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Abstract

Discovery and optimization of monoclonal antibodies for therapeutic applications relies on 

large sequence libraries but is hindered by developability issues such as low solubility, high 

aggregation, and high immunogenicity. Generative language models, trained on millions of 

protein sequences, are a powerful tool for on-demand generation of realistic, diverse sequences. 

We present Immunoglobulin Language Model (IgLM), a deep generative language model for 

creating synthetic antibody libraries. Compared with prior methods that leverage unidirectional 

context for sequence generation, IgLM formulates antibody design based on text-infilling in 

natural language, allowing it to re-design variable-length spans within antibody sequences using 

bidirectional context. We trained IgLM on 558M antibody heavy- and light-chain variable 

sequences, conditioning on each sequence’s chain type and species-of-origin. We demonstrate 

that IgLM can generate full-length antibody sequences from a variety of species, and its infilling 

formulation allows it to generate infilled CDR loop libraries with improved in silico developability 
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eTOC Blurb

Synthetic antibody libraries are a powerful tool for therapeutic discovery, yet often produce 

sequences that are not human-like or developable. IgLM is a generative language model trained on 

558M natural antibodies. IgLM generates full sequences, conditioned on species and chain type, 

and enables infilling of sequences for synthetic library design.
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Introduction

Antibodies have become popular for therapeutics because of their diversity and ability to 

bind antigens with high specificity [46]. Traditionally, monoclonal antibodies (mAbs) have 

been obtained using hybridoma technology, which requires the immunization of animals 

[40], or transgenic animal systems, which involve integration of human immune loci 

into alternative species (e.g., mice) [47, 21]. In 1985, the development of phage display 

technology allowed for in vitro selection of specific, high-affinity mAbs from large antibody 

libraries [24, 42, 11]. Despite such advances, therapeutic mAbs derived from display 

technologies face issues with developability, such as poor expression, low solubility, low 

thermal stability, and high aggregation [48, 15]. Display technologies rely on a high-quality 

and diverse antibody library as a starting point to isolate high-affinity antibodies that are 

more developable [2]. Synthetic antibody libraries are prepared by introducing synthetic 

DNA into regions of the antibody sequences that define the complementarity-determining 

regions (CDRs), allowing for human-made antigen-binding sites. To discover antibodies 

with high affinity, massive synthetic libraries on the order of 1010–1011 variants must be 

constructed. However, the space of possible synthetic antibody sequences is very large 

(diversifying 10 positions of a CDR yields 2010 ≈ 1013 possible variants), meaning these 

approaches still vastly undersample the possible space of sequences. Further, sequences 

from randomized libraries often contain substantial fractions of non-functional antibodies 

[2, 40]. These liabilities could be reduced by restricting libraries to sequences that resemble 

natural antibodies, and are thus more likely to be viable therapeutics.

Recent work has leveraged natural language processing methods for unsupervised pre-

training on massive databases of raw protein sequences for which structural data are 

unavailable [35, 8, 23]. These works have explored a variety of pre-training tasks and 

downstream model applications. For example, the ESM family of models (trained for 

masked language modeling) have been applied to representation learning [35], variant effect 

prediction [25], and protein structure prediction [20]. Masked language models have also 

shown promise for optimization and humanization of antibody sequences through suggestion 

of targeted mutations [13]. Autoregressive language modeling, an alternative paradigm 

for pre-training, has also been applied to protein sequence modeling. Such models have 
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been shown to generate diverse protein sequences, which often adopt natural folds despite 

diverging considerably in residue makeup [10, 26]. In some cases, these generated sequences 

even retain enzymatic activity comparable to natural proteins [22]. Autoregressive language 

models have also been shown to be powerful zero-shot predictors of protein fitness, with 

performance in some cases continuing to improve with model scale [12, 26].

Another set of language models have been developed specifically for antibody-related tasks. 

The majority of prior work in this area has focused on masked language modeling of 

sequences in the Observed Antibody Space (OAS) database [16]. Prihoda et al. developed 

Sapiens, a pair of distinct models (each with 569K parameters) for heavy and light chain 

masked language modeling [29]. The Sapiens models were trained on 20M and 19M heavy 

and light chains respectively, and shown to be effective tools for antibody humanization. 

Similarly, likelihoods from antibody-specific masked language models have also been used 

as a proxy for immunogenic risk (or naturalness) [3]. Ruffolo et al. developed AntiBERTy, 

a single masked language model (26M parameters) trained on a corpus of 558M sequences, 

including both heavy and light chains [37]. AntiBERTy has been applied to representation 

learning for protein structure prediction [36]. Leem et al. developed AntiBERTa, a single 

masked language model (86M parameters) trained on a corpus of 67M antibody sequences 

(both heavy and light) [18]. Representations for AntiBERTa were used for paratope 

prediction. Olsen et al. developed AbLang, a pair of masked language models trained on 

14M heavy chains and 187K light chains, for sequence restoration [27]. For sequence 

generation, autoregressive generative models have been trained on antibody sequences 

and used for library design [1, 39]. Akbar et al. [1] trained an LSTM for autoregressive 

generation of CDR H3 loops and conducted an in silico investigation of their potential for 

binding antigens. LSTMs have also been trained on phage display data to aid in discovery 

of optimized variants [38]. Towards a more general method for library generation, Shin et 

al. [39] experimentally validated a set of nanobody sequences with generated CDR3 loops 

and showed promising improvements to viability and binding discovery when compared to 

traditional approaches, despite the library being over 1000-fold smaller. However, because 

this generative model was unidirectional, it could not be used to directly re-design the CDR3 

loop within the sequence, and instead had to be oversampled to produce sequences matching 

the residues following the loop.

Here, we present Immunoglobulin Language Model (IgLM), a generative language model 

that leverages bidirectional context for designing antibody sequence spans of varying 

lengths while training on a large-scale natural antibody dataset. We show that IgLM can 

generate full-length antibody sequences conditioned on chain type and species-of-origin. 

Furthermore, IgLM can diversify loops on an antibody to generate high-quality libraries 

that display favorable predicted biophysical properties while resembling human antibodies. 

IgLM should be a powerful tool for antibody discovery and optimization.

Results

Immunoglobulin language model

Our method for antibody sequence generation, IgLM, is trained on 558 million natural 

antibody sequences for both targeted infilling of residue spans, as well as full-length 
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sequence generation. IgLM generates sequences conditioned on the species-of-interest and 

chain type (heavy or light), enabling controllable generation of antibody sequences.

Infilling language model

Design of antibody libraries typically focuses on diversification of the CDR loop 

sequences in order to facilitate binding to a diverse set of antigens. Through traditional 

diversification technologies, many putative antibody sequences can be produced and 

subjected to experimental screening, enabling the discovery or optimization of specific 

antibodies. However, such techniques typically produce large fractions on non-viable or 

poorly behaved sequences, as they are not constrained to the natural space of antibody 

sequences. Generative models of protein sequences, such as language models, offer an 

alternative means of efficiently sampling from the natural space of proteins to produce 

large libraries of sequences. However, existing approaches to protein sequence generation 

(including antibodies) typically adopt left-to-right decoding strategies [26, 10]. While these 

models have proven effective for generation of diverse and functional sequences, they 

are ill-equipped to re-design specific segments of interest within proteins. To address this 

limitation, we developed IgLM, an infilling language model for immunoglobulin sequences. 

IgLM uses a standard left-to-right decoder-only transformer architecture based on GPT-2, 

but it is trained for infilling through rearrangement of sequences. Specifically, we adopt 

the infilling language model formulation from natural language processing [6], wherein 

arbitrary-length sequence segments (spans) are masked during training and appended to the 

end of the sequence. By training on these rearranged sequences, models learn to predict the 

masked spans conditioned on the surrounding sequence context.

