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Basal–epithelial subpopulations underlie and predict
chemotherapy resistance in triple-negative
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Abstract

Triple-negative breast cancer (TNBC) is the most aggressive breast
cancer subtype, characterized by extensive intratumoral hetero-
geneity, high metastasis, and chemoresistance, leading to poor
clinical outcomes. Despite progress, the mechanistic basis of these
aggressive behaviors remains poorly understood. Using single-cell
and spatial transcriptome analysis, here we discovered basal epi-
thelial subpopulations located within the stroma that exhibit che-
moresistance characteristics. The subpopulations are defined by
distinct signature genes that show a frequent gain in copy number
and exhibit an activated epithelial-to-mesenchymal transition
program. A subset of these genes can accurately predict che-
motherapy response and are associated with poor prognosis.
Interestingly, among these genes, elevated ITGB1 participates in
enhancing intercellular signaling while ACTN1 confers a survival
advantage to foster chemoresistance. Furthermore, by subjecting
the transcriptional signatures to drug repurposing analysis, we find
that chemoresistant tumors may benefit from distinct inhibitors in
treatment-naive versus post-NAC patients. These findings shed
light on the mechanistic basis of chemoresistance while providing
the best-in-class biomarker to predict chemotherapy response and
alternate therapeutic avenues for improved management of TNBC
patients resistant to chemotherapy.
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Introduction

Triple-negative breast cancer (TNBC) lacks the expression of
estrogen, progesterone, and HER2 receptors, and accounts for

�20% of all breast cancer cases globally. TNBC is a highly
aggressive form of breast cancer, with 40% mortality within the first
5 years of diagnosis (Bianchini et al, 2016; Charpentier and Martin,
2013; Malorni et al, 2012). Chemotherapy is currently the first line
of treatment for TNBC patients. Unfortunately, nearly half of the
patients develop resistance to chemotherapies, resulting in high
rates of metastatic recurrence and poor survival outcomes in TNBC
(Foulkes et al, 2010; Liedtke et al, 2008). Molecular signatures that
can predict the response to chemotherapy are essential to inform
personalized treatment and to open new avenues for targeted
therapeutic intervention in cancer (Bianchini et al, 2016). For
example, signature gene panels, including Oncotype DX (Bear et al,
2017; Gianni et al, 2005; Yardley et al, 2015), Endopredict (Bertucci
et al, 2014) and PROSIGNA, can predict the responses of ER-
positive breast cancer to chemotherapy (Prat et al, 2016). Although
these tests are not effective for TNBC, increasing evidence suggests
that other predictive gene signatures exist for TNBC (Fournier et al,
2019; Juul et al, 2010; Lim et al, 2020; Stover et al, 2016; Witkiewicz
et al, 2014). However, none of these signatures reach a high enough
prediction accuracy for clinical utility for aggressive TNBC patients.

Furthermore, previous efforts to identify chemoresistance
signatures have relied on traditional bulk RNA-seq methods and
have failed to capture cellular diversity profiles and signatures that
are expressed specifically within the subpopulations of aggressive
tumors. In recent years, single-cell sequencing technologies have
emerged as powerful tools for resolving tumoral heterogeneity,
reconstructing evolutionary lineages, and detecting rare subpopula-
tions in many cancers, including TNBC (Gao et al, 2017; Kim et al,
2018; Lohr et al, 2014; Tirosh et al, 2016; Wang et al, 2014; Yuan
and Sims, 2016). TNBC has been shown to have a high degree of
inter- and intratumoral heterogeneity, which contributes to the
disease aggressiveness, including resistance to chemotherapy (Craig
et al, 2013; Houssami et al, 2011; Karaayvaz et al, 2018; Kim et al,
2018; Koren and Bentires-Alj, 2015). Unlike ER-positive cancers,
eliminating the majority of cancer cells with therapy has relatively
little impact on clinical outcomes in TNBC (Foulkes et al, 2010;
Liedtke et al, 2008). Minor populations of metastatic and
chemoresistant cells that remain after treatment are reported to
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be the major contributors to disease recurrence in TNBC tumors
(Kim et al, 2018). Therefore, identifying signatures that define these
chemoresistant subpopulations could be a more effective strategy
for targeting these cells and predicting response to Neoadjuvant
chemotherapy (NAC) in TNBC.

In this study, we performed a cross-platform integrated analysis
of expression profiles, derived from single-cell RNA-seq (scRNA-
seq), spatial transcriptomics, bulk RNA-seq, gene expression
microarray and genome sequencing data from treatment-naive
and post-NAC TNBC tumors, and identified subpopulations of
basal epithelial cells that spatially reside within tumor and in close
vicinity to stromal compartment within the tumor microenviron-
ment and correlate with chemoresistance. These populations
exhibit activated EMT programs and are defined by a robust
101 signature gene set that is TNBC subtype-specific, upregulated
in independent cohorts of TNBC residual disease, frequently
associated with copy number gains and correlates with poor
prognosis. These signature genes are significantly upregulated in
basal and mesenchymal-like subtypes, the two most aggressive
forms of TNBCs. In addition, our signature genes can accurately
predict response to NAC in primary as well as advanced-stage
TNBC tumors, providing a superior biomarker for stratifying
TNBC patients. Notably, we found ACTN1 to be essential for the
viability of TNBC cells and an increase in ITGB1-associated
intercellular signaling pathways in chemoresistant patients, which
are among two of our signature genes. Further drug repurposing
analysis using these gene expression signatures showed that the
aggressive tumors may have sensitivity to kinase inhibitors in
untreated patients while HDAC inhibitors, Disease-modifying
antirheumatic drugs (DMARDs), proteasome inhibitors, and
tyrosine kinase inhibitors (TKIs) will likely benefit post-NAC-
treated patients with the residual disease.

Results

Basal epithelial subpopulations within TNBC tumors
preferentially express genes associated with
chemoresistance and metastasis

To investigate the intratumoral heterogeneity profile of TNBC
patients, we first performed a meta-analysis of primary tumors
from 25 primary TNBC patients (Fig. 1A). Here, we examined
single-cell RNA-sequencing (scRNA-seq) datasets from three
independent studies that had sampled primary untreated TNBC
(Data ref: Chung et al, 2017; Data ref: Gulati et al, 2020; Data ref:
Karaayvaz et al, 2018) (n = 3985 cells), and uncovered seven
subpopulations of distinct cell types within the first dataset
(Fig. 1B). Similarly, second and third datasets also show similar
subpopulations with much higher heterogeneity in TNBC tumors
compared to other breast cancer Luminal and Her2 subtypes
(Fig. EV1A). We investigated whether any of these subpopulations
were enriched for aggressive features such as chemoresistance and
metastasis. Toward this, we utilized chemoresistance-associated
gene sets, consisting of 143 genes, highly activated in residual
TNBC tumors treated with neoadjuvant chemotherapy (NAC) and
linked with chemotherapy resistance in cancer (Balko et al, 2012).
In addition, we used an additional 49 gene signature associated
with metastasis (Lawson et al, 2015). Interestingly, further analysis

showed that the basal epithelial subpopulation in primary TNBC
tumors exhibited high levels of both of these signature gene sets
(Figs. 1C and EV1B,C), suggesting that this specific population is
associated with aggressive clinical behavior.

Next, we investigated whether these basal epithelial cells are
malignant in nature, or they are non-cancerous epithelial cells. To
do this, we investigated their chromosomal copy number changes
(CNV) using inferCNV package (Patel et al, 2014). Here, a CNV
profile of 860 TNBC cells, comprising 602 luminal epithelial cells,
188 luminal progenitor cells, and 70 basal epithelial cells was
computed by comparing with 240 normal mammary epithelial cells
from a previous study (Data ref: Gao et al, 2017). Our CNV analysis
revealed that the majority of epithelial cells, including basal
epithelial cells, exhibit a higher copy number variation profile
(Fig. 1D, bottom heatmap), compared to reference normal
epithelial cells (Fig. 1D, upper heatmap). In addition, the extent
of CNV signal in each cell was further computed as “inferCNV
score” to dissect these differences in cell-type level within TNBC
epithelial populations. Plotting these scores across normal mam-
mary and TNBC epithelial cells revealed a bimodal distribution
centered around an infercnv score of 0.2, separating these groups
from each other (Fig. 1E, upper left histogram). These differences
were also evident at cell-type levels, where we observed higher
inferCNV scores for TNBC cells including basal epithelial,
compared to normal mammary epithelial cells (Fig. 1E, upper
right histogram and bottom left boxplot). In addition to CNV
analysis, we further validated our observations using known
markers of malignancy for luminal and basal epithelial identity
from cellMarker database (Hu et al, 2023) (Fig. EV1D). These
observations are in line with the source study where the majority of
epithelial cells were classified as malignant cells (Karaayvaz et al,
2018).

The dissociation of single cells for scRNA-seq abolishes information
on the localization of specific cells within the tissue. To identify
aggressive TNBC cells within the spatial context of the microenviron-
ment, we utilized a recently published spatial transcriptomic dataset of
primary tumors (Data ref: Bassiouni et al, 2023), derived from
chemotherapy-treated TNBC patients with recurrence of the
disease, indicative of a poor response. Here we analyzed these
data and performed spatial deconvolution to annotate cell-type
abundances using cell-type annotations from primary TNBC tumors
(Karaayvaz et al, 2018) (data used in Fig. 1B). Interestingly, the
chemoresistance-associated subpopulation of basal epithelial cells
spatially located within the tumor epithelial cells and in close vicinity
to the stromal compartment (Fig. 1F). These findings were consistent
across spatial transcriptomes of multiple TNBC patients with recurrent
disease (Fig. EV1E). The spatial arrangement of basal epithelial cells
near to the stroma is not surprising as these cells are known to be
juxtaposed next to the stroma and/or the basement membrane
(Gusterson and Eaves, 2018).

We further identified 101 genes that defined the basal epithelial
subpopulation reproducibly in at least two of the three primary
TNBC scRNA-seq datasets (Fig. 1G) and considered these as
“signature genes” that potentially define the specific subpopulation
associated with aggressive disease (Fig. EV1B,C). The prognostic
role of our signature genes was investigated using Kaplan–Meier
(KM) survival analysis (Gyorffy, 2023) in independent cohorts of
more than 400 TNBC patients. The 5-year relapse-free survival
(RFS) was significantly reduced in the patients’ with elevated
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expression of these genes (Fig. 1H). Overall, these findings suggest
that the aggressive behavior of TNBC tumors, notably therapy
resistance, and metastasis, emanate from basal epithelial subpopu-
lations, spatially reside in close vicinity to the stromal compartment
within TNBC, and contribute to a poor prognosis.

Pre-existing basal epithelial subpopulations in patients
with chemoresistant TNBC

To further confirm the role of the identified signature genes in
TNBC aggressiveness, we analyzed an existing scRNA-seq dataset
of matched pre and post-treated TNBC tumors (n = 4989 cells)
from three patients who responded to NAC (docetaxel and
epirubicin) (chemosensitive) versus four patients who persisted
with residual disease (RD) (chemoresistance) (Fig. 2A,B) (Data ref:
Kim et al, 2018). The samples in this dataset were derived from core
biopsies prior to NAC (0 cycle, pre-treatment), after two cycles of
NAC, and from a surgical sample collected after four additional
cycles of NAC in combination with bevacizumab (post treatment).

