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Introduction

Resilient plant growth depends on the function of meristems, including the shoot apical

meristem (SAM), the root apical meristem (RAM), and lateral meristems. The vascular

cambium is a lateral meristem responsible for secondary growth and stem expansion at the

radial axis. The vascular cambium harbors stem cells that proliferate, and progenies

differentiate into xylem and phloem cells. Each radial cell file has one bifacial stem cell that

produces both xylem and phloem cell lineages (Shi et al., 2019; Smetana et al., 2019).

Cambial stem cells and undifferentiated xylem and phloem progenitors form a cambial

region, which is often used as an indicator of cambial activity (Figure 1A). The apical

meristems and vascular meristems are spatially separated. Coordinated growth between

these meristems is mediated through mobile signals, such as hormones, peptides, and

mechanical cues (Fischer et al., 2019). Environmental factors also played important roles in

tuning the secondary growth.

Secondary growth is an evolutionary innovation, providing sufficient mechanical

support and efficient long-distance fluid transport for larger and more complex plant

bodies (Tonn and Greb, 2017). Additionally, secondary growth produces large amounts of

woody biomass, recalcitrant forms of carbon that can potentially mitigate global warming

by fixing atmospheric carbon into storage. The primary vascular development is established

early during embryogenesis (Miyashima et al., 2013). Pre-procambial initials start dividing

at the globe stage, forming a radial pattern resembling post-embryonic root vasculature

(Rodriguez-Villalon et al., 2014). The signaling pathways regulating primary vascular

development were discussed in several recent excellent review papers (Fischer and

Teichmann, 2017; Tonn and Greb, 2017; Wang, 2020; Turley and Etchells, 2022; Wang

et al., 2023). This paper mainly focuses on advances in regulating plant vascular cambial

activity and secondary growth.
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Short-range regulatory pathways in
secondary growth

The peptide-receptor module CLE41/44-
PXY plays a central role in
secondary growth

The proliferation of vascular stem cells and subsequent

differentiation of progeny cells are tightly regulated to ensure the

proper organization of vascular tissues. Among the known regulatory

pathways, the TRACHEARY ELEMENT DIFFERENTIATION

INHIBITORY FACTOR (TDIF) peptide and its receptor PHLOEM

INTERCALATED WITH XYLEM (PXY), also known as TDIF

RECEPTOR (TDR), form the most important and best studied

short-range signal in secondary growth. PXY is a member of the

receptor-like kinases (RLKs) with 21 leucine-rich repeats (LRRs) and is

explicitly expressed on the xylem side of the vascular cambium (Fisher

and Turner, 2007; Hirakawa et al., 2008; Etchells and Turner, 2010; Shi

et al., 2019). Interestingly, the TDIF ligand coding genes, CLAVATA3/

ENDOSPERM SURROUNDING REGION 41 (CLE41), CLE42, and

CLE44 are expressed in the phloem (Ito et al., 2006; Hirakawa et al.,

2008; Etchells and Turner, 2010). The TDIF dodecapeptide is produced

from the cleavage of much longer pre-peptides through unknown

mechanisms (Ito et al., 2006) and can bind to the inner concave surface

of the LRR domain of the PXY receptor (Morita et al., 2016; Zhang

et al., 2016a). The function of the ligand–receptor pair of TDIF-PXY

requires co-receptors SOMATIC EMBRYOGENESIS RECEPTOR

KINASEs (SERKs) to activate downstream pathways (Zhang et al.,

2016b). Other membrane-localized partners, such as xylem

differentiation and vascular patterning (XVP), may modulate TDIF-

PXY function by forming protein complexes with PXY-SERKs

coreceptors (Yang et al., 2020a) (Figure 1B).

The TDIF signal and its downstream components regulate

cambial cell proliferation, xylem cell differentiation, and vascular

patterning. First, the TDIF-PXY binding activates the cambium-

expressed WUSCHEL-RELATED HOMEOBOX (WOX)

transcription factor genes, WOX4 and WOX14, and enhances

cambial cell proliferation (Hirakawa et al., 2010; Etchells et al.,
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2013). In contrast, the mutation of WOX4 and WOX14 reduces the

number of cells in root and stem vascular bundles (Etchells et al.,

2013; Zhang et al., 2019). Additionally, the TDIF-PXY module

inhibits BIN2 LIKE 1 (BIL1) activity, which phosphorylates

MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5(ARF5)

and upregulates negative regulators of cytokinin signaling

ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) and ARR15

(Han et al., 2018), connecting auxin-cytokinin signaling to maintain

cambial activity. Second, the TDIF-PXY module represses xylem

cell differentiation, as shown by ectopic xylem differentiation and

lignification of parenchyma cells in the pxy mutant (Etchells et al.,

2016). Brassinosteroid (BR) signaling likely mediates TDIF-PXY

signal in repressing xylem cell differentiation, as shown by PXY

interaction with BRASSINOSTEROID INSENSITIVE 2 (BIN2),

which phosphorylates and promotes the degradation of

BRASSINAZOLE RESISTANT 1(BZR1) and BRI1-EMS-

SUPPRESSOR 1 (BES1) (Kondo et al., 2014; Saito et al., 2018).