To train IgLM, we collected antibody sequences from the Observed Antibody Space (OAS) 

[16]. The OAS database contains natural antibody sequences from six species: human, 

mouse, rat, rabbit, rhesus, and camel. To investigate the impacts of model capacity, we 

trained two versions of the model: IgLM and IgLM-S, with 13M and 1.4M trainable 

parameters, respectively. Both IgLM models were trained on a set of 558M non-redundant 

sequences, clustered at 95% sequence identity. During training, we randomly masked spans 

of ten to twenty residues within the antibody sequence to enable diversification of arbitrary 

spans during inference. Additionally, we conditioned sequences on the chain type (heavy 

or light) and species-of-origin. Providing this context enables controllable generation of 

species-specific antibody sequences. An example of training data construction is illustrated 

in Figure 1A. Unless otherwise specified, we use the larger IgLM model for all experiments.

IgLM generates foldable antibody sequences in silico

As an initial validation of the antibody sequence generation capabilities of IgLM, we 

conducted a small scale investigation of full-length generation (Methods). Specifically, we 

investigated the impacts of sampling temperature for tuning the diversity of generated 

sequences. Sampling temperature values above one effectively flatten the amino acid 

distribution at each step of generation, resulting in more diverse sequences, while 

temperature below one sharpens the distribution at each position, resembling a greedy 

decoding strategy. We generated a set of full-length sequences at temperatures ranging 

from 0.4 to 2.0, providing the model with human heavy and human light conditioning 
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tags. Because IgLM was trained for sequence infilling, generated sequences contain 

discontinuous segments of sequence segments, which we simply reordered to produce 

full-length antibodies. Heavy and light chain sequences were generated independently of 

each other, as IgLM only considers single chains. Sequences were then paired according 

to sampling temperature and their structures predicted using AlphaFold-Multimer [9]. In 

general, IgLM generates sequences with correspondingly confident predicted structures at 

lower temperatures (up to 1.2), before beginning to degrade in quality at higher temperatures 

(Figure 1C). For subsequent experiments, we sampled with a maximum temperature of 1.2 

to remain within foldable antibody space, and used the much faster IgFold model [36] for 

high-throughput structure predictions.

Language modeling evaluation

We evaluated IgLM as a language model by computing the per-token perplexity for infilled 

spans within an antibody, which we term the infilling perplexity. Because the infilled 

segment is located at the end of the sequences, computing the infilling perplexity is 

equivalent to taking the per-token perplexity after the [SEP] token (Methods). We compared 

the infilling perplexity of IgLM and IgLM-S given bidirectional context (IgLM [bi] and 

IgLM-S [bi]) and preceding context only (IgLM [pre] and IgLM-S [pre]) on a heldout test 

dataset of 30M sequences. We additionally computed infilling perplexity for ProGen2-base 

and ProGen2-OAS, which only use preceding context (Methods) [26]. Results are tabulated 

by CDR loop for each method (Figure 1D). As expected, the CDR3 loop, which is the 

longest and most diverse, has the highest infilling perplexity for all methods. For IgLM, 

providing bidirectional context yielded reduced perplexity, demonstrating that the sequence 

following CDR loops is important for determining their content. Both ProGen2 models 

evaluated have 764M parameters, substantially more than the 13M parameters of IgLM. 

However, with bidirectional context, IgLM is able to better fit the distribution of CDR loops 

than either model, demonstrating the importance of aligning the model pre-training objective 

with the downstream task.

The diversity of antibody sequences varies by species and chain type. For example, heavy 

chains introduce additional diversity into their CDR3 loops via D-genes, while some 

species (e.g., camels) tend to have longer loops. To investigate how these differences 

impact the performance of IgLM in different settings, we also tabulated the heldout 

set infilling perplexity by species and chain type. For CDR1 and CDR2 loop infilling, 

perplexity values are typically lower for human and mouse antibodies (Figure S1), which are 

disproportionately represented in the OAS database. In general, both models still perform 

better on these loops than the more challenging CDR3 loops, regardless of species. One 

exception is for rhesus CDR2 loops, on which IgLM-S performs considerably worse than 

the larger IgLM model. This appears to be due to poor fitting of rhesus CDR L2 loops, as 

reflected in the similarity high infilling average perplexity observed when tabulated by chain 

type (Figure S2). The highest infilling perplexity is observed for camel CDR3 loops, which 

tend to be longer than other species. Across all species and chain types, the larger IgLM 

model achieves lower infilling perplexity than IgLM-S, suggesting that further increasing 

model capacity would yield additional improvements.
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Controllable generation of antibody sequences

Having demonstrated that IgLM can generate well-formed full-length sequences, we next 

considered the controllability of IgLM for generating antibody sequences with specific traits. 

Controllable generation uses conditioning tags to provide the model with additional context 

about the expected sequence.

Generating species- and chain-controlled sequences

To evaluate the controllability of IgLM, we generated a set of 220K full-length sequences 

using all viable combinations of conditioning tags, as well as a range of sampling 

temperatures (Figure 2A). For every species (except camel), we sampled with both heavy 

and light conditioning tags. For camel sequence generation, we only sampled heavy chains, 

as they do not produce light chains. To produce a diverse set of sequences for analysis, 

we sampled using a range of temperatures T ∈ 0.6, 0.8, 1.0, 1.2 . Sampling under these 

conditions resulted in a diverse set of antibody sequences. However, we observed that 

the sequences frequently featured N-terminal truncations. These truncations are frequently 

observed in the OAS database used for training, with over 40% of sequences missing the 

first fifteen or more residues [27]. For heavy chains, these N-terminal deletions appeared 

as a left-shoulder in the sequence length distribution (Figure 2B, left) with lengths ranging 

from 100 to 110 residues. For light chains, we observed a population of truncated chains 

with lengths between 98 and 102 residues (Figure 2B, right). To address truncation in 

generated sequences, we used a prompting strategy, wherein we initialize each sequence 

with a three-residue motif corresponding to the species and chain type tags. The specific 

initialization sequences were selected according to germline sequences in the IMGT 

database [19] and are documented in Table S2. For light chains, we identified prompts 

corresponding to both lambda and kappa classes and divided the generation budget between 

the two. For both heavy and light chains, prompting with initial residues markedly reduced 

the population of truncated sequences (Figure 2B). For the following analysis, we consider 

only sequences generated with prompting.

Adherence to conditioning tags

To evaluate the effectiveness of controllable generation, we considered the agreement 

between the provided conditioning tags and the sequences produced by IgLM. For each 

generated sequence, we classified the species and chain type using ANARCI [7]. We note 

that the species classes provided by ANARCI diverge in some cases from those provided 

by the OAS database, but there was a suitable corresponding class for each conditioning 

token (e.g., alpaca for [CAMEL]). In Figure 2C, we show the makeup of sequences for each 

species conditioning tag, according to sampling temperature. In each plot, the percentage of 

heavy and light chain sequences classified as each species are indicated by solid and dashed 

lines, respectively. For most species (human, mouse, camel, rabbit, rhesus), IgLM is able 

to successfully generate heavy chain sequences at every temperature. The exception to this 

trend is rat sequences, for which we were unable to produce any sequences that ANARCI 

classified as belonging to the intended species.

The ability to generate sequences is not directly explained by prevalence in the training 

dataset, as the model is trained on an order of magnitude more rat heavy chain sequences 
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than rhesus (Table S1). IgLM is generally less effective at generating light chain sequences 

for most species. With the exception of human light chains, all species have a large 

proportion of sequences classified as belonging to an unintended species (typically human). 