We began the analysis by quality check and correction for batch
effect in these datasets (Fig. EV2A). Clustering of cells from both
groups of patients revealed four and five clusters in chemosensitive
and chemoresistant datasets, respectively (Fig. EV2A, bottom
umap). Within the chemosensitive group, we observed completely
distinct clusters of cells pre- and post chemotherapy treatment.
(Fig. 2A,B, left UMAP). Notably, cells from the chemoresistant
patients pre- and post treatment co-existed in the same cluster at
the opposite ends on the cluster, indicative of a distinct pre-existing
transcriptional programs in the resistant patients (Fig. 2A,B, right
UMAP). Expression profiling of our signature genes in tumor
samples from the two patient groups revealed that their expression
varied between patient samples (Fig. EV2B). Importantly, however,

the chemoresistant patients as a group had a higher expression of
these signature genes in untreated tumors and a further increase in
expression particularly within basal epithelial cells following
exposure to NAC (P < 2.22e-16) (Fig. 2B–D).

To investigate the role of the signature genes in clonal selection
or evolution following NAC within chemoresistant patients, we
obtained the clonal status of each cell using the existing data, and
profiled expression levels of signature genes across the subclones.
Interestingly, profiling of the signature genes (n = 101) in the sub-
clonal population of cells showed higher expression in the post
treatment dominant resistant clone (ClonA-Resis). Notably,
expression of signature genes was also elevated in the pre-
treatment clone (preTX) (Fig. 2E), indicating their possible role
in defining the pre-existent clone that evolves into the dominant
resistant clone upon exposure to NAC.

Chemoresistance is associated with an active EMT
program in treatment-naive tumors

To determine global transcriptional programs that are pre-existing
and associated with NAC resistance in TNBC we compared gene
expression profiles of pre-treated chemoresistant and chemosensi-
tive cells using the MAST test (Finak et al, 2015). MAST identifies
differentially expressed (DE) genes between two groups of cells
using a tailored hurdle model which is frequently used to identify
DE genes in scRNA-seq datasets (Dal Molin et al, 2017). We
observed more upregulated genes (n = 1444 genes) than down-
regulated ones (n = 566 genes) in pre-treated chemoresistant versus
chemosensitive groups (Fig. 2F). Of these DE genes, 39 genes
within our signature list were upregulated and 16 were down-
regulated in chemoresistant groups (Fig. 2F). The upregulation of
signature genes in treatment-naive groups suggests their putative

Figure 1. Single-cell transcriptomic analysis reveals cell populations associated with TNBC aggressiveness.

(A) Schematic workflow of the study. We utilized scRNA-seq datasets of treatment-naive primary and chemotherapy-treated TNBC patients and identified small cell
populations of basal epithelial cells associated with chemoresistance-like characteristics. The spatial arrangements of these aggressive cells within tissue sections of
resistant TNBC tumors was identified. Further, genes defining these subpopulations were validated in bulk RNA-seq of tumors chemoresistance tumors and utilized for
building a predictive model in stratifying patients with residual disease and pathological complete response. The potential drug candidates against chemoresistant cells
was identified using drug repurposing approach. (B) The scRNA-seq data analysis shows cellular heterogeneity profile within six primary TNBC tumors. The genes defining
each cluster were annotated against cellmarker database to assign cell-types identity to each cluster. (C) Violin plot showing expression of signature genes associated with
metastasis (right plot) signatures. The expression of metastasis signature of 49 genes from Lawson et al, 2015 was plotted across each cluster. The chemoresistance
signature (left plot) of 143 genes from Balko et al, 2012 expression was plotted across each cell type. In the box-and-whisker within violin plots, the horizontal lines mark
the median, the box limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5× the interquartile range from the 25th and 75th percentiles. The statistical
testing of expression levels of metastasis and chemoresistant genes between the cell types was performed using two-tailed unpaired Wilcoxon test in
stat_compare_means() of ggpubr package. (D) The infercnv analysis of TNBC epithelial cells. The upper heatmap plot shows copy number alternation profile in healthy
mammary epithelial cells. The lower heatmap plot showing CNV profile in TNBC epithelial cells. We have used total 240 healthy mammary epithelial cells to compute
somatic copy number alteration in TNBC epithelial, including basal epithelial cells. Regions of chromosomal amplification manifest as blocks of red, while chromosomal
deletions manifest as blue blocks, providing a visual representation of the copy number changes. (E) Copy number score, “infercnv scores” computed from inferCNV
analysis of normal vs TNBC epithelial cells. The top left histogram plot shows binomial distribution of infercnv score of normal epithelial vs TNBC epithelial cells. The
infercnv scores less than 0.2 defined normal epithelial cells and score greater than 0.2 defined TNBC epithelial cell types. The right histogram plot shows cell-type level
infercnv score distribution. The red dotted lines shows infercnv scores threshold separating normal epithelial from TNBC epithelial cells. The lower left boxplot was used to
plot to calculate statistical difference of infercnv score between the normal and TNBC epithelial cell types. In the box-and-whisker plots, the horizontal lines mark the
median, the box limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5× the interquartile range from the 25th and 75th percentiles. The statistical
testing of infercnv score between the normal and TNBC epithelial cells was performed using two-tailed unpaired Wilcoxon test in stat_compare_means() of ggpubr
package. (F) Spatial transcriptome dataset of aggressive TNBC tumor. Left plot is an H&E-stained image of TNBC patient with recurrence within 9.4 months. The right plot
shows the cell-type annotation of spot-level data. The annotation was assigned from spatial deconvolution using the primary TNBC tumor scRNA-seq dataset used in
Fig. 1B. The yellow line in left plot is discriminating the fibrous cells (encircled) and tumor epithelial cells. (G) Venn diagram showing basal epithelial populations defining
genes, reproducible across three datasets. Basal epithelial cell-type-defining genes overlapped between all three datasets and genes evident in at least two datasets were
considered as reproducible signature genes. (H) Kaplan–Meier survival analysis plot showing correlation of signature gene expression with 5-year relapse-free survival
(RFS) in TNBC patients. Analysis was performed using mean expression levels of all 101 signature genes in 417 TNBC patients using kmplotter. Source data are available
online for this figure.
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role in attaining intrinsic chemoresistance characteristics in TNBC.
Further biological function analysis revealed that, the upregulated
genes in pre-treatment chemoresistant cells were enriched for GO
terms associated with RNA binding, protein binding and cell
adhesion, and cytoskeleton binding, which are key processes in cell-
fate changes such as Epithelial-to-Mesenchymal Transition
(Wheelock et al, 2008; Yilmaz and Christofori, 2009) (Fig. 2F,
right dot plot). On the other hand, downregulated genes in
untreated chemoresistant cells were enriched for immune response-
related processes such as MHC Class II activity, Immune receptor
activity, and T-cell receptor binding (Fig. 2F, left dot plot). These
results are in line with earlier reports that an increase in immune
response activity correlates with a better response of TNBC patients
to NAC (Denkert et al, 2010; Garcia-Teijido et al, 2016; Ladoire
et al, 2011).

To further delineate functional pathways operating in these
subpopulations associated with aggressive clinical behaviors, we
investigated pathway enrichment across pre- and posttreatment
chemosensitive and chemoresistant cells based on the 50 hallmark
gene sets available from The Molecular Signatures Database
(MSigDB) hallmark gene set collection (MsigDB) (Liberzon et al,
2015). This analysis revealed that distinct categories of pathways
are enriched in chemoresistance versus chemosensitive subpopu-
lations (Fig. 2G). The epithelial-to-mesenchymal transition
(EMT) is known to confer chemoresistance and is linked to
aggressive behavior in many cancers including TNBC (Hong et al,
2018; Jang et al, 2015; Luo et al, 2015; Xu et al, 2018).
Consequently, most breast cancer deaths (90%) are caused by
tumor invasion and metastasis, which are the two key features
related to the EMT (Felipe Lima et al, 2016). Interestingly,
pathways associated with EMT, including TGFβ signaling, were
among the pathways activated in chemoresistant subpopulations
(Fig. 2H). In line with these observations, the established EMT
markers FN1, RBFOX2, and QKI had elevated expression in
chemoresistant versus chemosensitive patient samples, both pre-
and post treatment (Fig. 2I). These observations are consistent
with a correlation between the upregulation of EMT related genes
and resistance to chemotherapy (Kim et al, 2018). We were unable
to detect a few other hallmark EMT genes, such as the
transcription factors ZEB1/2, TWIST1/2, and SNAI1/2, potentially
due to known limitations of scRNA-seq (Lambert et al, 2018;
Pokhilko et al, 2021).

The basal epithelial signature genes are elevated during
EMT and in EMT-high tumors

To further characterize the 101 signature genes that define the basal
epithelial subpopulation, we performed a GO analysis, which
revealed enrichment for EMT-like processes such as wound
healing, extracellular matrix organization and cell migration
(Fig. 3A). Recent data have highlighted that the different molecular
subtypes of TNBC are associated with differential response rates to
specific therapies such as the anti-PD-L1 immunotherapy Atezo-
lizumab (Emens et al, 2021; Garrido-Castro et al, 2019). We
therefore investigated the correlation of our signature genes within
each molecular subtype of TNBC. For this, we obtained FPKM
normalized expression levels of these signature genes from 508
TNBCs transcriptomes (METABRIC = 325 (Data ref: Curtis et al,
2012); TCGA-BRCA = 183 (Data ref: Cancer Genome Atlas
Research N et al, 2013) and plotted them across four molecular
subtypes i.e luminal androgen receptor (LAR), Basal-like 1 (BL1),
basal-like 2 (BL2) and mesenchymal-like (M) of TNBCs. Interest-
ingly, our signature genes were significantly elevated in basal-like
and mesenchymal-like subtypes compared to LAR subtypes
(Fig. 3B), consistent with the activated EMT programs and worse
survival outcomes of basal-like and mesenchymal-like subtypes
(Liu et al, 2016; Park et al, 2020; Yin et al, 2020). Our further
analysis of the large TCGA breast cancer subtype cohort showed
that these genes are expressed at significantly higher levels in TNBC
tumors compared to luminal (ER-positive) and HER2-enriched
breast cancers and hence suggests a key role in disease pathogenesis
in TNBC subtype (Fig. 3C).

Given the limitations of the scRNA-seq technology in detecting
genes with low expression levels, we analyzed a recently published
bulk RNA-seq of 74 samples from TNBC patients who were treated
with NAC (AC Adriamycin (Doxorubicin) + Cyclophosphamide, T
Taxol (Docetaxel), H Herceptin (Trastuzumab)) and had a known
treatment outcome, namely pathological complete response (pCR)
and residual disease (RD) status (Data ref: Park et al, 2020). In
support of our observations, our signature genes showed sig-
nificantly higher expression levels in patients with residual disease
(Fig. 3D).

