Cancer Immunology, Immunotherapy (2024) 73:96
https://doi.org/10.1007/500262-024-03678-6

RESEARCH q

Check for
updates

CD200 is overexpressed in the pancreatic tumor microenvironment
and predictive of overall survival
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Abstract

Pancreatic cancer is an aggressive disease with a 5 year survival rate of 13%. This poor survival is attributed, in part, to
limited and ineffective treatments for patients with metastatic disease, highlighting a need to identify molecular drivers of
pancreatic cancer to target for more effective treatment. CD200 is a glycoprotein that interacts with the receptor CD200R and
elicits an immunosuppressive response. Overexpression of CD200 has been associated with differential outcomes, depending
on the tumor type. In the context of pancreatic cancer, we have previously reported that CD200 is expressed in the pancreatic
tumor microenvironment (TME), and that targeting CD200 in murine tumor models reduces tumor burden. We hypothesized
that CD200 is overexpressed on tumor and stromal populations in the pancreatic TME and that circulating levels of soluble
CD200 (sCD200) have prognostic value for overall survival. We discovered that CD200 was overexpressed on immune,
stromal, and tumor populations in the pancreatic TME. Particularly, single-cell RNA-sequencing indicated that CD200 was
upregulated on inflammatory cancer-associated fibroblasts. Cytometry by time of flight analysis of PBMCs indicated that
CD200 was overexpressed on innate immune populations, including monocytes, dendritic cells, and monocytic myeloid-
derived suppressor cells. High sCD200 levels in plasma correlated with significantly worse overall and progression-free
survival. Additionally, sCD200 correlated with the ratio of circulating matrix metalloproteinase (MMP) 3: tissue inhibitor of
metalloproteinase (TIMP) 3 and MMP11/TIMP3. This study highlights the importance of CD200 expression in pancreatic
cancer and provides the rationale for designing novel therapeutic strategies that target this protein.
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Introduction

Pancreatic cancer is the 3rd leading cause of cancer deaths
in the USA and has a 5 year survival rate of 13% [1].
Pancreatic ductal adenocarcinoma (PDAC) is the most
common type of pancreatic cancers, accounting for over
90% of cases [2—4]. The combination of systemic chemo-
therapy and surgery can be potentially curative; however,
most patients (> 80%) have locally advanced or metastatic
disease at cancer diagnosis, so this is not feasible [5, 6].
While there have been recent advances in options for
systemic chemotherapy, responses are not universal and
dose-limiting toxicities are common [7-10]. Moreover,
the tumors can become resistant to chemotherapy within
weeks after starting treatment, limiting the beneficial
effects [11]. As a result, efforts have been focused on iden-
tifying genetic and molecular drivers of PDAC progression
to target to develop efficacious therapeutics.

The PDAC tumor microenvironment (TME) is char-
acterized by a desmoplastic reaction and heterogeneous
stromal and immune populations [12]. One of the major
stromal components of the PDAC TME is the presence
of cancer-associated fibroblasts (CAFs), which are dif-
ferentiated from pancreatic stellate cells (PSCs). Two
major populations of CAFs have been identified in PDAC:
inflammatory and myo-cancer-associated fibroblasts
(iCAFs and myCAFs) [13, 14]. The iCAFs are character-
ized as expressing low levels of aSMA and high levels
of the inflammatory cytokines IL-6 and IL-11 that can
expand and promote the immunosuppressive function
of myeloid populations, such as tumor-associated mac-
rophages (TAMs) and myeloid-derived suppressor cells
(MDSCs) [14-16]. These myeloid cells are the most prom-
inent immune populations in the pancreatic TME and can
inhibit T cell effector function and proliferation and pro-
mote Treg differentiation through the secretion of immu-
nosuppressive factors, such as IDO1 and Argl [17, 18].
The myCAFs are characterized as expressing high levels of
aSMA and are involved in promoting a stiff extracellular
matrix (ECM) comprised of collagen and fibronectin that
can contribute to resistance to chemotherapy and limit T
cell proliferation and movement [14, 19-21]. Identification
and characterization of upregulated genes and proteins on
these heterogeneous populations may provide insights for
targeting the TME to limit PDAC progression.