For mouse and rhesus light chains, IgLM generates the correct species in 34.89% and 

88.14% of cases, respectively (Table S3). The disproportionately low recovery of mouse 

sequences may be due to inclusion of transgenic mice immune repertoires, which are 

harvested from mice but consist of human genetic material. For rabbit and rat light chains, 

IgLM was not exposed to any examples during training. Despite having seen no such 

sequences during training, IgLM is capable of generating sequences classified by ANARCI 

as rabbit light chains for 6.89% of samples (1,120 sequences). The majority of these 

sequences are cases where the model has instead generated a rabbit heavy chain. However, 

for 35 of these 1,120 cases, IgLM has produced rabbit light chain sequences. We further 

investigated the plausibility of these sequences by aligning to the nearest germline sequences 

assigned by ANARCI with Clustal-Omega [41]. The sequences appear to align well to rabbit 

germlines, though with considerable mutations to the framework regions (Figure S3). To 

investigate the structural viability of the generated rabbit light chain sequences, we predicted 

structures with IgFold [36]. All structures were predicted confidently in the framework 

residues, with the CDR loops being the most uncertain (Figure S4). Although rare (35 

sequences out of 20,000 attempts), these results suggest that IgLM is capable of generating 

rabbit light chain sequences despite having never observed such sequences during training. 

This may be achieved by producing a consensus light chain, with some rabbit-likeness 

conferred from the heavy chain examples.

We next evaluated the adherence of IgLM-generated sequences to chain type conditioning 

tags. In Figure 2D, we show the percentage of sequences classified by ANARCI as heavy or 

light for each conditioning tag. Light chains are further divided into lambda and kappa 

classes. When conditioned towards heavy chain generation, IgLM effectively produces 

heavy chains for all species. For light chains, we observe a similar trend, with IgLM 

producing predominantly light chain sequences for all species. Only for rabbit sequences 

do we observe a population of heavy chains when conditioning for light chains. As noted 

above, these are cases where IgLM has instead produced a rabbit heavy chain. When 

generating light chain sequences, we provide initial residues characteristic of both lambda 

and kappa chains in equal proportion (Table S2). For most species (except rabbit), the 

generated sequences are aligned with light chain type indicated by the initial residues. 

However, as noted above, many of the light sequences for poorly represented species are 

human-like, rather than resembling the desired species. These results suggest that the chain 

type conditioning tag is a more effective prior for IgLM than species.

Sampling temperature controls mutational load

Increasing sampling temperature has the effect of flattening the probability distribution at 

each position during sampling, resulting in a greater diversity of sequences. We evaluated 

the effect of sampling temperature on the diversity of generated sequences by measuring 

the fractional identity to the closest germline sequences using ANARCI [7]. In Figure 2E, 

we show the germline identity for V- and J-genes for each species and chain type. At the 

lowest sampling temperature T = 0.6 , IgLM frequently recapitulates germline sequences in 
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their entirety for some species (human, mouse, rhesus). As temperature increases, sequences 

for every species begin to diverge from germline, effectively acquiring mutations. To 

evaluate whether these mutations emerge at biologically relevant positions, we calculated 

the positional entropy of generated sequences according to the Chothia numbering scheme 

(Methods). As expected, we observe markedly higher entropy in the CDR loops, with 

temperature further increasing the entropy at these positions (Figure S5). J-gene sequences 

typically acquire fewer mutations than V-genes for both heavy and light chains. This is likely 

a reflection of the concentration of CDR loops within the V-gene (CDR1 and CDR2). Only 

a portion of the CDR3 loop is contributed by the J-gene, with the remaining sequence being 

conserved framework residues.

Therapeutic antibody diversification

Diversification of antibody CDR loops is a common strategy for antibody discovery or 

optimization campaigns. Through infilling, IgLM is capable of replacing spans of amino 

acids within antibody sequences, conditioned on the surrounding context. To demonstrate 

this functionality, we generated infilled libraries for a set of therapeutic antibodies and 

evaluated several therapeutically relevant properties. Based on in silico measures of 

developability and humanness, we show that IgLM proposes libraries containing antibody 

sequences resembling natural antibodies with controllable diversity, which could then be 

experimentally screened to discover new high-affinity binders.

Infilled libraries for therapeutic antibodies

To evaluate the utility of infilling with IgLM for diversifying antibody sequences, we 

created infilled libraries for 49 therapeutic antibodies from Thera-SAbDab [33]. These 

antibodies were selected because they had experimentally determined structures and 

had been previously evaluated for developability screening [32]. For each antibody, 

we removed the CDR H3 loop (according to Chothia definitions [5]) and generated a 

library of infilled sequences using IgLM (Figure 3A). To produce diverse sequences, we 

used a combination of sampling temperatures T ∈ 0.8, 1.0, 1.2  and nucleus sampling 

probabilities P ∈ 0.5, 0.75, 1.0 . Nucleus sampling effectively clips the probability 

distribution at each position during sampling, such that only the most probable amino acids 

(summing to P) are considered. For each of the 49 therapeutic antibodies, we generated one 

thousand infilled sequences for each combination of T  and P , totaling nine thousand variants 

per parent antibody. In Figure 3D, we show predicted structures (using IgFold [36]) for a 

subset of ten infilled loops derived from the trastuzumab antibody. The infilled loops vary 

in length and adopt distinct structural conformations. Across the infilled libraries, we see a 

variety of infilled CDR H3 loop lengths, dependent on the parent antibody’s surrounding 

sequence context (Figure 3B). The median length of infilled loops across antibodies ranges 

from 11 to 16 residues. IgLM occasionally generated very short CDR H3 loops (fewer 

than five residues), which were assigned correspondingly low log likelihoods by the model 

(Figure S6). We observe little impact on the length of infilled loops when varying the 

sampling temperature and nucleus probabilities (Figure 3C).

The distributions of infilled loop lengths vary considerably over the 49 therapeutic 

antibodies. Because IgLM is trained on natural antibody sequences, we hypothesized that 
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the model may be performing a sort of germline matching, wherein sequences with similar 

V- and J-genes lead to similar distributions of loop lengths. To test this, we identified 

the closest germline genes for each antibody with ANARCI [7]. We then group parent 

antibodies according to common V- and J-gene groups and compared the distributions of 

infilled loop lengths for each group (Figure 3E). While there may be some tendency for 

similar V- and J-genes to lead to similar distributions of infilled loop lengths, we observe 

considerable variation. This suggests that IgLM is not purely performing germline matching, 

but rather is considering other properties of the parent antibody.

Infilling generates diverse loop sequences

Diverse loop libraries are essential for discovering or optimizing sequences against an 

antigen target. To evaluate the diversity of infilled loops produced by IgLM, we measured 

the pairwise edit distance between each loop sequence and its closest neighbor amongst the 

sequences generated with the same sampling parameters. We then compared the diversity 

of sequences according to loop length and choice of sampling parameters (Figure 3F–

G). Generally, we observe that generated loops are more diverse at longer lengths, as 

expected given the increased combinatorial complexity available as more residues are added. 

Increasing both sampling temperature and nucleus probability results in a greater diversity 

of sequences. However, these parameters affect the relationship between length and diversity 

in distinct ways. For a given loop length, increasing temperature produces more variance in 

the pairwise edit distance, while increases to nucleus probability provides a more consistent 

increase in diversity across loop lengths. Indeed, the marginal distribution of pairwise 

edit distance as nucleus probability is increased produces a much larger shift (Figure 

3G, marginal) than that of temperature (Figure 3F, marginal). In practice, a combination 

of sampling parameters may be suitable for producing a balance of high-likelihood (low 

temperature and low nucleus probability) and diverse sequences.

Infilled loops display improved developability in silico

Developability encompasses a set of physiochemical properties – including aggregation 

propensity and solubility – that are critical for the success of a therapeutic antibody. 

Libraries for antibody discovery or optimization that are enriched for sequences with 

improved developability can alleviate the need for time-consuming post-hoc engineering. 