We next investigated whether our signature genes are uniformly
activated across TNBC or reflect aggressive disease with mesench-
ymal characteristics. To do this, we classified TCGA TNBC samples

Figure 2. Chemoresistance is associated with an active EMT program in treatment naive tumors enriched for our signature genes.

Expression analysis of signature genes in seven TNBC tumors (collected pre-treatment and after six cycles of NAC (docetaxel and epirubicin) (post treatment) were
analyzed. (A) UMAP plot of chemosensitive and chemoresistance patients indicating pre and post-treated cells. (B) Cell-type annotation of pre and post-treated
chemosensitive (n= 2497 cells) and chemoresistance (n= 2492 cells) shown in (A). (C) The UMAP plot showing mean expression profile of signature genes between the
resistant and sensitive groups. (D) The mean expression profile of signature genes between the pre and post-treated resistant and sensitive groups is indicated in the violin
plot. (E) Plot showing expression of signature genes across pre- and posttreatment subclones in chemoresistant patients. (D, E) In the box-and-whisker within violin plots,
the horizontal lines mark the median, the box limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5× the interquartile range from the 25th and 75th
percentiles. The statistical testing of expression levels of signature genes between groups was performed using two-tailed unpaired Wilcoxon test in
stat_compare_means() of ggpubr package. (F) Differentially expressed genes between untreated chemosensitive and chemoresistant cells are shown in the volcano plot.
Gene highlighted with names inside the volcano plot are within our 101 signature gene list. The dot plot present on each side of the volcano plot represents enrichment of
gene ontology biological processes for genes that were downregulated (left panel) and upregulated (right panel) in chemoresistant versus chemosensitive cells. The
significantly altered genes was identified using combined binomial and normal–theory likelihood ratio test in MAST. (G) The Heatmap shows enrichment of 50 hallmark
signature pathways in chemosensitive and chemoresistance subpopulations using the Molecular Signatures Database (MSigDB). The pathways highlighted in the red and
orange boxes are enriched in chemoresistance and chemosensitive subpopulations. (H) The violin plot shows enrichment of EMT and TGF-b pathway genes in resistant
and sensitive group of cells. In the box-and-whisker within violin plots, the horizontal lines mark the median, the box limits indicate the 25th and 75th percentiles, and the
whiskers extend to 1.5× the interquartile range from the 25th and 75th percentiles. The significance test was performed using two-tailed unpaired Wilcoxon test. (I) Violin
plot showing expression of hallmark EMT genes across pre and post-treated chemoresistance and chemosensitive patients. Source data are available online for this figure.
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(n = 129) (Data ref: Cancer Genome Atlas Research N et al, 2013)
into EMT-Low (epithelial), hybrid-EMT (Hybrid) and EMT-High
(mesenchymal) groups based on the expression of 10 established
EMT markers (Fig. 3E). Interestingly, our signature genes had
significantly elevated expression in mesenchymal samples com-
pared to epithelial samples (Fig. 3F).

To examine the involvement of these genes in EMT progression,
we experimentally induced EMT in vitro by treating immortalized
human mammary epithelial cells (HMLEs) with TGFβ and
performed RNA-whole transcriptome sequencing at different
timepoints representing early, mid and late EMT. We observed
altered expression of hallmark EMT genes over time, verifying our
approach (Fig. 3G, shown in the upper cluster of the heatmap).
Interestingly, we observed increased expression of almost all our
identified signature genes (96 out of 101) during EMT, confirming
that these genes are truly associated with mammary EMT (Fig. 3G).
Distinct subsets of these genes (highlighted with C0-C4 clusters)
were induced at different timepoints during EMT, which might
underlie their roles during EMT progression.

Signature genes are frequently amplified in basal-
like TNBC tumors

Chemoresistance in TNBC is reported to be the result of clonal
selection and clonal evolution via changes in genomic landscape,
such as acquired mutations and copy number variations (Almendro
et al, 2014; Balko et al, 2014; Balko et al, 2016; Navin, 2014).
Therefore, to unravel the genomic landscape of our signature genes,
we performed mutational and copy number variation analysis on a
TNBC cohort. We obtained the mutational and copy number
alteration profiles of TNBC patients from METABRIC (n = 209)
(Data ref: Curtis et al, 2012) and analyzed our signature genes in
chemotherapy-treated and untreated patients. Noticeably, the
analysis showed a gain in copy number of the majority of our
signature genes across all patients, and a particularly significant
gain in chemotherapy-treated patients compared to the untreated
ones. Among these, FBXO32 (frequency: 28–40%), LY6E
(frequency: 12–36%), and IFI16 (frequency: 7–27%) genes were
the most frequently altered and showed gain in copy number in
patients treated with chemotherapy (Fig. 4A). Interestingly, we

previously showed that FBXO32 is essential for conferring the
microenvironment that drives tumor aggressiveness (Sahu et al,
2017). These results suggest that changes in the expression of these
signature genes could be governed at the genomic level, and an
increased copy number in chemotherapy-treated TNBC patients
could further increase expression levels.

Genetic changes, including copy number alterations (CNAs),
can not only drive tumor progression but also can discern tumor
subtypes with distinct characteristics (Jiang et al, 2019). We next
profiled the expression of our signature genes among six previously
defined CNA subtypes of TNBC (Data ref: Jiang et al, 2019) and
found that it is elevated in four CNA subtypes (Fig. 4B, left
boxplot). These CNA subtypes represent CNA subtype 1, frequent
9p23 amplification (Chr9p23 amp); CNA subtype 2, frequent 12p13
amplification (Chr12p13 amp); CNA subtype 3, frequent Chr13q34
amplifications (Chr13q34 amp); CNA subtype 4, frequent
Chr20q13 amplification (Chr20q13 amp); CNA subtype 5, frequent
Chr8p21 loss (Chr8p21 del); and CNA subtype 6, somatic CNA
lacking a CN cluster but with low chromosomal instability (CIN)
(low CIN). Interestingly, these CNA subtypes are more frequently
amplified in tumors of basal-like subtype (~85% of tumors), than
LAR and MES TNBC (Fig. 4B, right pie chart). We further
investigated the expression levels of our signature genes in four
TNBC mutation type categories defined by Jiang et al (Jiang et al,
2019): mutation subtype 1, which is defined by enrichment of
APOBEC-related genes (APOBEC); mutation subtype 2, which was
highlighted by homologous recombination deficiency (HRD)-
related genes (HRD); mutation subtype 3, with clock-like signatures
genes (clock-like); and mutation subtype 4, with no dominant
signature (mixed). We observed elevated expression in the
homologous recombination deficiency (HRD) subtype (Fig. 4C,
left boxplot), which also is mostly the basal-like subtype compared
to LAR and MES subtypes (Fig. 4C, right pie chart). The HRD type
is a copy number-based biomarker facilitating the identification of
patients who might respond to DNA-damaging agents (Telli et al,
2016). Our signature genes were elevated in patients with HRD
CNA subtype, suggesting its association with patients with a
decreased ability to repair double-strand DNA breaks. HRD has
been reported to be associated with response to standard NAC in
TNBC patients (Telli et al, 2018). Overall, these findings indicate

Figure 3. Chemoresistance-associated signature genes are induced during EMT and are expressed at higher levels in EMT-high TNBC tumors.

Chemoresistance-associated signature genes are TNBC subtype-specific and have activated EMT programs. (A) The dot plot shows gene ontology analysis of our
signature genes enriched for biological processes associated with EMT. (B) The boxplot showing the mean expression of our signature genes across molecular subtypes of
TNBC patients. The mean expression levels of our signature genes were plotted across TNBC molecular subtype luminal androgen receptor (LAR), basal-like 1 (BL1), basal-
like 2 (BL2), and mesenchymal (M) in two independent cohorts i.e., METABARIC and TCGA-BRCA cohorts. (C) Boxplot of TCGA breast cancer cohort showing mean
expression of signature genes across different subtypes of breast cancer. Expression profile of signature genes extracted from TCGA breast cancer cohort and each tumor
classified into four subtypes i.e., LuminalA, LuminalB, HER2, and TNBC based on ER, PR, HER2 status. Next, the average expression of our signature genes was plotted
across subtypes of breast cancers. (D) Boxplot showing mean expression of signature genes in bulk RNA-seq datasets of 74 chemotherapy-treated TNBC patients. (E)
Expression of signature genes in EMT-High, Hybrid and EMT-Low TNBC tumors. Heatmap showing the classification of TCGA TNBC tumors into EMT-high
(Mesenchymal), Hybrid and EMT-low (Epithelial) groups based on the expression of hallmark epithelial (4 genes) and mesenchymal (6 genes) genes. (F) Boxplot showing
average expression of signature genes in EMT-High, Hybrid and EMT-Low TNBC (TCGA) cohort. (B–D, F) In the box-and-whisker plots, the horizontal lines mark the
median, the box limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5× the interquartile range from the 25th and 75th percentiles. The statistical
testing of expression levels of signature genes between the groups was performed using two-tailed unpaired Wilcoxon test in stat_compare_means() of ggpubr package.
(G) The Heatmap showing expression dynamics of signature genes across different EMT timepoints (TGFβ treated) of mammary epithelial cells (HMLE) RNA-seq. The
time point labeled with d0 are untreated and d1-d20 are different EMT timepoints treated with TGF-b from day 1 to day 20. The upper cluster represents the expression of
hallmark EMT genes during TGFβ-induced EMT. The lower heatmap shows a cluster of genes represented by C is on the right side of the heatmap representing EMT
induction time-specific genes. The mean expression of signature genes during TGFβ induced EMT in HMLE cells is shown on the top of the barplot. The Error bar plotted
based on the standard deviation calculated using three replicates of each timepoints. (A–F) The “n” represents total number of samples taken for the analysis. Source data
are available online for this figure.
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that our signature genes are not only deregulated at the
transcriptional level but also frequently show a gain in copy
number, particularly in patients with basal-like subtypes with
dysfunctional DNA repair mechanisms.

A best-in-class multi-gene classifier to predict
chemotherapy response in TNBC

Pathological complete response (pCR) is the key surrogate marker for
long-term prognoses, such as disease-free survival and overall survival,
for TNBC patients (Hahnen et al, 2017; Liedtke et al, 2008; von
Minckwitz et al, 2012). However, the field lacks clinically useful
predictors of pCR for TNBC (Lehmann et al, 2016; Louie and Sevigny,
2017; Mark et al, 2017; Nakashoji et al, 2017; Santuario-Facio et al, 2017).
Although molecular tests can guide treatment for estrogen receptor (ER)
or HER2+ tumors, no such tests exist to stratify TNBC and inform
therapeutic strategies (Bear et al, 2017; Bertucci et al, 2014; Prat et al,
2016; Yardley et al, 2015). To address this unmet clinical need, we
developed a predictive model that can stratify pCR or residual disease
(RD) to standard NAC in TNBC (Fig. 5A). Briefly, we performed ameta-
analysis of five independent breast cancer studies (Data ref: Hatzis et al,
2011), (Data ref: Hatzis et al, 2011), (Data ref: Shi et al, 2010), (Data ref:
Horak et al, 2013) and (Data ref: Tabchy et al, 2010), and examining the
expression of our 101 signature genes in samples from 446 TNBC
patients who were treated with standard NAC (e.g., taxane, anthracy-
cline, cyclophosphamide, 5-fluorouracil), and whose treatment out-
comes, pCR and RD were known (Fig. 5B).

