that a novel microbiomics-based precise intervention and potential prevention 

options is possible through regulating inflammatory processes and immune responses 

involved in gut-microbiome-host interaction [88]. As an example from the neuroimaging 

community, a prospective positron emission tomography (PET) study revealed a difference 

in dopaminergic function between responders and non-responders at first episode of 

psychosis, which suggested dopamine dysfunction before starting treatment is linked 

to likelihood of responding to antipsychotic treatment [162]. Nevertheless, most of the 

aforementioned studies are observational and lack of mechanism support for therapeutic 

management and drug development.

Integration of multi-Omics data is now providing new clues to understand differences 

with respect to antipsychotic treatment outcomes among SCZ patients (i.e., positive 

symptoms, negative symptoms, or cognitive impairment), and is also shortening the path 

for implementing a mechanism-based precision intervention. A study by Kauppi et al. 

[163] used protein interactome to map polygenic link between antipsychotic drug targets 

and schizophrenia risk genes, and found that risk genes (e.g., CHRN, PCDH, and HCN 
families) involved in schizophrenia pathophysiology are reliable targets for novel drugs 

to treat cognitive or negative symptoms of schizophrenia. Pergola et al. [164] used PGC 

SCZ loci and prefrontal cortex co-expression network to obtain polygenic co-expression 

index (PCI), and found that PCI is relevant to olanzapine response in SCZ patients with 

positive symptom domain. Another transcriptome-wide association study (TWAS) compared 

the difference between imputed transcriptome from SCZ GWAS with drug-induced gene 

expression profiles from the Connectivity Map (CMap) database and found repositioning 

candidates enriched for multiple antipsychotics [165]. In addition, Price et al. [166] recently 

conducted a survey of cortical development aiming at cell type-resolved transcriptomic 

and epigenomic changes in the context of SCZ and proposed that focusing on multiple-

Omic changes (e.g. genomic and epigenomic regulation on cellular identity) illuminates 

an impressive scene for future SCZ research including drug therapy. Therefore, integrative 

Omics provide important insight for understanding the mechanism whereby DNA variation 

leads to complex trait variation and can be informative for drug discovery and personalized 

treatment of SCZ patients.

CONCLUSIONS AND FUTURE PERSPECTIVES

We summarized SCZ omics studies from the perspective of genetic mechanism, clinical 

classification, risk prediction, and precise intervention. Their applications in SCZ and 

other neuropsychiatric disorders propel the field of precision psychiatry [90]. Multi-Omics 

research of SCZ helps to explain the complex relationships between alterations at different 
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levels and is the most comprehensive way to explain the occurrence and development 

of SCZ. A scribed to disease characteristics and existing resources in mental health 

[167], combination of functional genomics approaches (i.e., genomics, transcriptomics, 

epigenomics) are most-widely adopted in current SCZ research [91]. As nucleic acids 

omics can be directly transferred to protein data, proteomics or metabolomics integrated 

with genomics will also lead to better understanding of the complex pathophysiology 

and possible therapeutic strategies in SCZ [168]. However, it is important to bear in 

mind that multi-Omics integrations can also bring new caveats (e.g., method difference, 

lack of comparable replication, and over fitting) [95] and challenges (e.g., interpretation, 

computational resources, and standards to be established) to us [94]; and sometimes, the 

combination of heterogeneous multiview datasets can even have lower performance of risk 

stratification than clean single Omics data [169]. Analyses and interpretation need to be 

conducted in a comparative, contextualized, and coherent manner.

A few perspectives deserve more attention in the future. One is to develop deeper 

phenotyping from increasingly detailed EMR data in health systems (e.g. Mental Health 

Research Network [MHRN]) and longitudinal cohorts (e.g. UK Biobank and All of US). 

The abundance of clinical diagnoses, their proxies, and putative endophenotypes from 

these data can enable both splitting and clumping of psychiatric disorders [170]. When 

restricting SCZ patients into well-defined developmental groups, one can reduce phenotype 

heterogeneity to identify novel genes and to build tailored genomic risk prediction models. 

There is also a need to incorporate other environmental exposures in disease subtyping 

or risk prediction with multi-Omics data, since the inclusion of known and novel gene-

environment signals will increase stratification and prediction power [145]. With the rapid 

accumulation of detailed EMR data, the integration of environmental exposures, omics 

data at different molecular levels, and detailed clinical information can systematically 

reveal the joint effects of nature (i.e., molecular characteristics and regulatory network) 

and nurture (i.e., environment) on SCZ occurrence and development. Another method is to 

collect larger-scale omics data within the same subject. Compared with current integrative 

approaches that leverage data from different individuals, data on the same ones will create a 

more holistic view of the molecular events that lead to SCZ phenotypes [94]. For instance, 

a mostly recent report verified the importance of Wnt signaling pathway in the pathogenesis 

of neuropsychiatric disorders, through multi-Omics analysis (i.e., genomic, transcriptomic, 

and epigenomic data from the same subjects) of pluripotent stem cells from patients with 

15q13.3 microdeletion and matched controls [171]. Wnt signaling plays an important role in 

neuronal survival and brain development, hence may be targeted for potential intervention 

of SCZ in future [172]. Lastly, it is also essential to generate more genomic resources 

and findings for traditionally less-represented ethnic populations, as this will not only 

be necessary to reduce health disparities across groups [173], but also help to better fine-

map disease causal gene and increase the portability of risk predictions with Omics data 

across diverse populations [174]. Once these perspectives developed further, we can then 

investigate SCZ by integrating multi-Omics data through two other approaches (phenotype- 

and environment-first) that complement the major genome-first approach [96].

Overall, since SCZ is a complex disease, having only one method or single data set makes 

it difficult to fully capture the dynamic characteristics of the development and progression 
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of the disease, which is influenced by both genes and life circumstances. While there are 

still many challenges ahead, a better translation from bench to bedside will only be realized 

in the future with a combined effort from multidimensional omics data, larger sample sizes, 

deeper phenotyping, and more integrated models.

Supplementary Material
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Fig. 1. Overall strategy for Schizophrenia Omics research.
Genomics is highlighted in the center as most integrative omics approaches are genome-first. 

Pairwise interactions are shown by lines connecting different omics.
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Fig. 2. Examples of integrative Omics studies on Schizophrenia.
Eight recent reports were included as representative (two examples in each of those four 

categories) to demonstrate the usefulness of integrative Omics studies on schizophrenia 

(SCZ) research for pathogenesis (1), disease classification (2), risk prediction (3), and 

precise intervention (4). For each study, we briefly summarized the Omics data and the 

integrative methods used, and then highlighted the key SCZ findings identified by their 

application. eQTL expression quantitative trait locus, CMC CommonMind Consortium, 

DLPFC dorsolateral prefrontal cortex, GWAS genome-wide association study, MHC the 

major histocompatibility complex, cQTL chromatin quantitative trait locus, fMRI functional 

magnetic resonance imaging, PET positron emission tomography, SPECT single photon 

emission computed tomography, FSA functional striatal abnormalities, PRS polygenic risk 

score, ELC early-life complications, co-eQTL co-expression quantitative trait loci, Cmap 

The Connectivity Map.
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