To evaluate the developability of sequences produced by IgLM, we used high-throughput 

computational tools to calculate the aggregation propensity (SAP score [4]) and solubility 

(CamSol Intrinsic [43]) of the infilled therapeutic libraries. As a precursor to calculation 

of aggregation propensity, we used IgFold [36] to predict the structures of the infilled 

antibodies (including the unchanged light chains). We then compared the predicted 

aggregation propensities and solubility values of the infilled sequences to those of the parent 

antibodies. For aggregation propensity, we observed a significant improvement (negative is 

better) by infilled sequences over the parent antibodies (Figure 4A, Figure S7). Similarly 

for solubility, infilled sequences tended to be predicted to be more soluble than their 

parent antibodies (Figure 4B, Figure S8). In both cases, the largest improvements tend 

to correspond to the shorter loops. Further, we observe a positive correlation between 

improvements to predicted aggregation propensity and solubility (Figure 4C, Figure S9). 
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These results suggest that infilling can be used to generate libraries enriched for sequences 

with improved developability.

We next investigated whether choice of sampling parameters affects the developability 

of infilled sequences. When we compared the predicted aggregation propensity and 

solubility of infilled sequences according to the sampling temperature and nucleus sampling 

probability, we found marginal practical differences (Figure S10). This is likely explained 

by the relative consistency of infilled loop lengths across sampling parameters (Figure 3C). 

These results suggest that developability should not be a concern when tuning the diversity 

of a generated library.

Infilled loops are more human-like

Therapeutic antibodies must be human-like to avoid provoking an immune response and 

to be safe for use in humans. To evaluate the human-likeness of infilled sequences, we 

calculated the OASis identity (at medium stringency) [29]. OASis divides an antibody 

sequence into a set of 9-mers and calculates the fraction that have been observed in human 

repertoires. Thus, higher OASis identity indicates a sequence that is more similar to those 

produced by humans. When compared to their respective parent antibodies, sequences 

infilled by IgLM were typically more human-like (Figure 4D). This is expected, given that 

IgLM is trained on natural human antibodies, but not trivial as the parent sequences have 

been optimized and shown to be safe in humans. To achieve higher humanness, sequences 

from IgLM must better adhere to the natural distribution of human antibodies than the parent 

sequences. We also investigated the impact of sampling parameters on the human-likeness of 

infilled sequences. For both sampling temperature and nucleus probability, we find that less 

restrictive sampling tends to produce less human-like sequences (Figure 4E). For practical 

purposes, this suggests that sampling with lower temperature and nucleus probability may be 

more suitable when immunogenicity is a concern.

Libraries from alternative language models

To contextualize the properties of IgLM-generated infilled libraries, we conducted a 

benchmark using several alternative protein language models. The benchmark includes 

ESM-2, a masked language model trained on diverse sequences, AntiBERTy, an antibody-

specific masked language model, and ProGen2-OAS, an autoregressive language model 

trained on antibody sequences [20, 37, 26]. We also compared with a baseline of sequences 

generated from the OAS data used to train IgLM. Sequences for the OAS baseline, OAS 

[parent], were generated by sampling from positional amino acid frequencies for loop 

lengths matching the parent sequence.

For all infilled libraries, we predicted structures with IgFold [36] and computed aggregation 

propensity [4], solubility [43], and humanness [29] for all sequences (Figure S11). To 

remove length-dependent biases from the evaluation, we compared the developability 

properties of only loops matching the parent CDR H3 loop length. In general, we found that 

all methods were able to generate infilled libraries predicted to have improved aggregation 

propensity and solubility relative to the parent sequences (Figure 4F–G). This illustrates the 

utility of drawing from informed sequence distributions (such as those derived from OAS 
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or learned by language models), rather than randomly mutating sequences as is the norm 

for library construction. The OAS baseline performed particularly well, indicating that the 

natural makeup of CDR H3 loops are biophysically well-behaved. However, to produce 

human-like antibody libraries, we found that antibody-specific language models were 

substantially more effective than alternative approaches (Figure 4H). Among these models, 

IgLM produced slightly more human-like sequences than ProGen2-OAS, in accordance with 

the lower infilling perplexity demonstrated on the heldout set human sequences (Figure S1).

Sequence likelihood is an effective predictor of humanness

Likelihoods from autoregressive language models trained on proteins have been shown to 

be effective zero-shot predictors of protein fitness [12, 26]. Antibody-specific language 

models in particular have been used to measure the ”naturalness” of designed sequences [3], 

a measure related to humanness. To evaluate the effectiveness of IgLM for distinguishing 

human from non-human antibodies, we used the model’s likelihood to classify sequences 

from the IMGT mAb DB [28]. Sequences in this set span a variety of species (human and 

mouse) and engineering strategies (e.g., humanized, chimeric, felinized). We considered all 

sequences not specifically labeled as human to be non-human, and calculated a likelihood 

(conditioned on human species) for each. All sequences had both a heavy and light chain, 

for which we calculated separate likelihoods and then multiplied.

We compared the performance of IgLM to that of a number of other methods previously 

benchmarked by Prihoda et al. [29] using a receiver operating characteristic (ROC) curve 

(Figure 4I). The results here for alternative methods are adapted from those presented by 

Prihoda et al., but with several redundant entries removed to avoid double-counting. We 

additionally evaluated model likelihoods from ProGen2-base and ProGen2-OAS [26], which 

are models similar to IgLM that contain substantially more parameters (764M). ProGen2-

base is trained on a diverse set of protein sequences, while ProGen2-OAS is trained on 

a dataset similar to IgLM (OAS clustered at 85% sequence identity). We find that IgLM 

is competitive with state-of-the-art methods designed for human sequence classification, 

though not the best. IgLM outperforms ProGen2-OAS (ROC AUC of 0.96 for IgLM vs. 

0.94 for ProGen2-OAS), despite having fewer parameters (13M vs. 764M). This may result 

from the different strategies for constructing training datasets from OAS. By filtering at 

a less stringent 95% sequence identity, IgLM is likely exposed to a greater proportion of 

human antibody sequences, which dominate the OAS database. These distinctions highlight 

the importance of aligning training datasets with the intended application and suggest that 

training on only human sequences may further improve performance for human sequence 

classification.

Discussion

Antibody libraries are a powerful tool for discovery and optimization of therapeutics. 

However, they are hindered by large fractions of non-viable sequences, poor developability, 

and immmunogenic risks. Generative language models offer a promising alternative to 

overcome these challenges through on-demand generation of high-quality sequences. 

However, previous work has focused entirely on contiguous sequence decoding (N-to-C 
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or C-to-N) [26, 39]. While useful, such models are not well-suited for generating antibody 

libraries, which vary in well-defined regions within the sequence, and for which changes 

may be undesirable in other positions. In this work, we presented IgLM, an antibody-

specific language model for generation of full-length sequences and infilling of targeted 

residue spans. IgLM was trained for sequence infilling on 558M natural antibody sequences 

from six species. During training, we provide the model with conditioning tags that indicate 

the antibody’s chain type and species-of-origin, enabling controllable generation of desired 

types of sequences.

Concurrent work on autoregressive language models for antibody sequence generation have 

been trained on similar sets of natural antibody sequences and explored larger model sizes 

[26]. However, models like ProGen2-OAS are limited in utility for antibody generation and 

design, as they are difficult to guide towards generation of specific types of sequences (e.g., 

species or chain types). Both this work and the ProGen2-OAS paper have used prompting 

strategies to guide model generation towards full-length sequences. While these strategies 

may help in some cases (particularly to overcome dataset limitations), substantially more 

residues may need to be provided to guide the model towards a specific sequence type (e.g., 

human vs rhesus heavy chain). In contrast, by including conditioning information for species 

and chain type in the model’s training, IgLM is able to generate sequences of the desired 

type without additional prompting. Still, as shown in this work, increasing the capacity of 

models like IgLM may lead to better performance for sequence infilling (lower perplexity) 

and scoring (better likelihood estimation), a promising direction for future work.