To build a predictive model, we subjected our 101 signature
genes to Lasso and Elastic-Net Regularized Generalized Linear
Models using the glmnet package. The powerful built-in feature
selection capability of glmnet allowed us to narrow down the list to
20 genes with the highest predictive power from our signature set
(Fig. 5C). Before subjecting these genes to model building, we
profiled their expression on spatial transcriptome dataset and
found their high enrichment in basal cells in recurrent TNBC
patients (Fig. 5D), which we showed earlier to be linked with
chemoresistance (Fig. 1F). For model building, we used the tenfold
cross-validation statistical method to estimate the skill of the model
on new data. In the k-fold cross-validation method, a model
performs the fitting procedure a total of ten times, with each fit
performed on a training set comprising a random 90% of the total
training set and the remaining 10% for validation. Subsequently, we
used these 20 genes to build a predictive model that we fit to a
generalized linear model (Fig. EV2D,E).

We used receiver operating characteristic (ROC) curve
estimates to visualize the performance of a classification model

at all classification thresholds. The probability of classifying a true
positive, inferred from the ROC area under the curve (AUC), was
90.3%, indicating that our model based on 20 genes shows
excellent discrimination ability between the pCR and RD patients
(Fig. 5E). Furthermore, our model showed high performance on
three independent validation cohorts (GSE20194-GSE20271
AUC = 88.8% and AUC = 86.0% for GSE41998) (Fig. 5F) demon-
strating the robustness of the signature genes. The discriminative
power was significantly decreased if a single gene (AUC = 85.8%)
or a set of genes (AUC = 77.2%) were removed from the model
(Fig. 5G), indicating a strong combinatorial accuracy. Further-
more, our gene panel predicted chemotherapy response substan-
tially better than five existing gene signatures (Fournier et al, 2019;
Juul et al, 2010; Lim et al, 2020; Stover et al, 2016; Witkiewicz et al,
2014) (Fig. 5H). Therefore, our multi-gene signature is currently
the “best-in-class” given its higher discriminative ability in a large
cohort of pCR and RD patients; and superior performance over
published signatures in predicting the chemotherapy response. The
Kaplan–Meier survival analysis showed that higher expression of
these 20 genes was associated with significantly reduced 5-year
survival in TNBC patients (HR = 1.71 (1.24–2.35), P = 0.00093)
(Fig. 5I).

Chemoresistant TNBC cells exhibit enhanced
intercellular communication

Our spatial analysis showed the existence of aggressive cells within
the tumor and in close vicinity to non-tumor cells, which are
known to interact with each other (Kaminska et al, 2015;
Ungefroren et al, 2011). We therefore hypothesized that the
aggressive basal cells engage in communication with other cell types
within the TME to confer chemoresistance in TNBC. To examine
cell–cell communication, we applied CellChat which quantitatively
characterizes and compares the inferred cell–cell communication
network, based on the average expression of the ligands and
receptors in cell populations. We first examined the scRNA-seq of
treatment-naive TNBC tumors (Data ref: Karaayvaz et al, 2018)
(Fig. 6A, the dataset used in Fig. 1B) and found that cells of basal
epithelial type exhibit strong intercellular communication with
stromal cells (Fig. 6B), which fits with our observations from spatial
transcriptomes that they spatially reside in close vicinity to the
stromal cells (Fig. 6C). In particular, Insulin-like growth factor
(IGF) signaling and LAMININ signaling pathways supported
intercellular communication in these TNBC tumors (Fig. 6D).
Interestingly, these pathways employ a top-ranked signature gene
from the 20-panel list, ITGB1 (Fig. 6E).

Figure 4. Elevated expression of signature genes in TNBC associated with an increased copy numbers, particularly in HRD subtype with basal-like characteristics.

Signature genes elevated in tumors of HRD subtype with increase copy numbers changes. (A) Oncoprint heatmap showing mutations and copy number alteration in
METABARIC cohort. The left and right heatmap shows alternations in signature genes through deep deletion, amplification, missense, and truncating mutations in both
chemotherapy-treated and -untreated TNBC patients. The bar graph in the center represents the frequency of mutations of each gene in TNBC patients. The boxplot in the
center shows overall mutational frequency between chemotherapy-treated and untreated tumors. The significance test between chemotherapy-treated and untreated
groups was performed using one-tailed paired t test. (B) The boxplot showing the expression of our signature genes among six previously defined CNA subtypes of TNBC
(Jiang et al, 2019). (C) Boxplot showing mean expression of signature genes in four mutational subtypes of TNBC patients, homologous recombination deficiency (HRD),
APOBEC, clock-like and mixed. HRD mutation type is defined by alteration in HRD-related genes; APOBEC type is defined by a mutation in APOBEC-related genes; clock-
like is defined by a genetic alteration in clock-like genes, and mixed is defined by no dominant gene signature. The significance test between mutation subtypes was
performed using two-tailed unpaired Wilcoxon test. (A, C) In the box-and-whisker plots, the horizontal lines mark the median, the box limits indicate the 25th and 75th
percentiles, and the whiskers extend to 1.5× the interquartile range from the 25th and 75th percentiles. Source data are available online for this figure.
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Next, we investigated whether intercellular interactions observed
in primary tumors show any differences between resistant and
sensitive cells upon exposure to chemotherapy (Fig. 6F,G). There-
fore, we performed cellchat analysis of post-NAC-treated chemore-
sistant and chemosensitive cells. Interestingly, we observed a
substantially higher (over twofold more) number of cell–cell
communications in chemoresistant cells compared to chemosensi-
tive cells (Fig. 6H), particularly driven by basal epithelial cells
(Fig. 6I). Notably, distinct signaling pathways were enriched in
chemoresistant versus chemosensitive TNBC tumors (Fig. 6J).
Interestingly, similar to primary tumors, post-treated TNBC cells
show stronger cell–cell communication of LAMININ signaling
pathways (Fig. 6K), which utilize one of our signature genes ITGB1
(Fig. EV3A). These results also imply that a high expression of our
signature gene could result in increased intercellular signaling
through Tyrosin-kinase activity (i.e., IGF signaling) and LAMININ
signaling cascades and thereby contribute to aggressive phenotypes
and chemoresistance in TNBC tumors.

Drug repurposing analysis identifies FDA-approved
drugs to overcome TNBC chemoresistance

Given the high attrition rates, substantial costs, and slow pace of
new drug discovery and development, repurposing of ‘old’ drugs to
treat both common and rare diseases including cancers is
increasingly becoming attractive (Nosengo, 2016). It offers several
advantages, for example, it involves the use of de-risked
compounds, with potentially lower overall development costs,
lower risk of failure, and shorter development timelines (Ashburn
and Thor, 2004). A key step in drug repurposing is to identify a
potential candidate molecule using molecular docking, genome-
wide association studies, and pathway or network mapping.
However, these approaches offer limited potential as they are built
on traditional molecular methods such as total RNA-seq and fail to
account for tissue heterogeneity for diverse cell populations within
the diseased tissue. Here, we attempted to overcome this problem in
the context of TNBC chemoresistance using a recently published
computational algorithm ASGARD (He et al, 2023) that ranks
recommend FDA-approved drugs against cell populations using
scRNA-seq datasets. ASGARD uses the differentially expressed
genes (in our case, between resistant and sensitive) as inputs to
identify drugs that can significantly (single-cluster FDR < 0.05)
reverse their expression levels using the L1000 drug response
dataset as a reference.

Our drug repurposing analysis using ASGARD against pre- and
post-NAC-treated chemoresistant cell populations identified dif-
ferent sets of FDA-approved drugs that may have sensitivity
towards chemoresistant cell populations in untreated and treated
TNBC tumors (Fig. 7A,B). For example, pre-treated resistant cells
showed tyrosine kinase inhibitors (TKI) family as top drug
candidates i.e., Pazopanib, Fostamatinib, Crizotinib, etc. (Fig. 7B,
top dot plot), while the top candidates for posttreatment resistant
cells showed another set of top-ranked drugs as candidates such as
HDAC inhibitor (Vorinostat), DMARDs (Auranofin), proteasome
inhibitor (Ixazomib) and TKIs (Neratinib, Crizotinib, Fostamati-
nib, and Pazopanib) drug types (Fig. 7B, bottom dot plot). This
analysis further identified drugs that may be more effective in a
combination (Fig. 7B, right dot plot). The TKIs as a potential
alternative drug for aggressive TNBC is further supported by our
cell–cell communication analysis, where we found a higher IGF
signaling in aggressive cell populations (Fig. 6D), which is linked to
the tyrosine kinase receptor family. Therefore, abruption of IGF
signaling using TKIs may provide an effective strategy for targeting
aggressive cells in TNBC tumors. Overall, these findings imply that
it is potentially possible to repurpose several FDA-approved drugs
to overcome chemoresistance and advocate using different drugs
pre- and post chemotherapy either alone or in combination.

Loss of ACTN1 enhances sensitivity to chemotherapy

We were next keen to explore whether any of our 101 signature
genes contribute to TNBC chemoresistance through enhanced cell
survival and if they can be therapeutically targeted for improving
chemotherapy response. Here we decided to make use of cancer
dependency maps (DepMap) (Tsherniak et al, 2017) for the first
screening followed by additional functional validation (Fig. 8A). To
identify the most relevant targets amongst our signature, we
prioritized candidate genes by applying a multi-level evidence
matrix (Expanded Table EV1) based on (1) high expression in
chemoresistant TNBC patients (scRNA-seq, and or bulk RNA-seq);
(2) high expression in TNBC tumors and cancer cell lines; (3) high
expression in EMT-high TNBC tumors (TCGA) and mammary
EMT (mammary epithelial cells), (4) and association of their high
expression with reduced survival (relapse-free survival in TNBC
and lymph node-positive TNBC tumors). This approach uncovered
12 genes (Fig. EV3B) that qualify the above criteria, including
ACTN1 (encoding α-actinin-1) and SFRP1 (encoding secreted
frizzled-related protein 1) among 20 genes.

Figure 5. A 20-gene panel can accurately predict chemotherapy response in TNBC patients.