CD200 is a glycoprotein that is expressed in the stro-
mal, epithelial, and tumor cells, though CD200 expres-
sion has also been reported on small subsets of T cells, B
cells, and dendritic cells [22-25]. CD200 expression has
been reported to be induced by NF-kB and ERK signal-
ing pathways [26, 27]. It binds to its receptor, CD200R,
which is expressed by Tregs and myeloid cells [22, 28].
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Overexpression of CD200 has been associated with dif-
ferential outcomes across cancer types. In some tumors,
such as central nervous system tumors and breast cancer,
CD200 overexpression has been associated with a pro-
tumorigenic effect [29, 30]. However, there have been
studies in a melanoma model that have shown that CD200
expression in melanoma has an anti-tumor effect [31, 32].
Our laboratory previously reported that CD200 is over-
expressed in patients with PDAC and that blockade of
CD200 in a murine subcutaneous and genetically engi-
neered mouse models reduced tumor burden, suggesting a
pro-tumor role for CD200 in the context of pancreatic can-
cer [33]. Previously, we showed that CD200 is expressed
by PDAC cell lines and in the stromal compartments of
PDAC tissue specimens [33]. However, exactly which stro-
mal and tumor populations in the pancreatic TME express
CD200 has yet to be determined.

In addition to existing as a cell-surface protein, the ecto-
domain of CD200 can be cleaved by matrix metallopro-
teinases (MMPs) and a disintegrin and metalloproteinase
(ADAM) proteins [34, 35]. The resulting soluble CD200
(sCD200) can be readily measured in plasma samples [35,
36]. Importantly, the CD200 ectodomain is still functional
and thus can still interact with its receptor and initiate an
immunosuppressive response [37]. Furthermore, in chronic
lymphocytic leukemia (CLL), patients with higher sCD200
levels have worse overall survival (OS) and progression-
free survival (PFS) than patients with lower sCD200 [38].
In PDAC, it is unknown if sCD200 is detectable in the
plasma, which MMPs are involved, and if circulating levels
of sCD200 correlate with worse OS and PFS in patients.

We hypothesize that CD200 protein and mRNA tran-
scripts are upregulated by the tumor and stroma cells in the
PDAC TME. Furthermore, we hypothesize that sCD200 is
upregulated in PDAC and correlates to OS and PFS. Here,
we investigate where CD200 is spatially expressed in the
pancreatic TME and identify CD200 + cell populations.
Finally, we investigate the mechanism of CD200 cleavage
in PDAC and the correlation between sCD200 and OS and
PFS in metastatic PDAC.

Methods
Multiplex immunofluorescence of PDAC specimens

Human tissue microarrays (TissueArray.com, PA961f and
PA807) containing pancreatic tumors (n=127), pancreatic
tumor-adjacent tissue (n =27), and normal pancreatic tissue
(n=18) were stained according to the protocol described
previously [39, 40]. In brief, tissues were prepped on a slide
warmer at 60 °C for 1 h, followed by three 10 min washes
in xylene to remove paraffin. Tissue was rehydrated by
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10 min washes in 100%, 90%, and 75% ethanol, followed
by a 2 min wash with deionized water. Slides were fixed
with 10% neutral buffered formalin for 30 min. Slides were
blocked in BLOXALL (Vector, SP-6000) for 10 min. The
primary antibodies for aSMA (Abcam, ab5694), CD45
(Abcam, ab10558), and FAP (Abcam, ab53066) were diluted
1:100. Primary antibody for PDGFRf (Abcam, ab32570)
was diluted 1:300, primary antibody for CD200 (Abcam,
ab203887) was diluted 1:75, and primary antibody for
PanCK (DAKO, M3515) was diluted 1:50. For each round
of staining, slides were incubated with primary antibody for
1 h. DAPI (AKOYA Biosciences, FP1490) was diluted by
adding 3 drops into 1 mL TBST. Slides were stained with
DAPI for 10 min. 3 drops of Mouse/Rabbit (AKOYA Bio-
sciences, ARH1001EA) secondary antibody were used for
10 min. Opals (AKOYA Biosciences, NEL861001KT) 480,
520, 570, 620, 690 were diluted 1:50; TSA-DIG was diluted
1:100; and 780 was diluted 1:25. Slides were stained with
opals 480, 520, 570, 620, 690, and TSA-DIG for 10 min.
Slides were stained with opal 780 for 1 h. Antigen-Retrieval
was accomplished using AR6 (AKOYA, AR600250ML) and
AR9 (AKOYA, AR900250ML) buffers followed by micro-
waving for 45 s at 100% power and 15 min at 20% power.
After completing all rounds of staining, slides were mounted
using ProLong™ Diamond Antifade Mountant (Invitrogen,
P36970). Slides were imaged using Vectra Polaris and ana-
lyzed with QuPath.