Antibody-specific language models have recently proliferated [29, 37, 18, 27], showing 

promise for a broad range of traditional antibody engineering tasks [36]. Such models 

are typically trained on the Observed Antibody Space database [16], which comes with 

a particular set of biases that are reflected in the behavior of such models. For example, 

sampling from IgLM with higher temperatures largely corresponds to increased mutational 

distance from germline sequences, reflecting the nature of immune repertoire datasets. In 

other work, antibody-specifc language models have been found to underperform universal 

protein models on antibody fitness prediction tasks [26] – including binding affinity, thermal 

stability, and expression – despite being trained on considerably more antibody sequences. 

These findings suggest that we must carefully consider the utility of language models trained 

on immune repertoire datasets based on the particular task at hand. For generative tasks, 

training on immune repertoire data may be an intuitive and necessary way to produce large 

numbers of natural antibody sequences. Meanwhile, for fitness prediction tasks in protein 

engineering workflows, universal models may better capture the critical developability 

properties of interest that are divergent from the selective pressures on the immune system.

IgLM’s primary innovation is the ability to generate infilled residue spans at specified 

positions within the antibody sequence. In contrast to traditional generative language models 

that only consider preceding the residues, this enables IgLM to generate within the full 

context of the region to be infilled. IgLM therefore acts as a tool for developing synthetic 

libraries for large-scale experimental screening by diversifying regions of an existing 

antibody. Because IgLM is trained on a massive dataset of natural antibodies, it proposes 

sequences that more efficiently explore the sequence space of natural antibodies, which 
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can reduce the fraction of non-functional antibodies in IgLM-designed libraries compared 

with randomized synthetic libraries. We demonstrate the utility of infilling by generating 

libraries 49 therapeutic antibodies. We found that IgLM was capable of generating diverse 

CDR H3 loop sequences, and that diversity was largely tunable by choice of sampling 

parameters. Further, as measured by in silico tools, the infilled libraries possessed desirable 

developability traits (aggregation propensity, solubility) while being more human-like on 

average than their parent sequences. Notably, IgLM achieves these improvements over 

antibodies that are already highly optimized, as all of the parent sequences have been 

engineered for mass-production and use in humans. Although we focused on antibody 

loop infilling in this work, similar strategies may be useful for proteins generally. For 

example, a universal protein sequence infilling model may be applicable to re-design of 

contiguous protein active sites or for generating linkers between separate domains for 

protein engineering.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Jeffrey Gray (jgray@jhu.edu).

Materials Availability—This study did not generate new unique reagents.

Code and Data Availability

• Generated sequences and developability metrics have been deposited at Zenodo 

and are publicly available as of the date of publication. DOIs are listed in the key 

resources table.

• All original code has been deposited at https://github.com/Graylab/IgLM and 

Zenodo and is publicly available as of the date of publication. DOIs are listed in 

the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Infilling formulation—Designing spans of amino acids within an antibody sequence can 

be formulated as an infilling task, similar to text-infilling in natural language. We denote 

an antibody sequence A = a1, …an , where ai represents the amino acid at position i of the 

antibody sequence. To design a span of length m starting at position j along the sequence, we 

first replace the span of amino acids S = aj, …aj + m − 1  with a single [MASK] token to form a 

sequence A\S = a1, …aj − 1, MASK , aj + m, …an . To generate reasonable variable-length spans to 

replace S given A\S, we seek to learn a distribution p S ∣ A\S .

We draw inspiration from the Infilling by Language Modeling (ILM) framework proposed 

for natural language infilling [6] to learn p S ∣ A\S . For assembling the model input, we 

first choose a span S and concatenate A\S, [SEP],S, and [ANS]. We additionally prepend 
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conditioning tags cc and cs to specific the chain type (heavy or light) and species-of-origin 

(e.g., human, mouse, etc.) of the antibody sequence. The fully formed sequence of tokens X
for IgLM is:

X = cc, cs, a1, …aj − 1, MASK , aj + m, …an, SEP , aj, …aj + m − 1, ANS

(1)

We then train a generative model with parameters θ to maximize p X ∣ θ , which can be 

decomposed into a product of conditional probabilities:

max
θ

p X ∣ θ = max
θ

∏
i

p Xi ∣ X < i, θ

(2)

Model implementation—The IgLM model uses a Transformer decoder architecture 

based on a modified version of the GPT-2 Transformer [30] as implemented in the 

HuggingFace Transformers library [? ]. We trained two models, IgLM and IgLM-S, for 

sequence infilling. Hyperparameter details are provided in Table 1.

Antibody sequence dataset—To train IgLM, we collected unpaired antibody sequences 

from the Observed Antibody Space (OAS) [16]. OAS is a curated set of over one billion 

unique antibody sequences compiled from over eighty immune repertoire sequencing 

studies. After removing sequences indicated to have potential sequencing errors, we were 

left with 809M unique antibody sequences. We then clustered these sequences using 

LinClust [44] at 95% sequence identity, leaving 588M non-redundant sequences. The 

distribution of sequences corresponding to each species and chain type are documented 

in Figure 1B and Table S1. The dataset is heavily skewed towards human antibodies, 

particularly heavy chains, which make up 70% of all sequences.

The highly conserved nature of antibody sequences, which are recombined and mutated 

from a common of set germline components, makes construction of distinct training and 

validation sets challenging, as overly aggressive splitting may result in exclusion of entire 

germline lineages from training. For this work, we held out a random 5% of the clustered 

sequences as a test set to evaluate model performance. Of the remaining sequences, we 

randomly selected 558M sequences for training and 1M for validation. This splitting criteria 

ensures that the model is exposed to all of the available conserved regions of antibody 

sequences, but can be evaluated on how well it captures mutations to those sequences.

Model training—During training, for each sequence A = a1, …, an  we chose a mask length 

m uniformly at random from [10, 20] and a starting position j uniformly at random from 

1, n − m + 1 . We prepended two conditioning tags cc and cs denoting the chain type and 

species-of-origin of each sequence as annotated in the OAS database. Models were trained 

with a batch size of 512 and 2 gradient accumulation steps using DeepSpeed [31, 34]. 

Training required approximately 3 days when distributed across 4 NVIDIA A100 GPUs.
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Infilling perplexity—Language models are commonly evaluated using perplexity, which 

computes the exponentiated average negative log-likelihood across tokens in a dataset. For a 

dataset with N total tokens across K sequences, this corresponds to computing:

exp − 1
N ∑

j = 1

K
∑
i

log p Xi
j ∣ X < i

j

(3)

where j indexes over the sequences in the dataset. Since IgLM re-designs antibodies 

by infilling spans conditioned on the surrounding context, rather than evaluating model 

likelihood on all tokens in a sequence, we define an infilling perplexity metric to evaluate 

model likelihood only on tokens within infilled spans. For a dataset with K sequences 

masked by our infilling formulation procedure above, we compute infilled perplexity with 

IgLM as:

exp − 1
NS′

∑
j = 1

K
∑
i

log p Si
j ∣ A\S

j , S < i
′ j

(4)

where j indexes over the sequences in the dataset, S′ represents the span S with the [ANS] 

token appended to it, and NS′ represents the total length of all S′ across the dataset. In other 

words, infilling perplexity is equivalent to taking the per-token perplexity after the [SEP] 

token.

In Figure 1D, we also compared IgLM infilling perplexity to methods using only preceding 

context (IgLM [pre], IgLM-S [pre], ProGen2-base, ProGen2-OAS). For these methods, 

rather than compute perplexity using our infilling formulation procedure, we instead provide 

only the amino acid sequence context preceding the span to be predicted. We additionally 

prepend the appropriate conditioning tokens for each model (i.e. the chain type and species-

of-origin tokens for IgLM, and the 1 character token for the ProGen2 models) prior to 

inference. We then compute per-token perplexity over the predicted span and the first residue 

following the span, where the first residue following the span acts as a proxy for the [ANS] 

token. In this way, we compute infilling perplexity over the same number of tokens with 

these methods while only providing the preceding amino acid sequence context.