The predictive model development and validation with 20 gene expression levels using the least absolute shrinkage and selection operator (LASSO) regression method.
(A) Predictive model building workflow. (B) Clinical details of TNBC samples used for model building and validation. (C) Ranking of genes based on the lambda score
obtained from glmnet. (D) Mean expression of 20 genes on the spatial transcriptome dataset. The bottom violin plot shows mean expression of 20 genes within cell types
of spatial transcriptome dataset. (E) The receiver operating characteristic (ROC) curves of the discovery cohort TNBC dataset (n= 177, 2 datasets—GSE25055,
GSE25065) for pCR and RD prediction using 20 gene expressions as a feature. (F) The ROC curves of the TNBC validation dataset (n= 130, 2 datasets—GSE20194,
GSE20271) and NCT00455533 trial dataset (GSE41998, n= 139) for pCR and RD prediction using 20 gene expressions as a feature. (G) The ROC curves were generated
for all 20 gene features (red); after the removal of one gene (cadetblue); and the removal of 5 genes (purple) to assess the impact of the combination of genes on the
model performance. The ROC curve highlighted with the red line used all 20 genes, whereas the model with reduced gene sets (highlighted with cadetblue and purple line)
showed a difference in discriminating ability in predicting pCR vs RD in TNBC. (H) The ROC curve shows the comparative performance of our model (QUB signature gene
panel) with five published signatures. Here we used the same cohort for all five gene signatures to compare the performance of our model with the published ones. (I)
Kaplan–Meier survival analysis plot showing correlation of 20 gene expression with 5-year relapse-free survival (RFS) in TNBC (top) (n= 417). Source data are available
online for this figure.
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We subjected these 12 genes for further downstream analysis to
shortlist key genes for functional validation. To do this, we
examined existing datasets from genome-wide CRISPR-Cas9 and
RNAi screens of several breast cancer cell lines (Fig. 8A), and found
that the candidate gene ACTN1 was essential in 12 out of 18 TNBC
cell lines, suggesting its importance for the viability of TNBC cells
(Fig. 8B). Given the enrichment of our signature in basal-like
molecular subtypes of TNBC, we selected the HCC1806 (BL1/2
like) and MDAMB-468 (BL2like) cell lines for further investigation,
which also expresses sufficient levels of ACTN1 (Brautigam et al,
2016) (Fig. EV3C).

In parallel, an integrated scRNA-seq analysis of healthy breast
(Data ref: Bhat-Nakshatri et al, 2021), primary TNBC (Data ref:
Karaayvaz et al, 2018) and chemotreated tumors (Data ref: Kim
et al, 2018) (Fig. 8C), revealed that ACTN1 exhibits higher
expression in basal cells within TNBC tumors (Fig. 8C,D, left violin
plot). Further analysis showed that ACTN1 was not expressed in
healthy breast cells but was upregulated in TNBC primary tumors
and further elevated in chemoresistant but not chemosensitive
TNBC (Fig. 8D, right violin plot). These observations were
confirmed by immunohistochemistry analysis of normal and
malignant breast tumor (Fig. 8E).

We further confirmed whether aggressive cells share the origin
with basal cell types within the TME that express high levels of
ACTN1. To achieve this, we plotted the expression levels of our 20-
gene chemoresistance signature across this integrated dataset and
found their higher expression in basal epithelial cells (Fig. EV3D)
with much higher levels in primary and chemotherapy-treated
TNBC tumors. The accuracy of these findings was further
confirmed by plotting expression levels of established basal markers
such as cytokeratins 5, 14, and 17 and found that the primary
TNBC tumors exhibit higher levels of basal markers as compared to
healthy breast which is further increased in chemotherapy-treated
patients, confirming their basal-like origin (Fig. EV3E, left panel).
Notably, this was not the case for luminal epithelial markers and
they were enriched in the luminal cluster as expected (Fig. EV3E,
right panel).

Furthermore, our spatial transcriptomics analysis revealed that
ACTN1 is highly expressed within the basal epithelial cells, (Fig. 8F)
which we had found associated with aggressive behavior (Fig. 1F).
These striking, multi-level observations clearly vouch for a
potential role for ACNT1 in TNBC chemoresistance.

Subsequently, we depleted ACTN1 gene using small interfering
RNAs (siRNA) and treated the knockdown lines with taxane
(Paclitaxel), which is the most commonly used chemotherapy agent
for TNBC (Fig. 8G). The inhibitory concentration (IC50) values of
the drugs for the HCC1806 and MDAMB-468 (BL2 like) cell lines
were obtained from the GSDC database (Table 1). Here our

approach could deplete ACTN1 with over >90% efficiency, offering
an excellent system for functional analysis (Fig. 8H). Interestingly,
here we observed a dramatic decrease in cell viability in
BL1 subtype (~50%) and a modest but significant reduction in
BL2 subtype (~20%) following knockdown of ACNT1 in the
presence of Paclitaxel (Fig. 8I). Altogether, these observations
identify ACTN1 as an excellent therapeutic target for overcoming
TNBC chemoresistance and imply that ACTN1 levels could be
predictive of response to chemotherapy in TNBC patients and its
inhibition may re-sensitize chemoresistant cells to chemothera-
peutic agents.

Discussion

Our study has identified subpopulations of basal epithelial cells that
associates with chemoresistance and metastasis in TNBC patients.
These subpopulations harbor shared transcriptomic profiles of an
aggressive disease phenotype across multiple cohorts and defined
by robust signature genes. These signature genes are highly
enriched in independent cohorts (single-cell and bulk RNA-seq)
of pre and post-NAC-treated chemoresistant tumors and associated
with activated EMT programs. Earlier studies have shown that
aggressive tumors such as TNBC originate from basal-like cells and
are often used as a surrogate for identifying the aggressive basal-like
breast cancer subtype (Foulkes et al, 2010; Lehmann et al, 2011).
Therefore, these observations emphasize that cells with aggressive
characteristics could be of basal-like in cell origin. Although EMT
has been implicated in chemoresistance and metastasis in breast
cancers including TNBC (Kim et al, 2018; Li et al, 2020) (Feng et al,
2021; Wei et al, 2020) and EMT genes were shown to be
overexpressed in post-treated chemoresistant tumors (Chen et al,
2019; Kim et al, 2018), the underlying comprehensive transcrip-
tional signatures remained poorly understood, particularly in
treatment-naive TNBC patients. Here, we have shown that
chemoresistant TNBC cells are defined by the expression of
distinct signature genes in treatment-naive and NAC-treated
tumors. Using spatial transcriptomics, we further showed that
these chemoresistance signature genes are upregulated in basal
epithelial cells and spatially reside in close vicinity to stromal
compartment in the TNBC tumor microenvironment.

Our analysis shows that elevated levels of our signature genes
are associated with significantly reduced survival in TNBC patients,
and more closely associated with aggressive TNBC subtypes i.e.,
basal-like (BL1/2) subtypes (Park et al, 2020; Yin et al, 2020). The
poor survival outcome of patients with basal-like tumors is well
established, unfortunately without much knowledge of the etiology
and underlying transcriptional programs (Hallett et al, 2012; Zhang

Figure 6. Chemoresistant cells communicate through distinct signaling pathways which is enhanced following exposure to chemotherapy.

(A) UMAP clusters of scRNA-seq datasets of primary TNBC tumors. (B) Circle plot showing number of interactions between the cell types in primary TNBC scRNA-seq
dataset. (C) Cell–cell communication of the epithelial cells including basal epithelial with other cell types within TNBC spatial transcriptome dataset. The line and its width
represent the strength of the cellular communications between the cell types on the histological section. (D) Circle plot showing key signaling pathways involved in
intercellular communications between the basal and other cell types in TNBC. (E) Bar plot showing ligand-receptor interaction of LAMININ signaling pathway for
intercellular communication in TNBC. (F, G) UMAP plot of post chemotherapy-treated chemoresistance and chemosensitive cells. (H) Bar plot showing the total number of
interactions in the resistant and sensitive group of cells. (I) Circle plot showing the number of interactions between the cell types in chemosensitive and chemoresistant
datasets. (J) Plot shows key signaling pathways enriched in chemoresistant and chemosensitive cells. (K) Circle plot showing the number of interactions of the intercellular
signaling pathway in chemosensitive and chemoresistant cells. Source data are available online for this figure.
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et al, 2020). Furthermore, basal-like cells are known to display cell
plasticity in many tumors (Adriance et al, 2005; Gudjonsson et al,
2005), particularly metaplastic tumors with EMT phenotypes (Tan
and Ellis, 2013), and associated with metastatic spread (Sarrio et al,
2008) (Alluri and Newman, 2014; Bertucci et al, 2012). However,
genes that are known to predict metastasis in TNBC are limited
(Qian et al, 2017; Savci-Heijink et al, 2016), which is related to the
lack of prognostic indicators. Therefore, we propose that our
signature could offer an excellent prognostic indicator in TNBC
patients.

Furthermore, these signature genes showed a frequent gain in
copy number, compared to other alterations in TNBC patients.
This finding suggests that their increased mRNA level in TNBC
may be governed primarily through an increase in copy number,
which is in line with earlier observations that a gain in copy
numbers and acquired mutations contribute to chemoresistance in
TNBC patients (Almendro et al, 2014; Balko et al, 2016; Navin,
2014). In addition, we found that our signature genes were elevated
in patients with homologous recombination deficiency (HRD)
subtype which mostly constitute basal-like characteristics. HR
deficiency is known to contribute variably to standard NAC in
TNBC patients (Telli et al, 2018). We propose that our signature
could infer tumors representing the HRD subtype with basal-like
characteristics. These observations also open doors for exploring
alternative treatment options, such as PARP inhibitors and other
DNA-damaging agents, for these patients.

Although many gene signatures have been reported to predict
chemotherapy response in TNBC, their poor accuracy precludes
their use in the clinic. Our multi-gene signature (n = 20) meets this
critical unmet need and can predict a patient’s response to NAC
with over 90% accuracy in treatment-naive groups and out-
performed published gene signatures (Fournier et al, 2019; Juul
et al, 2010; Lim et al, 2020; Stover et al, 2016; Witkiewicz et al,
2014). A key reason for this robustness may stem from the origin of
our gene signature as it was derived from subpopulation of basal
epithelial type using a single-cell transcriptomics approach as
compared to all previously published signatures which were based
on bulk methods. This clearly highlights the power of single-cell
transcriptomics which has emerged as a powerful tool in revealing
tumor heterogeneity and thereby in discovering potent biomarkers
(Goswami et al, 2020; Rendeiro et al, 2020), including therapy
resistance signatures (Fan et al, 2023; Song et al, 2022). Another
factor that may account for the superiority of our signature is the
underlying biology i.e., EMT represented by our signature genes.
Contrary to this, all previous signatures were derived from tumors
associated with very different biological functions (Fournier et al,
2019; Juul et al, 2010; Lim et al, 2020; Stover et al, 2016; Witkiewicz
et al, 2014). Therefore, the ability of our signature to predict which
patients will have pCR or RD using our 20-gene panel will help
clinicians make informed decisions prior to chemotherapy and
explore alternative therapeutic strategies.

The interaction of tumor stroma with other cells within the
TME has been implicated in therapeutic resistance across multiple
cancers (Ni et al, 2021; van der Spek et al, 2020), including breast
cancer (Mao et al, 2013; Mao et al, 2015) and targeting these
interactions in TNBC was shown to be able to sensitize tumors to
docetaxel chemotherapy in mouse models (Cazet et al, 2018). Our
cell–cell communication analysis revealed that compared to
sensitive cells, aggressive cells engage in much stronger intercellular
communication with cells in the close vicinity to stroma using
distinct signaling pathways, such as IGF and LAMININ cascades,
both before and after exposure to chemotherapy. Interestingly,
these pathways utilize one of our signature genes ITGB1, implying
that a higher expression of ITGB1 could result in increased
intracellular communication through these pathways and mediate
chemoresistance in TNBC. In line with our observations,
LAMININ signaling has been implicated in tumor progression
and EMT by promoting the breakdown of collagen IV (α1) to
facilitate migration (Liu et al, 2018; Zeisberg and Neilson, 2009)
and a few reports have proposed that LAMININ signaling regulates
the resistance of cancer cells to therapeutic agents (Weaver et al,
2002; Yang et al, 2010).