Pancreatic stellate cell isolation and nanostring
analysis

Human PDAC tissues were obtained from ten patients
(PSC1-PSC10) undergoing surgical resection at The Ohio
State University Wexner Medical Center. The tissue was dis-
sected into 0.5—-1 mm? pieces and plated in six-well 10 cm?
uncoated culture wells in DMEM (10% FBS, 1% AA) for
two to three weeks. PSCs grew out of the pancreas and were
characterized by morphology and aSMA expression. PSCs
were maintained in culture for three passages. Human fetal
primary pancreatic fibroblast cell lines were used as a con-
trol for normal PSCs and were obtained from Vitro Biop-
harma and cultured in MSC-GRO media with antibiotics.
RNA was collected from patient PSCs (PSC1-PSC10) and
control fibroblast cell lines via TRIzol extraction. RNA was
analyzed using the nCounter PanCancer Immune Profiling
Panel (Nanostring Technologies, Seattle Washington).

Western blot

Harvested PSC1, PSC2, PSC3, PSC4, and PSC5 cells were
incubated in lysis buffer (RIPA buffer, 1:100 protease inhibi-
tor, 1:100 phosphatase inhibitor) for 1 h, after which sample
buffer/mercaptoethanol (1:100 mercaptoethanol in Laemmli

buffer) was added. Samples were then boiled for 10 min.
Samples were run on an SDS—polyacrylamide gel (BioRad
Mini Protean Tgx gradient gels) followed by transfer to
nitrocellulose membranes (BioRad). Proteins were blocked
in Tris-buffered saline containing 0.5% BSA. Primary anti-
bodies used: rabbit anti-human CD200 (Abcam, ab203887)
and mouse anti-human p-actin loading control (Invitrogen,
MAS5-15739). IRDye-fluorescent secondary antibodies for
goat anti-rabbit (LiCOR, 926-32211) and goat anti-mouse
(LiCOR, 926-68070) were used. Images for protein bands
were obtained using LiCOR Odyssey CLx and analyzed with
ImageStudio.

Single-cell RNA-sequencing dataset analysis

Publicly available single-cell RNA-sequencing data (acces-
sion number GSE129455) on PDAC patient tumor sam-
ples from NIH dbGaP [41] were used to evaluate CD200
expression on myCAFs and iCAFs, and MMP3 and MMP11
expression in the pancreatic TME. Volcano plots were gen-
erated using Molecular and Genomics Informatics Core
(MaGIC) Volcano Plot Tool, and pathway analysis was done
via the Reactome pathway database.

Cytometry by time of flight (CyTOF)

Peripheral Blood Mononuclear Cells (PBMCs) were
obtained from additional research participants with PDAC
and healthy donors using a density gradient centrifugation
method with Ficoll-Paque (Pharmacia Biotech, 171440-
03). Isolated PBMCs were lysed with Red Blood Cells lysis
buffer and then washed with Maxpar Cell Staining Buffer
(Standard Biotools, 201068). 3 x 10° cells were aliquoted per
sample and treated with 5 uL of Human TruStain FcX (Bio-
Legend, 422302) for 10 min. Samples were then surfaced
stained with metal-isotope bound antibodies (Supplemental
Table 1) from the Maxpar Direct Immune Profiling Assay kit
(Standard Biotools, 201334) with the addition of antibodies
for CD11b (Standard Biotools, 3209003B), CD33 (BioLeg-
end, 303419), and CD200 (BioLegend, 329219) followed by
three washes in Maxpar Cell Staining Buffer. Cells were then
stained with intercalation solution (Cell-ID Intercalator-Ir
(Standard Biotools, S00093) diluted to 125 nM in Maxpar
Fix and Perm (Standard Biotools, S00092)). After stain-
ing, samples were washed twice with Maxpar cell staining
buffer, followed by two washes with EDTA diluted to 5 uM
in deionized H,O. PBMCs were transferred to filter cap
flow tubes. Maxpar acquisition solution (Standard Biotools,
201248) and EQ Four Element Calibration beads (Standard
Biotools, 201078) were added to the samples prior to being
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run through the Helios Mass Cytometer. Data were uploaded
to and analyzed with OMIQ.