Full-length antibody generation—Given a chain type and species-of-origin, IgLM 

samples full-length antibodies by autoregressively sampling from p Xi ∣ X < i  until the [ANS] 

is sampled, where X0 is the chain token cc , and X1 is the species token cs . Because IgLM 

is trained with the infilling formulation, the model will generate a [MASK], [SEP], and 

[ANS] token within the sampled sequence X. To form the full-length antibody sequence, 

we replaced the [MASK] token with the span between [SEP] and [ANS] and removed all 

non-amino acid tokens. Any sampled sequences without [MASK], [SEP], and [ANS] in the 

correct order were discarded.
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Because the OAS database we used for training frequently features sequences with N-

terminal truncations, we used a prompting strategy: in addition to providing a chain species 

token, we provided an initial three-residue motif based on the species and chain type tags. 

Specific initialization sequences are documented in Table S2.

Positional entropy of full-length sequences—To observe whether mutations from 

germline tend to occur at biologically relevant positions in generated full-length sequences, 

we computed the positional entropy of sequences according to Chothia numbering. 

Specifically, we first selected all sequences for which the species and chain type 

classifications from ANARCI matched the full-length sequence generation parameters 

specified in Table S2. For each chain type, species, and temperature setting, we aligned the 

remaining sequences and aggregated residues at insertion points in the numbering scheme 

with the prior non-insertion residue. Then, we computed the entropy at each position as:

Hi = − ∑
a ∈ A

pi a log pi a

(5)

where i indexes over the Chothia position of the aligned sequences, A represents the set of 

all 20 residues, and pi a  denotes the proportion of residues at position i that correspond to 

residue a.

Sequence infilling—Because IgLM is trained under the infilling framework, the 

model can re-design spans within a given sequence. To re-design a span of length 

m starting at position j within an antibody sequence A = a1, …an , we conditioned on 

A\S = cc, cs, a1, …, aj − 1, MASK , aj + m, …, an, SEP . To generate a span S, we sequentially 

sampled p Si ∣ A\S, S < i  until the [ANS] token was sampled. To form our designed sequences, 

we replaced [MASK] in A\S with S and removed all non-amino acid tokens.

Sampling parameters—As we sampled sequences under the model, we applied 

temperature sampling to shape the probability distribution for each token. Applying 

temperature T  corresponds to scaling the logits z from the last layer before applying 

softmax:

p xi = ezi/T

j = 1
n ezj/T

(6)

where p xi  denotes the probability assigned during sampling to token i out of n possible 

tokens in the vocabulary. Intuitively, sampling with higher temperatures results in more 

diverse sequences, with the probability distribution across tokens becoming nearly uniform 

when T  is large.
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In addition to applying temperature, we also applied nucleus sampling to vary the diversity 

of sequences generated by IgLM [14]. In nucleus sampling with probability P , the 

probability distribution during sampling is clipped such that only the smallest set of tokens 

whose cumulative probability exceeds P  are considered during sampling. Intuitively, a lower 

P  restricts sampling to highly probable tokens, which decreases the diversity of sequences 

while increasing confidence.

Therapeutic antibody diversification benchmarks—To highlight the advantage of 

IgLM’s infilling framework for CDR H3 loop diversification, we benchmarked against 

randomized baselines, as well as other protein and antibody language models.

We generated randomized baselines by sampling from position-wise amino acid frequencies 

for CDR H3s from the OAS database. Specifically, for each CDR H3 loop length, we 

computed position-wise amino acid frequencies across all CDR H3s of that length from 

sequences in the training dataset, resulting in a position frequency matrix (PFM) for each 

CDR H3 loop length. For a given therapeutic antibody, we generated two libraries of 1000 

sequences: a fixed-length library and a variable-length library. In the fixed-length library, 

we sampled from the PFM corresponding to the native CDR H3 loop length to obtain 1000 

sequences of the same length. In the variable-length library, for each sequence, we first 

sampled a loop length from the distribution of CDR H3 loop lengths among the training set 

before sampling from the PFM corresponding to the sampled loop length.

AntiBERTy is a 26M parameter antibody-specific language model trained with a masked 

language modeling objective on the same dataset that IgLM uses for training [37]. For 

a given therapeutic antibody, to generate a library with diversified CDR H3 loops using 

AntiBERTy, we replaced all residues of the CDR H3 with [MASK] tokens and repeatedly 

sampled from the model to autoregressively fill in [MASK] tokens from left to right.

ESM-2 is a large protein language model trained with a masked language modeling 

objective on sequences from UniRef50 [45, 20]. In our benchmarks, due to computational 

limitations, we used the 650M parameter ESM-2 model, which is the third largest publicly 

available ESM-2 model behind the 3B parameter and 15B parameter models. For a given 

therapeutic antibody, to generate a library with diversified CDR H3 loops using ESM-2, we 

replaced all residues of the CDR H3 with ⟨mask⟩ tokens and repeatedly sampled from the 

model to autoregressively fill in ⟨mask⟩ tokens from left to right.

ProGen2-OAS is a 764M parameter language model trained with a next-token prediction 

learning objective on 554M OAS sequences clustered at 85% sequence identity [26]. For 

a given therapeutic antibody, to generate a library with diversified CDR H3 loops using 

ProGen2-OAS, we provided a 1 character token followed by the sequence context preceding 

the CDR H3 to the model. We then sampled until the 2 character token (the end of sequence 

token) was generated. After sampling, we annotated the CDR H3 loop of the generated 

sequence using Chothia definitions [5] and replaced the CDR H3 in the parent antibody 

sequence with the CDR H3 generated by ProGen2-OAS.
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For all baselines, we sampled to obtain a set of 1000 unique sequences. For all language 

model baselines, we sampled sequences using a combination of sampling temperatures 

T ∈ 0.8, 1.0, 1.2  and nucleus sampling probabilities P ∈ 0.5, 0.75, 1.0 . For certain 

combinations of T  and P , low generated sequence diversity yielded redundant sequences. 

In these cases, we could not obtain 1000 unique sequences and instead used all unique 

sequences found among 10000 sampling attempts.

Classification of species and chain type—To evaluate the adherence of IgLM-

generated sequences to provided species and chain type conditioning tags, we used the 

ANARCI software [7]. ANARCI uses a set of antibody-specific HMMs to compare a given 

antibody to a database of germline sequences across several species and chain types. To 

classify the chain type and species for generated sequences, we used the corresponding 

species and chain type for the top V-gene match returned by ANARCI.

Evaluation of sequence properties—To assess the developability and humanness 

of infilled therapeutic antibody sequences, we used a set of in silico tools previously 

developed for antibodies. Aggregation propensity was calculated based on the predicted 

FV  structures for each antibody using the Rosetta [17] implementation of the spatial 

aggregation propensity (SAP) score [4]. Solubility was calculated based on sequence alone, 

using the public CamSol-Intrinsic web server [43]. To measure humanness (a proxy for 

immunogenicity), we used the BioPhi OASis identity [29]. OASis identity measures the 

fraction of 9-mers for a given sequence that have been observed in human repertoires in the 

OAS database [16].
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Dr. Sai Pooja Mahajan and Dr. Rahel Frick for insightful discussions and advice. This work was 
supported by the National Science Foundation grant DBI-1950697 (R.W.S.) and National Institutes of Health grants 
R01-GM078221 (J.A.R.) and R35-GM141881 (J.A.R.) J.A.R. was supported as a Johns Hopkins-AstraZeneca 
Fellow. Computation was performed using the Advanced Research Computing at Hopkins (ARCH) core facility.