Given no clear alternate therapy options for TNBC, our drug
repurposing analysis suggested that treatment-naive patients may
benefit from TKIs, whereas post-NAC-treated resistant tumors may
have sensitivity to HDAC inhibitor (Vorinostat), DMARDs
(Auranofin), proteasome inhibitor (Ixazomib) and TKIs (Neratinib,
Crizotinib, Fostamatinib and Pazopanib) as individual medications
or in combination. For example, Auranofin is DMARDs inhibitor is
originally used to treat rheumatoid arthritis but has shown
potential in lung cancer (Hou et al, 2018). Similarly, Artesunate
is an anti-malarial drug that is effective against leukemia, breast
cancer, gastrointestinal tumors and other types of cancers (Khanal,
2021; Mancuso et al, 2021; Pirali et al, 2020). Likewise, Pazopanib
and Vorinostat are being used to treat advanced renal cell
carcinoma and cutaneous T-cell lymphoma, respectively. These
encouraging observations have opened the door for future
experimental and clinical investigation of these drugs in the
treatment of residual TNBC tumors.

Our further functional analysis revealed that a high expression
of one of our signature gene ACTN1 confers survival advantage to
TNBC cells and its depletion enhances the sensitivity to taxane-
based chemotherapies in TNBC cells. These findings are in line
with recent reports showing that depletion of ACTN1 (Chen et al,
2021; Xie et al, 2020) inhibited the growth of hepatocellular
carcinoma and oral squamous cell carcinoma, however it has not
yet been explored for improving sensitivity to NAC in TNBC.
ACTN1 is an actin-binding cytoskeletal protein that is frequently
overexpressed in human breast cancers and linked with the poor
prognosis in basal-like breast cancer (Kovac et al, 2018). Its
increased mRNA levels result in the destabilization of E-cadherin-
based adhesions, which can contribute to cancer progression

Figure 7. Drug repurposing analysis of chemoresistant cells identifies potential FDA-approved drugs to overcome chemoresistance.

(A) UMAP showing cell clusters of pre- and post-NAC-treated TNBC tumors. The single-cell RNA-seq datasets used in Fig. 2 were utilized for drug repurposing analysis
using ASGARD pipeline. (B) The top and bottom dot plot show top-ranked drugs (FDR <0.05) that had high drug scores for pre- and post-NAC-treated resistant cells,
respectively, for all patients combined (overall) as well as in each chemoresistant TNBC patient. Source data are available online for this figure.
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through partial EMT (Kovac et al, 2018). Similarly, study showed
targeting ACTN1 by Oroxylin A could remodel stromal micro-
environment and restrain breast cancer metastasis (Cao et al, 2020).
Furthermore, ample existing and growing evidence has shown that
structural proteins can be excellent targets for cancer therapy
(Dumontet and Jordan, 2010; Jordan and Wilson, 2004; Tren-
dowski, 2014), including the widely established chemotherapeutic
agent Paclitaxel which functions via targeting microtubules
(Dumontet and Jordan, 2010; Trendowski, 2014). Notably, several
other drugs that function via similar mechanisms are currently in
the clinical trial (Chen et al, 2014; McGough et al, 1998; Rao et al,
2019; Suzuki et al, 2010). Therefore, our study provides the first
evidence that loss of ACNT1 can improve the chemotherapy
response in TNBC cells and hence warrants further investigation to
establish its clinical utility. Together with our data, these
observations support a critical role for ACTN1 in conferring
chemoresistance in tumor cells, and its targeting holds potential to
re-sensitize tumors to taxane-based chemotherapeutics agent,
which are still standard care of treatment regimens for TNBC
patients (Mustacchi and De Laurentiis, 2015).

While our extensive investigation using several state-of-the-art
omics approaches and independent validation in large patient
datasets has shed light on the molecular drivers of chemoresis-
tance in TNBC, the current study does have some limitations. This
mainly relates to a relatively small sample size for single-cell
RNA-seq and spatial transcriptomics analysis, current limitations
in computational methodologies including the detection of a
limited set of genes in single-cell and spatial transcriptomics
analysis as well as dependency on current cell-type annotations.
Furthermore, the discovery power could be enhanced by an
integration of multimodal clinical features with molecular
signatures. In addition, future studies should investigate tumor
samples derived from different ethnic groups across various

geographical regions to ensure a wider applicability of our
findings.

Overall, our integrated analysis of multimodal data from several
independent cohorts has uncovered key subpopulations, their
underlying genes signatures, and potential mechanisms involved in
TNBC chemoresistance. These observations will not only facilitate
therapy management by providing an upfront prediction of therapy
response but also create opportunities for novel therapeutic
intervention including drug repurposing for better clinical manage-
ment of TNBC, and thus could potentially improve the survival and
quality of life for these patients.

Methods

Identification of chemoresistance and metastasis cell
populations using single-cell transcriptome profiling
of TNBC tumors

Our first goal was to uncover cellular diversity in TNBC and assess
the presence of cells exhibiting chemoresistance and metastasis-like
features (Fig. 1A). For this, we analyzed the single-cell RNA-seq
profile of nearly 9000 cells (8974 cells) derived from 33 TNBC
patients, including patients treated with neoadjuvant chemotherapy
(NAC) from four different studies (Data ref: Chung et al, 2017;
Data ref: Gulati et al, 2020; Data ref: Karaayvaz et al, 2018; Data ref:
Kim et al, 2018). All four datasets were analyzed with the uniform
parameters in the Seurat package (Version 4.0.1), where cell pre-
processing was done, and cells were removed having unique feature
counts >2500 or <200 and had mitochondrial reads >5%. Further
downstream analysis was performed using the same Seurat package,
in which data normalization was performed, followed by variable
feature selection, dimensionality reduction, and clustering. The
clusters were identified with the UMAP reduction method. For
assigning cell-type identity to each cluster, we used manually
curated marker lists of breast cell types from the CellMarker
database (Zhang et al, 2019). Batch effect across multiple samples
were regress out and the integration of scRNA-seq datasets were
done using canonical correlation analysis (CCA) method in Seurat.
The authenticity of batch correction was evaluated based on the fact
that cells are clustered based on the distinct cell type and not based
on patient samples.

Figure 8. The cancer dependency map of our signature genes and its correlation with drug sensitivity in TNBC lines.

(A) The workflow of cancer dependency analysis and candidate gene validation performed in the present study. (B) The scatter plot shows the genetic dependency of
ACTN1 in TNBC lines. The X and Y axis indicate dependency score derived from CRISPR and RNAi-based perturbation screens, respectively. The dependency score was
obtained from CRISPR (CRISPR, Chronos, Depmap) and RNAi (Achilles, DEMETR2) from DeepMap (https://depmap.org/portal/download/). (C) UMAP plot is the
integrated scRNA-seq profiles of healthy breast, primary TNBC and pre-post chemotherapy-resistant and -sensitive cells. (D) The expression of the ACTN1 gene was
plotted in the violin plot, showing mRNA levels across different cell types of integrated healthy breast, primary TNBC and chemotherapy-treated TNBC cells. The right
violin plot shows expression of ACTN1 across healthy, primary TNBC and chemotreated-resistant and -sensitive TNBC cells. The significance test of expression levels of
ACTN1 between the cell types was performed using two-tailed unpaired Wilcoxon test in stat_compare_means() of ggpubr package. (E) IHC staining (scale bar, 10 μm)
analysis of protein levels of ACTN1 in samples of healthy breast and breast cancer, derived from human protein atlas (HPA). (F) ACTN1 expression level in a TNBC spatial
transcriptome dataset. The left plot shows the expression of ACTN1 in the spatial transcriptome dataset. The right plot shows the enrichment of the ACTN1 gene in
spatially annotated cell types (deconvoluted from the primary TNBC scRNA-seq dataset used in Fig. 1B). The significance test of expression levels of ACTN1 between the
cell types was performed using two-tailed unpaired Wilcoxon test in stat_compare_means() of ggpubr package. (G) Candidate gene ACTN1 knockdown and drug-
sensitivity workflow. (H) Barplot shows knockdown efficiency of ACTN1 in HCC1806 and MDAMB-468 cell line. The data with error bars are shown as mean ± SD.
Statistical significance was calculated by two-tailed Student t test. (I) Barplot shows cell viability after transfection with the indicated siRNAs of control (siControl) and
candidate genes (siACTN1) knockdown in combination with Paclitaxel chemotherapy in micromolar concentration (μM). Data are representative of two experiments
conducted in triplicates. The dot on each bar shows individual data points of two experiments. Source data are available online for this figure.

Table 1. The inhibitory concentration (IC50) values of the drugs.

Cell lines Paclitaxel (µM)

HCC1806 0.013

MDAMB-468 0.016

The IC50 values of the drugs for cell lines were obtained from Genomics of
Drug Sensitivity in Cancer (GSDC). The IC50 is represented in micromolar
(µM) concentration.
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Identification of disease aggressiveness associated
(metastasis and chemoresistance) subpopulations

As single-cell analysis has provided a better resolution to cell
populations associated with poor clinical outcomes, we analyzed
cell subpopulations for the enrichment of metastasis and treatment
response associated with distinct gene expression signatures. For
this, we used 49 metastasis signature genes identified in patient-
derived murine xenograft models of TNBC and which stratify high
versus low metastatic burden tumors (Lawson et al, 2015). For
therapy resistance signature genes, we used 143 genes (from Cluster
AHI) which were earlier found to be highly correlated with high Ki-
67 expression and achieved the highest chemotherapy resistance
scores in basal-like breast cancer subtypes (Balko et al, 2012).

Copy number variation analysis

In order to identify malignant cells within the primary TNBC
scRNA-seq datasets, we used infercnv (v1.3.3) package (Patel et al,
2014). We used n = 240 normal mammary epithelial cells as
reference to identify somatic copy number variations (CNV) within
TNBC epithelial cell populations, including basal epithelial cells.
Each cell was further computed score as “InferCNV.score” for the
extent of CNV signal, based on the number of genes with copy
number alterations (CNA) within the cells, computed by infercn-
v_obj@expr.data output in inferCNV. Potential malignant cells
were identified based on the CNV signal (InferCNV.score) higher
than 0.2 compared to normal epithelial cells which scored less
than 0.2.