Enzyme-linked immunosorbent assay (ELISA)

Blood samples were obtained from patients with metastatic
PDAC who previously participated in a randomized clinical
trial (RCT) [NCT01280058]. In this phase 2, RCT partici-
pants were randomized to receive pelareorep (a proprietary
oncolytic reovirus under investigation as a cancer thera-
peutic) + carboplatin/paclitaxel or carboplatin/paclitaxel
alone [42]. There were no differences in clinical outcomes,
including PFS or OS, between the two trial arms. Baseline
plasma samples collected prior to receiving therapy were
selected for the current analysis. sCD200 in the plasma and
pancreatic cell supernatants was measured using a human
CD200 ELISA kit (Invitrogen by Thermo Fisher Scientific,
EHCD200) which was run according to the manufacturer’s
instructions. MMP3, MMP11, and TIMP3 in PDAC par-
ticipants were measured by human MMP3 (R&D Systems,
DMP300), Human MMP11 (LSBio, LS-F21105-1), and
human TIMP3 (Thermo Fisher, EH458RB) ELISA Kkits
which were run according to the manufacturer’s instructions.
The median sCD200 level was calculated in participants
that had detectable sCD200 (defined 40 pg/mL or greater;
this value represents the lower detection limit of the kit).
Concentrations above the median were defined as “high,”
and values below the mean were classified as “low.” Quan-
tified MMP3, MMP11, and TIMP3 were used to calculate
patient ratios of circulating MMP3/TIMP3 and MMP11/
TIMP3, and the ratios were correlated to sSCD200 plasma
concentrations.

Statistics

Analysis of variance using Tukey’s test for pairwise
comparisons was used to compare CD200 by pathology
diagnosis (normal, cancer adjacent, pancreatic cancer),
pathology grade (1, 2, 3), and cancer stage (I, I, and 111/
IV), while independent-samples t tests were used to com-
pare CD200 in relation to median age (i.e., <53 yrs vs.
> 53 yrs) and sex. Independent-samples ¢ tests were also
used to compare CD200 MMI between PDAC subjects and
healthy controls for myeloid populations and specific T
cell populations as well as to compare CD200 expression
between PSCs derived from PDAC patients and healthy
controls. Kaplan—Meier curves were used to examine the
differences in overall survival and progression-free sur-
vival between those with detectable sCD200 (> 40 pg/mL)
and those with undetectable sCD200 and then between
those with sCD200 in the upper 25th percentile and those
in the lower 75th percentile. Log-rank tests were used to
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compare survival between the groups. Scatterplots were
constructed to examine the relationship between sCD200
and each of the following: MMP3, MMP11, MMP3/
TIMP3, and MMP11/TIMP3, and Spearman’s p correla-
tion coefficient was calculated to quantify the strength and
direction of the associations. Figures were made using
GraphPad Prism 10.

Results
CD200 is overexpressed in the pancreatic TME

We previously reported that CD200 is elevated in PDAC
[33], and we hypothesized that CD200 was overexpressed
on both tumor and stromal cells in the pancreatic TME.
To further investigate this, we stained pancreatic cancer
tissue (n=127) specimens from different stages of disease
progression, sex, and age (Supplemental Table 2) along
with cancer-adjacent (n=27) and normal tissues (n=18)
with a panel for multiplex IF focusing on stromal mark-
ers (Fig. 1A & B). Stromal populations were identified
as expressing one or a combination of aSMA, PDGFR},
and FAP and were negative for pan cytokeratin (PanCK).
CD45 + only cells were identified as immune cells and
PanCK expression was used to identify epithelial cells
and tumor cells of epithelial origin. Malignant tissues sig-
nificantly expressed more CD200 overall than the cancer-
adjacent and normal pancreatic tissues (Fig. 1C). When
looking at CD200 across different cell populations in the
pancreatic TME, we observed that CD200 expression was
increased on immune populations (Fig. 1D), stromal popu-
lations (Fig. 1E), and epithelial cells (Fig. 1F). We also
found that total CD200 expression was not affected by
pathology grade (Supplemental Fig. 1A), nor did pathol-
ogy grade impact CD200 expression on immune (Supple-
mental Fig. 1B) or stromal (Supplemental Fig. 1C) cells.
CD200 expression was significantly decreased on tumor
cells in grade 3 tumors (Supplemental Fig. 1D). Simi-
larly, when examining if CD200 expression in the TME
was affected by disease stage, we observed an insignifi-
cant difference in total CD200 expression (Supplemen-
tal Fig. 1E) as well no significant difference in CD200
expression on immune (Supplemental Fig. 1F), stromal
(Supplemental Fig. 1G), and tumor cells (Supplemental
Fig. 1H). When looking at age, we observed no significant
difference in CD200 expression in younger patients com-
pared to older patients (Supplemental Fig. 1I-L). We also
compared CD200 expression in the pancreatic TME of
females and males. There was an insignificant difference in
CD200 expression between female and male patients (Sup-
plemental Fig. IM-P). Ultimately, these results indicate
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Fig.1 CD200 is upregu-