References

[1]. Akbar R, Robert PA, Weber CR, Widrich M, Frank R, Pavlović M, Scheffer L, Chernigovskaya 
M, Snapkov I, Slabodkin A et al. (2022). In silico proof of principle of machine learning-based 
antibody design at unconstrained scale. Mabs 14, 2031482. [PubMed: 35377271] 

[2]. Almagro JC, Pedraza-Escalona M, Arrieta HI and Pérez-Tapia SM (2019). Phage display libraries 
for antibody therapeutic discovery and development. Antibodies 8, 44. [PubMed: 31544850] 

[3]. Bachas S, Rakocevic G, Spencer D, Sastry AV, Haile R, Sutton JM, Kasun G, Stachyra A, 
Gutierrez JM, Yassine E et al. (2022). Antibody optimization enabled by artificial intelligence 
predictions of binding affinity and naturalness. bioRxiv, 2022–08.

[4]. Chennamsetty N, Voynov V, Kayser V, Helk B and Trout BL (2010). Prediction of aggregation 
prone regions of therapeutic proteins. The Journal of Physical Chemistry B 114, 6614–6624. 
[PubMed: 20411962] 

[5]. Chothia C and Lesk AM (1987). Canonical structures for the hypervariable regions of 
immunoglobulins. Journal of molecular biology 196, 901–917. [PubMed: 3681981] 

Shuai et al. Page 18

Cell Syst. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[6]. Donahue C, Lee M and Liang P (2020). Enabling language models to fill in the blanks. arXiv 
preprint arXiv:2005.05339.

[7]. Dunbar J and Deane CM (2016). ANARCI: antigen receptor numbering and receptor 
classification. Bioinformatics 32, 298–300. [PubMed: 26424857] 

[8]. Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L, Gibbs T, Feher T, Angerer 
C, Steinegger M et al. (2021). Prottrans: Toward understanding the language of life through 
self-supervised learning. IEEE transactions on pattern analysis and machine intelligence 44, 
7112–7127.

[9]. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, 
Yim J et al. (2021). Protein complex prediction with AlphaFold-Multimer. biorxiv, 2021–10.

[10]. Ferruz N, Schmidt S and Höcker B (2022). ProtGPT2 is a deep unsupervised language model for 
protein design. Nature communications 13, 1–10.

[11]. Griffiths AD, Williams SC, Hartley O, Tomlinson I, Waterhouse P, Crosby WL, Kontermann R, 
Jones P, Low N and Allison T. a. (1994). Isolation of high affinity human antibodies directly from 
large synthetic repertoires. The EMBO journal 13, 3245–3260. [PubMed: 8045255] 

[12]. Hesslow D, Zanichelli N, Notin P, Poli I and Marks D (2022). RITA: a Study on Scaling Up 
Generative Protein Sequence Models. arXiv preprint arXiv:2205.05789.

[13]. Hie BL, Shanker VR, Xu D, Bruun TU, Weidenbacher PA, Tang S, Wu W, Pak JE and Kim PS 
(2023). Efficient evolution of human antibodies from general protein language models. Nature 
Biotechnology.

[14]. Holtzman A, Buys J, Du L, Forbes M and Choi Y (2019). The curious case of neural text 
degeneration. arXiv preprint arXiv:1904.09751.

[15]. Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y 
et al. (2017). Biophysical properties of the clinical-stage antibody landscape. Proceedings of the 
National Academy of Sciences 114, 944–949.

[16]. Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM and Krawczyk K (2018). Observed 
antibody space: a resource for data mining next-generation sequencing of antibody repertoires. 
The Journal of Immunology 201, 2502–2509. [PubMed: 30217829] 

[17]. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman KW, Renfrew 
PD, Smith CA, Sheffler W et al. (2011). ROSETTA3: an object-oriented software suite for the 
simulation and design of macromolecules. In Methods in enzymology vol. 487, pp. 545–574. 
Elsevier.

[18]. Leem J, Mitchell LS, Farmery JH, Barton J and Galson JD (2022). Deciphering the language of 
antibodies using self-supervised learning. Patterns 3.

[19]. Lefranc M-P, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, Wu 
Y, Gemrot E, Brochet X, Lane J et al. (2009). IMGT®, the international ImMunoGeneTics 
information system®. Nucleic acids research 37, D1006–D1012. [PubMed: 18978023] 

[20]. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y et 
al. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. 
Science 379, 1123–1130. [PubMed: 36927031] 

[21]. Lonberg N (2005). Human antibodies from transgenic animals. Nature biotechnology 23, 1117–
1125.

[22]. Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, Olmos JL Jr, Xiong C, 
Sun ZZ, Socher R et al. (2023). Large language models generate functional protein sequences 
across diverse families. Nature Biotechnology, 1–8.

[23]. Madani A, McCann B, Naik N, Keskar NS, Anand N, Eguchi RR, Huang P-S and Socher R 
(2020). Progen: Language modeling for protein generation. arXiv preprint arXiv:2004.03497.

[24]. McCafferty J, Griffiths AD, Winter G and Chiswell DJ (1990). Phage antibodies: filamentous 
phage displaying antibody variable domains. nature 348, 552–554. [PubMed: 2247164] 

[25]. Meier J, Rao R, Verkuil R, Liu J, Sercu T and Rives A (2021). Language models enable zero-shot 
prediction of the effects of mutations on protein function. Advances in Neural Information 
Processing Systems 34, 29287–29303.

[26]. Nijkamp E, Ruffolo J, Weinstein EN, Naik N and Madani A (2022). ProGen2: exploring the 
boundaries of protein language models. arXiv preprint arXiv:2206.13517.

Shuai et al. Page 19

Cell Syst. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[27]. Olsen TH, Moal IH and Deane CM (2022). AbLang: an antibody language model for completing 
antibody sequences. Bioinformatics Advances 2, vbac046. [PubMed: 36699403] 

[28]. Poiron C, Wu Y, Ginestoux C, Ehrenmann F, Duroux P and Lefranc M (2010). IMGT/mAb-DB: 
the IMGT® database for therapeutic monoclonal antibodies. Poster no101 11.

[29]. Prihoda D, Maamary J, Waight A, Juan V, Fayadat-Dilman L, Svozil D and Bitton DA (2022). 
BioPhi: a platform for antibody design, humanization, and humanness evaluation based on 
natural antibody repertoires and deep learning. MAbs 14, 2020203. [PubMed: 35133949] 

[30]. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I et al. (2019). Language models are 
unsupervised multitask learners. OpenAI blog 1, 9.

[31]. Rajbhandari S, Rasley J, Ruwase O and He Y (2020). Zero: Memory optimizations toward 
training trillion parameter models. pp. 1–16, IEEE.

[32]. Raybould MI, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J 
and Deane CM (2019). Five computational developability guidelines for therapeutic antibody 
profiling. Proceedings of the National Academy of Sciences 116, 4025–4030.

[33]. Raybould MI, Marks C, Lewis AP, Shi J, Bujotzek A, Taddese B and Deane CM (2020). 
Thera-SAbDab: the therapeutic structural antibody database. Nucleic acids research 48, D383–
D388. [PubMed: 31555805] 

[34]. Ren J, Rajbhandari S, Aminabadi RY, Ruwase O, Yang S, Zhang M, Li D and He Y (2021). 
Zero-offload: Democratizing billion-scale model training. arXiv preprint arXiv:2101.06840.

[35]. Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma J et al. (2021). 
Biological structure and function emerge from scaling unsupervised learning to 250 million 
protein sequences. Proceedings of the National Academy of Sciences 118.

[36]. Ruffolo JA, Chu L-S, Mahajan SP and Gray JJ (2023). Fast, accurate antibody structure 
prediction from deep learning on massive set of natural antibodies. Nature communications 14, 
2389.

[37]. Ruffolo JA, Gray JJ and Sulam J (2021). Deciphering antibody affinity maturation with language 
models and weakly supervised learning. arXiv preprint arXiv:2112.07782.