Functional analysis of identified subpopulation and
reproducible signature gene identification

The set of genes that shows distinct expression in the identified
cluster was compared between all three scRNA-seq datasets to
identify reproducible signature genes across the same cell types in
different independent studies. These reproducible genes were
further analyses for biological functional analysis using the
ShinyGO gene ontology enrichment analysis tool. Functional
pathway activity in single-cell pre and post-NAC-treated datasets
was performed using hallmark gene signature derived from
Molecular Signatures Database (MSigDB) integrated in escape R
package (version 1.12.0) (Borcherding et al, 2023). The expression
profiling of signature genes was investigated across TCGA breast
cancer subtypes to ensure these signature genes are TNBC specific.
For TNBC molecular subtype analysis, we retrieved RNA-seq
expression levels from METABARIC (Data ref: Curtis et al, 2012),
and TCGA-BRCA (Data ref: Cancer Genome Atlas Network, 2012)
dataset. The TNBC molecular subtyping information of the
METABARIC, and TCGA-BRCA cohorts was derived from the
recently published study (Lehmann et al, 2021). In addition, these
genes were also screened in large breast cancer cohorts in EMT-
High and EMT-Low groups. For this, we first retrieved the TCGA
mRNA expression z-scores of breast cancer tumors from cBioPortal
(Data ref: Gao et al, 2013) using the “cgdsr” R package (version
1.3.0) and extracted TNBC tumors based on the ER,PR and
HER2 status. Next, the EMT scores were calculated for each sample
by subtracting the average expression z-scores of the 4 “epithelial”

markers (ESRP2, OVOL1, OVOL2, and CLDN3) from the average
expression z-scores of the 6 mesenchymal’ markers (ZEB2, SNAI2,
TWIST1, TWIST2, VIM, and FN1). The tumor samples were then
classified as EMT-High (defined by EMT scores ≥ highest 1/3) and
EMT-Low (defined by EMT scores ≤ lowest 1/3) based on the
calculated EMT scores (Lou et al, 2016). The “Pheatmap” R package
(version 1.0.12) was used to construct the heatmap of expression levels
of the 10 markers in the EMT-High and EMT-Low groups defined
above. Finally, the average expression profile of identified signature
genes in these EMT group’s breast cancer cohorts was plotted using the
ggplot2 package.

Development of RNA classifiers for predicting
pathological complete response (pCR) or
residual disease (RD)

For developing predictive models for stratifying TNBC tumors into
pathological complete response (pCR) or residual disease (RD) groups,
we used five publicly available microarray-based gene expression
datasets GSE25055 (Data ref: Hatzis et al, 2011), GSE25065 (Data ref:
Hatzis et al, 2011), GSE20194 (Data ref: Shi et al, 2010), GSE41998
(Data ref: Horak et al, 2013) and GSE20271 (Data ref: Tabchy et al,
2010). We extracted normalized expression levels of 101 signature
genes from two studies GSE25055 and GSE25065 of 177 patients to
train the model. For testing the performance of the model we used 269
TNBC patients from the remaining three datasets GSE20271,
GSE41998, and GSE20194. The treatment details of all the patients
were available and hence used as a class for binary classification. The
clinical details of each dataset were shown in the Fig. 5B. The
GSE25055 and GSE25065 datasets include 177 TNBC patients enrolled
in an NAC trial who received sequential or combination of Taxane
(paclitaxel, 12 weekly cycles) and anthracycline-based regimens (4
cycles of doxorubicin or epirubicin, fluorouracil, and cyclopho-
sphamide [FAC/FEC]; 4 cycles of doxorubicin and cyclophosphamide
[AC]). The GSE20271 dataset includes 59 TNBC patients in an NAC
trial who received either weekly Taxane (12 cycles of paclitaxel)
followed by four cycles of 5-fluorouracil, anthracycline (doxorubicin)
and cyclophosphamide (T/FAC) or FAC. The GSE20194 includes 71
newly diagnosed TNBC patients who received 6 months of NAC
including Taxane (12 cycles of paclitaxel), followed by four cycles of 5-
fluorouracil, cyclophosphamide and anthracycline (doxorubicin)
(TFAC). The GSE41998 dataset consists of 139 patients from a
randomized, open-label, multicenter, phase II trial (NCT00455533)
enrolled previously untreated women with histologically confirmed
primary invasive breast adenocarcinoma. Patients received sequential
neoadjuvant therapy starting with four cycles of AC (doxorubicin
60mg/m2 intravenously and cyclophosphamide 600mg/m2 intrave-
nously) given every 3 weeks, followed by 1:1 randomization to either
ixabepilone (40mg/m2 3-h infusion) every 3 weeks for 4 cycles, or
paclitaxel (80mg/m2 1-h infusion) weekly for 12 weeks.

We used Lasso and Elastic-Net Regularized Generalized Linear
Models in glmnet for best fitting the model with tenfold cross-
validation to remove bias. In this, we first ranked the features to
select the minimum set of features with maximum predictive power
for pCR and RD. For comparing the performance of the 20-gene
model with other published signature genes in stratifying TNBC
patients of responsive and non-responsive groups, we utilized gene
signatures from five earlier studies (Fournier et al, 2019; Juul et al,
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2010; Lim et al, 2020; Stover et al, 2016; Witkiewicz et al, 2014). The
first signature was derived from the Witkiewicz et al, study which
consists of nine genes that exhibited strong predictive power in
classifying pCR and residual patients against TA, TFAC, and FAC
chemotherapy response. The second signature was a stromal-
related sixteen signature that reflects the activation state of the
tumor stroma and predicts poor response to anthracycline-based
neoadjuvant chemotherapy in TNBC patients. The Jull et al,
signature consists of six mitotic genes that were a strong predictor
of pCR against neoadjuvant paclitaxel chemotherapeutics agents.
The Stover et al, an eighteen-gene combined proliferation-immune
“meta-signature” was a strong predictor of response to neoadjuvant
chemotherapy in TNBC patients. Finally, Lim et al, the study
identified fifteen immune-related gene signatures using NanoString
nCounter Immunology Panel mRNA expression quantification
platform and found was strongly associated with pCR in TNBC
patients.

Genetic dependency analysis and drug-
sensitivity analysis

The genetic dependency of our signature genes on cancer cells was
investigated using Genome-wide CRISPR dependency and RNAi
screen data available from Depmap portal https://depmap.org/
portal/download/. The Gene effect scores for our signature genes
were downloaded from the CRISPR, Chronos, Depmap and RNAi,
Achilles, DEMETR2 for more than 1300 cancer cell lines including
18 TNBC lines available from Cancer Cell Line Encyclopedia
(CCLE). A lower score indicates a higher likelihood that the gene is
essential for the cell line. A score of 0 indicates no essentiality, while
a score of negative value is comparable with the median of all pan-
essential genes, i.e., the genes which are essential for every cell line.

Cell–cell communication analysis

Cell–cell interaction analysis was applied on our scRNA-seq dataset
of both primary TNBC (Data ref: Karaayvaz et al, 2018), and
chemoresistant tumors (Data ref: Kim et al, 2018), using CellChat
algorithm (Jin et al, 2021). We applied CellChat with default
settings with 1000 permutations, which quantitatively characterizes
and compares the inferred cell–cell communication based on the
average expression of the ligands and receptors in various cell
populations.

Drug repurposing analysis

The drug repurposing analysis was performed on post-treated
chemoresistance cells (Data ref: Kim et al, 2018) to identify
potential drug candidates using ASGARD tool (He et al, 2023),
which ranks FDA-approved drugs against cell populations using
scRNA-seq datasets. ASGARD uses the differentially expressed
genes (in our case, between resistant and sensitive) as inputs to
identify drugs that can significantly (single-cluster FDR <0.05)
reverse their expression levels in the L1000 drug response dataset.

Cell culture

The TNBC lines HCC1806 were maintained in RPMI 1640 (Gibco,
21875034) medium supplemented with 10% FBS, 1% glucose, 1 mM

sodium pyruvate (Thermo, 11360070). MDAMB-468 cells were
maintained in DMEM (Dulbecco’s modified Eagle’s medium) with
10% FBS. Cells were grown as monolayers at 37 °C in humidified CO2

(5%) incubator. Both cell lines were originally obtained from ATCC
and tested negative for mycoplasma prior to the study.

siRNA transfection

The scrambled siRNA control and ON-TARGETplus SMARTpool
siRNA targeting human ACTN1 were purchased from Dharmacon.
Transfection was performed using Lipofectamine™ RNAiMAX
(Invitrogen, 13778150) according to the manufacturer’s instruc-
tions. In brief, cells were seeded at 12,000 cells per well the day
before the transfection. siRNA at a final concentration of 5 pmol
was diluted in 25 μL of Opti-MEM and 1.5 μl of Lipofectamine
RNAiMAX was diluted in 25 μl of OPTI-MEM. The diluted siRNA
and Lipofectamine RNAiMAX were mixed and incubated at room
temperature for 10 min. Ten microliters of transfection mixture
were added to each well of 96-well plates. Twenty-four hours later,
the transfection cocktail was replaced with complete DMEM. The
primer sequences of ACTN1 and GAPDH is shown in Table 2.

MTT assay and drug-sensitivity analysis

Transfected cells were cultured for 24 h and treated with paclitaxel at the
desired concentration for each cell line (Table 1). DMSO served as
vehicle control. The treated cells were incubated for 48 h and a
cytotoxicity assay was performed using an MTT assay kit (Roche,
11465007001) according to the manufacturer protocol. Briefly, 10 μl
MTT (5mg/ml) was added to each well and allowed to form formazan
crystals for four hours in the incubator. In total, 100 μl of solubilization
solution was added to each well and incubated overnight in the incubator
in a humidified atmosphere. The next day, complete solubilization of the
purple formazan crystals was confirmed, and then the absorbance values
were determined using a microplate reader (BMG FLUOstar Omega) at
590 nm. The experiments were repeated twice, and data are represented
as mean ± SD from three technical replicas. No blinding was done.

Statistical analysis

GraphPad Prism (v 9.2; GraphPad Software, San Diego, CA, USA)
was used for statistical analyses. All experiments were performed in
two independent biological replicates, each comprising three
technical replicates, of which details can be found in respective
figure legends. The statistical analysis was performed using two-
tailed Student’s t test to measure significant differences between the
groups (for n = 2 groups). A P value of <0.05 was considered
statistically significant.

The statistical analysis of publicly available datasets was
performed using two-tailed Wilcoxon test (for n = 2 groups) or

Table 2. Primer sequences used in Fig. 8H.

Gene Primer name Sequence

ACTN1 VTQUB 405_ACTN1_FP CAAGATCTCCAACGTCAACAAG

VTQUB 406_ACTN1_RP CACATTCCCATCCACGATTTC

GAPDH VTQUB 572_GAPDH_FP GAAGTATGACAACAGCCTCAAG

VTQUB 573_GAPDH_RP CGATACCAAAGTTGTCATGGAT
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Kruskal–Wallis test (for n > 2 groups) using stat_compare_-
means() of ggpubr package. A P value of <0.05 was considered
statistically significant. The statistical testing details is also included
in the figure legend of the figures.