lated in the pancreatic TME.
Tissue microarrays were
stained for A tumor (PanCK),
immune (CD45), stroma (FAP,
PDGFRB, aSMA), and CD200.
B Representative image of full
multiplex IF panel. CD200
expression in normal (n=18),
cancer-adjacent (n=27), and
pancreatic cancer (n=127) tis-
sues were quantified in QuPath
as C % total CD200 D %
CD200+ CD45 + immune cells,
E % CD200 + aSMA + PDGFR
B +FAP + PanCK- stromal cells,
and F % CD200 + PanCK + epi-
thelial cells. Means +STD,
Rk =p <0.0001
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that CD200 is overexpressed by tumor, stromal cells, and
immune populations in the PDAC TME, and that CD200
expression is not dependent on pathology grade or cancer
stage.

CD200 is upregulated by iCAFs in the pancreatic TME

Our multiplex IF identified that CD200 was expressed by
stromal cells in the PDAC TME. We confirmed that PDAC-
derived PSCs had upregulated CD200 mRNA (Fig. 2A) and
protein (Fig. 2B) expression compared to normal pancreas
fibroblast controls. However, the stromal cells of the PDAC
TME are heterogeneous, comprising of PSCs, iCAFs, and
myCAFs. Thus, we investigated whether CD200 expression
was limited to specific subsets of stromal populations. We
analyzed publicly available single-cell RNA-seq data [41]
of PDAC tissue collected from patients. We identified 4
clusters of CAFs (Fig. 2C). Genetic markers to distinguish
iCAFs and myCAFs (Supplemental Table 3) were used to
further identify clusters 24, 35, and 53 as myCAFs and clus-
ter 34 as iCAFs (Fig. 2D). Analysis of genes on the iCAFs
revealed that CD200 was significantly upregulated on iCAFs
(Fig. 2E) and that iCAFs had significant changes in the
NFxB and RUNX3 pathways as well as pathways related to
mRNA processing (Fig. 2F). These data indicate that CD200
is more highly expressed on iCAFs in PDAC.

CD200 expression on immune populations

While we have observed CD200 expression on the tumor and
stromal cells in the PDAC TME, CD200 has been reported
to be expressed on immune populations, such as T cells [23],
B cells [24], and DCs [25]. To investigate changes in CD200
expression on immune populations in PDAC, we designed a
CyTOF panel to analyze over 37 different immune popula-
tions (Supplemental Fig. 2) on PBMCs of PDAC patients
(n=17) undergoing surgical resection and healthy/control
individuals (n=12) as previously described [43]. We identi-
fied circulating immune populations (Fig. 3A) and quanti-
fied their CD200 expression (Fig. 3B). We observed that
PDAC patients had significantly decreased CD200 expres-
sion on granulocytes (Fig. 3C). CD200 expression was
significantly increased on monocytes (Fig. 3D), classical
monocytes (Fig. 3E), plasmacytoid DCs (pDCs) (Fig. 3F),
myeloid DCs (mDCs) (Fig. 3G), and monocytic MDSCs
(M-MDSCs) (Fig. 3H). We also observed a general increase
in NK cells (Fig. 3I) and non-classical monocytes (Fig. 3J).
However, we observed no significant difference in CD200
expression on CD8 T cells (Fig. 3K), CD4 T cells (Fig. 3L),
B cells (Fig. 3M), and granulocytic MDSCs (G-MDSCs)
(Fig. 3N). Our CyTOF panel also allowed for us to compare
CD200 expression on specific T cell populations in PDAC
patients compared to healthy individuals. PDAC patients did