[38]. Saka K, Kakuzaki T, Metsugi S, Kashiwagi D, Yoshida K, Wada M, Tsunoda H and Teramoto 
R (2021). Antibody design using LSTM based deep generative model from phage display library 
for affinity maturation. Scientific reports 11, 1–13. [PubMed: 33414495] 

[39]. Shin J-E, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, Manglik A, Kruse 
AC and Marks DS (2021). Protein design and variant prediction using autoregressive generative 
models. Nature communications 12, 1–11.

[40]. Sidhu SS and Fellouse FA (2006). Synthetic therapeutic antibodies. Nature chemical biology 2, 
682–688. [PubMed: 17108986] 

[41]. Sievers F and Higgins DG (2014). Clustal Omega, accurate alignment of very large numbers of 
sequences. In Multiple sequence alignment methods pp. 105–116. Springer.

[42]. Smith GP (1985). Filamentous fusion phage: novel expression vectors that display cloned 
antigens on the virion surface. Science 228, 1315–1317. [PubMed: 4001944] 

[43]. Sormanni P, Aprile FA and Vendruscolo M (2015). The CamSol method of rational design of 
protein mutants with enhanced solubility. Journal of molecular biology 427, 478–490. [PubMed: 
25451785] 

[44]. Steinegger M and Söding J (2018). Clustering huge protein sequence sets in linear time. Nature 
communications 9, 1–8.

[45]. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH and Consortium U (2015). UniRef 
clusters: a comprehensive and scalable alternative for improving sequence similarity searches. 
Bioinformatics 31, 926–932. [PubMed: 25398609] 

[46]. Suzuki M, Kato C and Kato A (2015). Therapeutic antibodies: their mechanisms of action and 
the pathological findings they induce in toxicity studies. Journal of toxicologic pathology 28, 
133–139. [PubMed: 26441475] 

[47]. Taylor LD, Carmack CE, Schramm SR, Mashayekh R, Higgins KM, Kuo C-C, Woodhouse 
C, Kay RM and Lonberg N (1992). A transgenic mouse that expresses a diversity of human 
sequence heavy and light chain immunoglobulins. Nucleic acids research 20, 6287–6295. 
[PubMed: 1475190] 

Shuai et al. Page 20

Cell Syst. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[48]. Wolf Pérez A-M, Sormanni P, Andersen JS, Sakhnini LI, Rodriguez-Leon I, Bjelke JR, Gajhede 
AJ, De Maria L, Otzen DE, Vendruscolo M et al. (2019). In vitro and in silico assessment of 
the developability of a designed monoclonal antibody library. MAbs 11, 388–400. [PubMed: 
30523762] 

Shuai et al. Page 21

Cell Syst. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

1. IgLM is a generative language model trained on 558M natural antibody 

sequences.

2. IgLM generates full-length antibody sequences conditioned on species and 

chain type.

3. Infilled CDR H3 loops libraries generated by IgLM display improved 

developability.
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Figure 1. 
Overview of IgLM model for antibody sequence generation. (A) IgLM is trained by 

autoregressive language modeling of reordered antibody sequence segments, conditioned on 

chain and species identifier tags. (B) Distribution of sequences in clustered OAS dataset for 

various species and chain types. (C) Effect of increased sampling temperature for full-length 

generation. Structures at each temperature are predicted by AlphaFold-Multimer and colored 

by prediction confidence (pLDDT), with blue being the most confident and orange being 

the least [n = 170]. (D) CDR loop infilling perplexity for IgLM and ProGen2 models 

on heldout test dataset of 30M sequences. IgLM models are evaluated with bidirectional 

infilling context ([bi]) and preceding context only ([pre]). Confidence intervals calculated 

from boostrapping (100 samples) had a width less than 0.01 and are therefore not shown.
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Figure 2. 
Controllable antibody sequence generation. (A) Diagram of procedure for generating full-

length antibody sequences given a desired species and chain type with IgLM. (B) Length 

of generated heavy and light with and without initial three residues provided (prompting). 

(C-E) Analysis of full-length generated sequences under different conditioning settings 

[n = 220,000]. (C) Adherence of generated sequences to species conditioning tags. Each 

plot shows the species classifications of antibody sequences generated with a particular 

species conditioning tag (indicated above plots). Solid and dashed lines correspond to 

sequences generated with heavy- and light-chain conditioning, respectively. (D) Adherence 

of generated sequences to chain conditioning tags. Top plot shows the percentage of heavy-

chain-conditioned sequences classified as heavy chains, for each species conditioning tag. 

Lower plots show the percentage of light-chain-conditioned sequences, further divided by 

whether initial residues were characteristic of lambda or kappa chains, classified as lambda 

or kappa chains. (E) Effect of sampling temperature on germline identity for generated 
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heavy and light chain sequences. As sampling temperature increases, generated sequences 

diverge from the closest germline V- and J-gene sequences.
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Figure 3. 
Generation of infilled therapeutic antibody libraries. (A) Diagram of procedure for 

generating diverse antibody libraries by infilling the CDR H3 loops of therapeutic 

antibodies. (B) Distribution of infilled CDR H3 loop lengths for 49 therapeutic antibodies. 

Parent CDR H3 lengths are indicated in red. (C) Relationship between sampling temperature 

(T ) and nucleus probability P  and length of infilled CDR H3 loops [n = 432,763]. (D) 

Infilled CDR H3 loops for trastuzumab therapeutic antibody adopt diverse lengths and 

conformations. Structures for infilled variants are predicted with IgFold [n = 432,763]. (E) 

Distribution of infilled CDR H3 loop lengths for therapeutic antibodies grouped by nearest 

germline gene groups [n = 432,763]. (F-G) Effect of sampling temperature (T ) and nucleus 
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probability P  (P) on diversity of infilled CDR H3 loops for lengths between 10 and 18 

residues [n = 432,763]. Pairwise edit distance measures the minimum edits between each 

infilled loop to another in the same set of generated sequences (i.e., within the set of 

sequences produced with the same T  and P  parameters). For both parameters, less restrictive 

sampling produces greater infilled loop diversity.
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Figure 4. 
Therapeutic properties of infilled antibody libraries. Asterisks indicate statistical 

significance (p ¡ 0.001) from a one-sample t-test (A, B, D) or a two-sample t-test (E). 

(A) Change in predicted aggregation propensity of infilled sequences relative to their 

parent antibodies. Infilled sequences display reduced aggregation propensity (negative is 

improved), particularly for shorter loops [n = 432,763]. (B) Change in predicted solubility 

of infilled sequences relative to their parent antibodies. Infilled sequences display increased 

solubility (positive is improved) [n = 432,763]. (C) Relationship between predicted changes 

in aggregation propensity and solubility for infilled sequence libraries [n = 432,763]. (D) 

Change in humanness of infilled sequences relative to their parent antibodies. Humanness 

is calculated as the OASis identity of the heavy chain sequence, with positive larger values 

being more human-like [n = 432,763]. (E) Relationship between sampling temperature (T ) 

and nucleus probability (P) and change in human-likeness (OASis identity) of infilled heavy 

chains relative to their parent sequences [n = 432,763]. (F-G) Comparison of infilled library 

developability generated using alternative language models for loops with lengths between 

six and seventeen residues [n = 1,709,696]. (F) Change in predicted aggregation propensity 

for infilling methods. (G) Change in predicted solubility for infilling methods. (H) Change 

in humanness for infilling methods. (I) Receiver operating characteristic (ROC) curves for 

human sequence classification methods [n = 487]. The area under the curve (AUC) is shown 

for each method.
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Table 1

IgLM model hyperparameters.

IgLM IgLM-S

Number of layers 4 3

Embedding dimension 512 192

Hidden dimension 512 192

Attention heads 8 6

Feed-forward dimension 2048 768

Total parameters 12,889,600 1,439,616
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Infilled therapeutic antibody sequences and developability metrics for IgLM and alternative methods This paper 10.5281/zenodo.8248326

Software and algorithms

Code for IgLM This paper 10.5281/zenodo.8248335
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