Data availability

Primary datasets generated in this study: The RNA-seq datasets
derived from the biological triplicates of TGFβ-treatment time
course of HMLE cells is submitted to the Expression Omnibus
database under the accession code GSE252315.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44321-024-00050-0.
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Expanded View Figures

Figure EV1. (A) scRNA-seq data analysis of pre-treated primary TNBC patients identified a similar subpopulation in two independent scRNA-seq of TNBC datasets. The
cell clusters marked under lines are representing, cells belonging to the breast cancer subtype. The genes defining each cluster were annotated against the cellmarker
database and cell-type identities were assigned to each cluster. (B) Expression of metastasis-associated genes in pre-treated TNBC patients scRNA-seq datasets. The
metastasis signature of 49 genes was used by Lawson et al, 2015 and their average expression was plotted across each cluster in both datasets. (C) Chemoresistance
signature of 143 genes was used by Balko et al, 2012 and their average expression was plotted across each cell types in both datasets. (B, C) The significance test of
expression levels of metastasis and chemoresistance genes between the cell types was performed using two-tailed unpaired Wilcoxon test in stat_compare_means() of
ggpubr package. (D) The violin plots show expression of malignant cell markers of Luminal and basal breast cancer type. The cancer cell marker of basal and luminal
epithelial type was retrieved from CellMarker database and plotted on our primary TNBC dataset. (E) Spatial transcriptome data of two recurrent TNBC patients. The left
plots show the H&E staining (scale bar, 10 μm) of two TNBC tumors. The middle plot shows the spatial location of basal epithelial cells within these spatial datasets. Right
plot showing the mean expression of our 101 signature genes in these spatial transcriptome datasets.

EMBO Molecular Medicine Mohammed Inayatullah et al

EV1 EMBO Molecular Medicine Volume 16 | April 2024 | 823 –853 © The Author(s)



B

C

E

Metastasis signature Lawson et al, 2015 (n=49 genes) Metastasis signature Lawson et al, 2015 (n=49 genes)

Chemoresistance signature Balko et al, 2012 (n=143 genes)
Chemoresistance signature 
Balko et al, 2012 (n=143 genes)

A Cell diversity: GSE138536 

1e−14
p < 2.22e−16

0.0

0.1

0.2

0.3

Bas
al 

ep
ith

eli
al

Prog
en

ito
r

Lu
mina

l e
pit

he
lia

l

−10

−5

0

5

−10 −5 0 5 10
UMAP_1

U
M

AP
_2 Basal epithelial

Progenitor
Luminal epithelial

0.0

0.1

0.2

0.3

Im
mun

e

Lu
mina

l e
pit

he
lia

l

Epit
he

lia
l

Bas
al 

ep
ith

eli
al

Lu
mina

l p
rog

en
ito

r

Bas
al 

pro
ge

nit
or

−10

−5

0

5

10

−10 −5 0 5 10
UMAP_1

U
M

AP
_2

Immune
Luminal epithelial
Epithelial
Basal epithelial
Luminal progenitor
Basal progenitor

TNBC
ER+
ER+ and HER2+
HER2+ TNBC

Luminal

Subtype

Subtype

Cell type
Cell type

Spatial transcriptome patient 118C 0.25 0.50 0.750.0 0.2 0.4 0.6

0 2 4 60.0 0.2 0.4 0.6

Cell diversity: GSE75688

Spatial transcriptome patient 117D

0
1
2
3
4
5

Ex
pr

es
si

on
 L

ev
el EPCAM

0
1
2
3
4
5

KRT23

0
1
2
3
4
5

KRT15

0
1
2
3
4

Ex
pr

es
si

on
 L

ev
el CD24

0
1
2
3

MUC1

0

1

2

3
ERBB2

0

2

4

Ex
pr

es
si

on
 L

ev
el KRT14

0
1
2
3

ITGB4

0

2

4

6

KRT17

0
1
2
3
4

T ce
ll

Lu
mina

l e
pit

he
lia

l

Lu
mina

l p
rog

en
ito

r

Stro
mal

Bas
al 

ep
ith

eli
al

Im
mun

e

End
oth

eli
al

Ex
pr

es
si

on
 L

ev
el ACTG2

0
1
2
3
4

T ce
ll

Lu
mina

l e
pit

he
lia

l

Lu
mina

l p
rog

en
ito

r

Stro
mal

Bas
al 

ep
ith

eli
al

Im
mun

e

End
oth

eli
al

MYLK

0
1
2
3
4

T ce
ll

Lu
mina

l e
pit

he
lia

l

Lu
mina

l p
rog

en
ito

r

Stro
mal

Bas
al 

ep
ith

eli
al

Im
mun

e

End
oth

eli
al

WIF1

Luminal epithelial malignant markers 

Basal epithelial malignant markers 

D

Signature gene (n=101)

Signature gene (n=101)Basel epithelial

Basel epithelial

Mohammed Inayatullah et al EMBO Molecular Medicine

© The Author(s) EMBO Molecular Medicine Volume 16 | April 2024 | 823 –853 EV2



−5.0

−2.5

0.0

2.5

5.0

−4 −2 0 2 4 6
UMAP_1

U
M

AP
_2

0
1
2
3
4

P10

P11

P14

P15

P1

P2

P6

−20 −10 0 10 −20 −10 0 10

−10

0

10

U
M

AP
_2

P1
P10
P11
P14
P15
P2
P6

BA

C. Expression of signature (n=101 genes) in 
dataset 1

Expression of signature (n=101 genes) in 
dataset 3

Chemoresistant

Expression of signature (n=101 genes) in 
dataset 2

Average expression of signature genes (n=101 genes) in pre-post 
chemoresistance and chemosesitive patients

0.18

0.2

0.4

0.6
p < 2.22e−16

0.2

0.3

0.4

p < 2.22e−16

0.2

0.4

0.6

p < 2.22e−16

0.00

0.25

0.50

0.75

1.00

1.2e−06

0.1

0.2

0.3

0.4

0.5

0.6

0.7
g

p < 2.22e−16

0.5

0.7

0.9

1.1

p < 2.22e−16

0.2

0.4

0.6

Post

Pre

P1 P2 P6

P11 P12 P14

P15

Ch
em

o-
se

ns
iti

ve
Ch

em
o-

re
si

st
an

t

Batch correction and clustering of pre and post chemotherapy 
scRNA-seq dataset

D.

****

****

****

****

****
****

0.0

0.5

1.0

1.5

Lu
mina

l e
pit

he
lia

l

Lu
mina

l p
rog

en
ito

r
T ce

ll

Stro
mal

Bas
al 

ep
ith

eli
al

Im
mun

e

End
oth

eli
al

****
****

****

****
****

0.00

0.25

0.50

0.75

1.00

Im
mun

e

Lu
mina

l e
pit

he
lia

l

Epit
he

lia
l

Bas
al 

ep
ith

eli
al

Lu
mina

l p
rog

en
ito

r

Bas
al 

pro
ge

nit
or

****

****

0.00

0.25

0.50

0.75

1.00

1.25

Bas
al 

ep
ith

eli
al

Prog
en

ito
r

Lu
mina

l e
pit

he
lia

l

M
ea

n.
ex

pr
es

si
on

M
ea

n.
ex

pr
es

si
on

M
ea

n.
ex

pr
es

si
on

−2.5

0.0

2.5

5.0

−6 −3 0 3 6
UMAP_1

U
M

AP
_2 0

1
2
3

Chemosensitive

−5 −4 −3 −2 −1

1.
5

2.
0

2.
5

Log���

B
in

om
ia

l D
ev

ia
nc

e

151 142 128 115 96 74 53 34 21 14 9 4 0

−6 −5 −4 −3 −2

−
4

−
2

0
2

4

Log Lambda

C
oe

ffi
ci

en
ts

130 114 87 35 8

E.
LASSO regression coefficients LASSO model cross-validation curve

Existence of batch effect

After batch effect correction

Batch correction 
using CCA

p < 2.22e-16

p < 2.22e-16

p < 2.22e-16

p < 2.22e-16
p < 2.22e-16

p < 2.22e-16

p < 2.22e-16
p < 2.22e-16

p < 2.22e-16
p < 2.22e-16

p < 2.22e-16

p < 2.22e-16

p < 2.22e-16

EMBO Molecular Medicine Mohammed Inayatullah et al

EV3 EMBO Molecular Medicine Volume 16 | April 2024 | 823 –853 © The Author(s)



Figure EV2. (A) The upper umap plot shows existence of possible batch effect in resistant and sensitive datasets. The batch effects regress out using canonical
correlation analysis (CCA) and samples were integrated. The bottom umap plots shows removal of possible batch effects from the datasets. Total cluster identified in the
single-cell datasets of 7 TNBC patients pre- and post chemotherapy are also shown in the same bottom plot. (B) The average expression profile of signature genes in each
patient of pre- and post-treated groups. The significance testing of expression of signature genes between the chemotherapy-treated and untreated groups was performed
using two-tailed unpaired Wilcoxon test in stat_compare_means() of ggpubr package. (C) Violin plot showing average expression of signature genes across clusters of all
three primary TNBC tumor datasets. The average expression of all 101 signature genes was plotted in all three primary TNBC scRNA-seq datasets and confirmed their
activation in similar subpopulations of basal epithelial cells. In the box-and-whisker within violin plots, the horizontal lines mark the median, the box limits indicate the 25th
and 75th percentiles, and the whiskers extend to 1.5× the interquartile range from the 25th and 75th percentiles. The significance test of expression levels of signature
genes between the cell types was performed using two-tailed unpaired Wilcoxon test in stat_compare_means() of ggpubr package. (D) The coefficients from the Lasso fit
represent the contributions of the 20 genes expression in the model. The plot shows lasso regression coefficient values in which each curve corresponds to a variable. It
shows the path of its coefficient against the Log Lamda of the whole coefficient vector as λ varies. The axis above indicates the number of nonzero coefficients at the
current λ, which is the effective degrees of freedom (df) for the lasso. (E) The selection of tuning parameter (λ) in the LASSO model based on the tenfold cross-validation.
The plots are showing a cross-validation curve (red dotted line) along with mean binomial deviance against a range of Log(λ). The vertical dotted lines represent lambda.
min and lambda.1se. This panel shows the changes in partial likelihood deviance with λ values. The 20 genes were selected according to the most regularized model such
that the error is within one standard error of the minimum.
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Figure EV3. (A) Bar plot showing ligand receptor involved in intercellular signaling of LAMININ signaling pathway. The significance test between signaling pathway
signals was computed using two-tailed unpaired Wilcoxon test using the presto package. (B) Table showing candidate gene ranking matrix. The “+” symbol indicates the
presence and the “–“ sign indicates the absence of a parameter in each of the genes. (C) Expression of ACTN1 in TNBC, HER2, Luminal, and non-TNBC cell lines. Expression
values were obtained from CCLE. The axis shows TNBC, HER2, Luminal, and non-TNBC cancer cell lines and the y axis is their mRNA expression levels. In the box-and-
whisker plots, the horizontal lines mark the median, the box limits indicate the 25th and 75th percentiles, and the whiskers extend to 1.5× the interquartile range from the
25th and 75th percentiles. The significance test of expression levels of ACTN1 was performed using Kruskal–Wallis test in ggpubr package. (D) The expression of the 20-
gene signature across the cell types shown in upper plot of healthy breast, primary TNBC and chemotherapy-treated TNBC data sets and lower plot shows dataset-wise
expression profile. The statistical testing of expression levels of 20 gene was performed using two-tailed unpaired Wilcoxon test in stat_compare_means() of ggpubr
package. (E) The expression of basal markers (left violin plots) and luminal epithelial (right violin plot) markers across cell types of the healthy breast, primary TNBC and
chemotherapy-treated TNBC cells.
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