not have a significant change in CD200 expression on naive
(Supplemental Fig. 3A), activated (Supplemental Fig. 3B),
CM (Supplemental Fig. 3C), EM (Supplemental Fig. 3D),
or TE (Supplemental Fig. 3E) CD8 T cells. However, on
CD4 T cells, we observed a significant increase in EM CD4
T cells (Supplemental Fig. 3F), and no significant change
in naive (Supplemental Fig. 3G), activated (Supplemental
Fig. 3H), CM (Supplemental Fig. 31), or TE (Supplemental
Fig. 3]) CD4 T cells. We also observed no significant differ-
ence in CD200 expression on Tregs (Supplemental Fig. 3K),
Th1 (Supplemental Fig. 3L), Th2 (Supplemental Fig. 3M),
or Th17 cells (Supplemental Fig. 3N). This indicates that
CD200 expression is upregulated on myeloid-derived
immune populations in PDAC, and that there is no signifi-
cant change in CD200 on CD8 T cell populations in PDAC.

PDAC patients with high sCD200 have worse
survival

CD200 can be cleaved and expressed as sCD200 in the
plasma in patients with CLL [38]; however, this has not been
explored in PDAC. Thus, we investigated whether sCD200
levels were elevated in metastatic PDAC. We confirmed via
ELISA that PDAC patients can express sCD200 in their
plasma, though there is intersubject variability in concen-
trations (Fig. 4A). Due to the variance of sCD200 levels, we
hypothesized that the amount of sCD200 correlated with OS
and PFS in PDAC. We compared OS and PFS of patients
that had detectable sCD200 (n=29) to patients that did not
have detectable sSCD200 (n=30) and observed worse OS
when sCD200 was detectable (Fig. 4B) and significantly
worse PFS (Fig. 4C). We further decided to look at how high
sCD200 correlates with survival. We observed that patients
that have high sCD200 (n=15) levels have significantly
worse OS (Fig. 4D) and PFS (Fig. 4E) than patients with low
or non-detectable sCD200 (n=44). Ultimately, these data
suggest that sCD200 can be predicative of worse survival
outcomes in patients with metastatic PDAC.

MMP3 and MMP11 levels in patients with PDAC
patients correlate with sCD200 levels

MMP3 and MMPI11 have previously been shown to be
involved in CD200 ectodomain shedding in basal cell car-
cinoma [34] and thus may be involved in regulating the
cleavage of CD200 in PDAC. Single-cell RNA-sequenc-
ing of cell populations from the NIH dbGaP [41] in the
PDAC TME (Fig. 5A) indicates that MMP3 is expressed in
the tumor (Fig. 5B) and MMP11 is expressed in the stromal
populations (Fig. 5C). Since both MMP3 and MMP11 are
expressed in the pancreatic TME and can cleave the ectodo-
main of CD200, we hypothesized that the circulating levels
of MMP3 and MMP11 in patients with PDAC correlated
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«Fig.3 CD200 is upregulated on myeloid populations in the blood
of patients with PDAC. PBMCs were isolated from PDAC patients
(n=17) and healthy donors (n=12) and stained with a panel of 38
antibodies for CyTOF. A A tSNE showing immune populations and
B CD200 expression across immune populations. Mean metal inten-
sity (MMI) of CD200 was quantified on C granulocytes, D mono-
cytes, E classical monocytes, F pDCs, G mDCs, H M-MDSCs, 1
NK, J Non-classical monocytes, K CD8 T cells, L CD4 T cells, M B
cells, and N G-MDSCs. Means +STD, *=p <0.05

with the circulating levels of sCD200. To investigate this,
we performed ELISAs to quantify the concentration of
MMP3 and MMP11 in the plasma of patients with PDAC,
which we then correlated to the sCD200 levels. There was
no significant correlation between the circulating levels
of MMP3 (Fig. 5D) or MMP11 (Fig. 5E) and sCD200 in
PDAC. We then hypothesized that factors that regulate
MMP3 and MMP11 enzymatic activity, such as expres-
sion of TIMP3 [35, 44], may be contributing to the lack
of correlation observed. Since TIMP3 can inhibit MMP3
and MMP11 cleavage activity, we performed an ELISA to
quantify TIMP3, then quantified the ratio of MMP3/TIMP3
and MMP11/TIMP3, and ultimately correlated these ratios
to sCD200 levels. We observed that patients with a higher
MMP3/TIMP3 (Fig. 5F) ratio or MMP11/TIMP3 (Fig. 5G)
ratio had a significant correlation with sCD200 levels in
PDAC. These results suggest that sSCD200 correlates with
MMP3 and MMP11 levels.

Discussion

We previously reported CD200 is expressed in the pancre-
atic TME [33], and in this report, we are the first to show
that CD200 is overexpressed on stromal, immune, and epi-
thelial cells compared to cancer-adjacent tissues and normal
tissues. However, an important limitation to our studies is
that we were not able to analyze tissue that contain inva-
sive edges. Future staining of invasive edges for CD200
expression may reveal whether or not CD200 plays a role
for pancreatic cancer invasion and progression. Furthermore,
staining of the tissue only indicates which cell types express
CD200 in the pancreatic TME. Future analyses using newer
techniques such as spatial transcriptomics could provide
valuable information to the function of these CD200 + cell
types and their interactions in the tumor.

Importantly, this is the first demonstration that CD200
is expressed on iCAFs in PDAC. iCAFs have a secretory
phenotype and can secrete inflammatory cytokines and
chemokines [14, 15]. In particular, iCAFs secrete SDF-1 and
MCP-1 [15]. SDF-1 and MCP-1 have previously been shown
to be chemoattractants for MDSCs and other myeloid cells
through the SDF-1/CXCR4 axis [45] and MCP-1/CCR2
axis [46], respectively. The CD200+iCAFs would be able

to interact directly with the recruited myeloid cells, which
express the receptor CD200R [33]. As CD200-CD200R
signaling has been previously reported to promote an
immunosuppressive phenotype in dendritic cells and mac-
rophages [47, 48], the interaction between CD200 +iCAFs
and CD200R + myeloid cells may be a mechanism that pro-
motes an immunosuppressive TME in pancreatic cancer.
Thus, further studies analyzing whether CD200 +iCAFs
interact with CD200R + myeloid cells and promote their
immunosuppressive activity is warranted.

In addition to having upregulated CD200, we have
reported that iCAFs in PDAC have significant changes in in
the NFxB and RUNX3 pathways as well as pathways related
to mRNA processing and splicing. Importantly, the NFxB
pathway has previously been shown to be involved in upreg-
ulating CD200 expression [26]. We also observed a signifi-
cant difference in the RUNX3 pathway in iCAFs. Increased
RUNX3 expression was previously shown to be increased
in CD200+ CTLs and may also be correlative to CD200
expression in iCAFs [23]. RUNX3 has also previously been
shown to be expressed in pancreatic cancer and to play a role
in promoting immunosuppression [49, 50]. Interestingly,
we also observed a significant difference in mRNA splicing
pathways. CD200 has previously been shown to be affected
by alternative splicing, which can result in a truncated ver-
sion of CD200 [51]. This truncated CD200 has been shown
to be a competitive antagonist to full-length CD200 [52].
Further investigation into the ratio of full-length CD200
expression vs truncated CD200 expression on iCAFs and
how this ratio impacts iCAF function is warranted.

MDSCs and monocytes were both observed to be circu-
lating in peripheral blood of PDAC patients and are associ-
ated with worse overall survival in PDAC [53, 54]. We are
the first to report that CD200 expression increases on circu-
lating monocytes, particularly classical monocytes, pDCs
and mDCs, and M-MDSC:s in patients with PDAC compared
to healthy individuals. We have previously reported that
the receptor CD200R is also significantly upregulated on
MDSCs and that CD200 stimulation promotes their expan-
sion [33]. Interactions between the circulating CD200+ mye-
loid cells and CD200R +MDSCs could be promoting the
differentiation and expansion of immunosuppressive mye-
loid populations that could infiltrate into the tumor and pro-
mote an immunosuppressive TME. CD200+ CD8 + T cells
were previously reported to be crucial for effective PD-1/
PDL-1 blockade in murine tumor models [23]. Here, we
did not observe any differences in CD200 expression on
CD8+T cells; furthermore, we previously reported that dual
blockade of CD200 and PD-1 further reduces tumor burden
in a subcutaneous pancreatic tumor model [33]. The discrep-
ancy may be due to the abundance of myeloid populations
in PDAC [55] and that CD200 signaling in myeloid cells
is associated with the secretion of factors that mediate an
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«Fig. 4 Higher sCD200 is associated with worse survival in PDAC
patients. A Waterfall plot of sCD200 expression in plasma from
patients with metastatic PDAC measures with ELISA. Survival
curves for B OS and C PFS in patients with detectable sCD200
(n=29) compared to patients with undetectable sCD200 (n=30).
Survival curves for D OS and E PFS in patients with high sCD200
(n=15) compared to patients with low sCD200 (n=44)
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Fig.5 MMP3 and MMP11 correlate with sCD200. A tSNE of popu-
lations in pancreatic TME identified by single-cell RNA-sequencing
dataset of PDAC patients from NIH dbGaP and expression of B
MMP3 and C MMPI11 in the PDAC TME. ELISA on plasma from

immunosuppressive response on T cells [17, 18, 47, 48]. Our
observation that CD200 expression increases on myeloid
populations coupled with previous observations of myeloid
populations (macrophages and MDSCs) being abundant in
PDAC [55] may suggest that CD200 is promoting tumor
progression through a myeloid-dependent mechanism. Thus,
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correlated with sCD200 levels. F MMP3/TIMP3 and G MMP11/
TIMP3 ratios correlated with sCD200 levels
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future studies should be conducted to specifically investigate
the role of CD200 signaling in myeloid cells in PDAC.

The ectodomain of CD200 has been reported to be shed,
and the resulting sSCD200 has been reported in the plasma
of patients with various types of cancers, including CLL and
breast cancer [38, 56]. This is the first report to show that
sCD200 is expressed in the plasma of PDAC patients. MMPs
are secreted in the pancreatic TME and are involved in ECM
remodeling, angiogenesis, metastasis. MMP3 and MMP11
are stromelysins that are involved in degrading ECM com-
ponents [57] and their overexpression in PDAC is associated
with worse survival [58, 59]. Both MMP3 and MMP11 have
been shown to be capable of cleaving CD200 [34]. Though
we reported no correlation between MMP3 and MMP11
plasma levels with sCD200 plasma levels in PDAC patients,
we are the first to show a correlation of MMP3/TIMP3 and
MMP11/TIMP3 plasma levels with sCD200 levels. How-
ever, our findings do not show causation, and further inves-
tigation is necessary to determine if MMP3 and MMP11
directly contribute to the sCD200 levels observed in patients.
In addition, this study is not comprehensive of all MMPs
and ADAM proteins that may be involved in CD200 ecto-
domain shedding in PDAC. For example, in CLL, ADAM28
is involved in CD200 ectodomain shedding [35], and other
MMPs and ADAM proteins are involved in regulating pro-
tein shedding [60, 61], and thus, more comprehensive analy-
ses on how CD200 ectodomain shedding is regulated are
warranted. In addition, as there was a wide range of sCD200
expression in patients with metastatic PDAC, it would be
worthwhile to expand the population size to further under-
stand sCD200 correlation with MMP3 and MMP11.

Finally, we are the first to report that sCD200 is expressed
in the plasma in metastatic PDAC patients and, importantly,
that high levels of circulating sCD200 are associated with
worse OS and PFS. This study is limited as only the plasma
from metastatic patients were used to evaluate sCD200.
Future investigations into whether sCD200 levels are
impacted by cancer stage and if it is also a prognostic bio-
marker in earlier stages in PDAC are warranted. sCD200 has
been reported to be fully functional and thus is still capable
of interacting with the receptor bound on the surface of mye-
loid cells [37]. The circulating sCD200 in PDAC patients
may be another avenue in which CD200R + myeloid cells
can be stimulated and skewed towards an immunosuppres-
sive phenotype, though this will need to be investigated in
future studies. Ultimately, these results suggest that CD200
may be a biomarker for survival prognosis and may pro-
vide support for future investigations on targeting CD200
in PDAC.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00262-024-03678-6.
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