Lastly, TDIF-PXY signal controls vascular patterning, the

organization of phloem, procambium, and xylem cells (Fisher and

Turner, 2007; Etchells and Turner, 2010). Until recently, the

LATERAL ORGAN BOUNDARIES DOMAIN 4 (LBD4) was

indicated as the TDIF-PXY downstream component in regulating

vascular patterning (Zhang et al., 2019; Smit et al., 2020). LBD4 is

part of a feedforward loop downstream of PXY, mediating cell

proliferation and vascular bundle shape, i.e., tangential:radial axis

ratio, in inflorescence stems (Smit et al., 2020; Turley and Etchells,

2022) (Figure 1B). It appears that the functions of TDIF-PXY

signaling are conserved because homologs of the Arabidopsis

CLE41 and WOX4 genes play similar functions in Populus

(Kucukoglu et al., 2017, Kucukoglu et al., 2020).
ERECTA and other receptor-like kinases
participate in secondary growth

In addition to PXY and its homologous PXL1 and PXL2 (Fisher

and Turner, 2007; Etchells et al., 2013), several other LRR-RLKs

have been identified as regulators in vascular development (Agusti
A B C

FIGURE 1

Vascular development and cambial activity is regulated by endogenous programs and exogenous signals. (A) Vascular development in Arabidopsis
stem, hypocotyl, and root organs. Young stem develops discrete vascular bundles comprised of phloem, xylem, and intervening pro-cambium.
Developing stems form cambial cells at vascular and interfascicular regions. Secondary growth produce secondary phloem and secondary xylem in
mature stem, hypocotyl, and root. (B) Short-range peptide signals, TDIF-PXY-WOX4 and EPFL4/6-ERECTA modules, and hormonal signaling
pathways regulate cambium cell proliferation and xylem cell differentiation. (C) Environmental factors regulate vascular development.
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et al., 2011b; Uchida and Tasaka, 2013; Wang et al., 2013;

Gursanscky et al., 2016). Among these LRR-RLKs, ERECTA (ER)

and its two homologous proteins, ERL1 and ERL2 (Shpak et al.,

2004), regulate vascular development and fiber formation in the

stem (Ragni et al., 2011; Etchells et al., 2012; Uchida and Tasaka,

2013). Mutation of all three ER family (ERf) genes resulted in fewer

cells in stem vascular bundles (Etchells et al., 2013). Furthermore,

phloem-specific expression of ER can complement the defects in the

procambium of the er erl1 mutant plants (Uchida and Tasaka,

2013). In the same study, the ligands for ERf proteins, EPIDERMAL

PATTERNING FACTOR LIKE 4 (EPFL4) and EPFL6, were found

to be expressed in the endodermis (Uchida et al., 2012; Uchida and

Tasaka, 2013). The downstream components of the ligand-receptor

of the EPFL4/6-ERf pair have yet to be identified (Figure 1B).

There are indications that TDIF-PXY signaling interacts with

EPFL-ERf signaling in vascular development. The pxy er double

mutant has fewer cells in vascular bundles and shows a much

stronger phenotype than either pxy or er mutant, indicating genetic

interaction between PXY and ER signaling (Etchells et al., 2012;

Wang et al., 2019). Indeed, expression analyses showed cross-

regulation between these two pathways (Wang et al., 2019). The

mechanism of the cross-regulation between PXY and ER is elusive,

although there is known protein–protein interaction between PXY

and ERf (Smakowska-Luzan et al., 2018; Mott et al., 2019) and

convergence of downstream common genes, such as the WOX4

gene (Wang, 2020; Turley and Etchells, 2022).
Developmental programs and
hormonal signals in secondary growth

Cytokinin, auxin, and gibberellin regulate
secondary growth

Cambial activity is influenced by signals from the apical

meristems and developmental cues through phytohormones.

Removing the SAM, the main auxin source, halts secondary growth

(Sundberg and Uggla, 1998), while exogenous auxins application

restores cambial cell division (Agusti et al., 2011a), demonstrating the

connection between apical meristems and cambial activity.

Cytokinin is critical for cambial activity as shown by the lack of

cambium formation in the quadruple mutant atipt1;3;5;7,

disrupting four ATP/ADP isopentenyltransferase (IPT) genes,

while the application of exogenous cytokinin restored vascular

cambium (Matsumoto-Kitano et al., 2008). Cytokinins initiate

cambial initiation in the Arabidopsis root through LBD3 and

LBD4; at the same time, LBD1 and LBD11 participate in

prolonged secondary growth (Ye et al., 2021). In Populus stems,

cytokinin concentration peaks in the developing phloem cells, and

overexpressing the IPT7 gene enhances cambial activity (Immanen

et al., 2016). Decreasing cytokinin levels by expressing CYTOKININ

OXIDASE/DEHYDROGENASE 2 (CKX2) gene in phloem non-cell

autonomously restricts cambial activity (Fu et al., 2021).

Auxin also has a crucial role in secondary growth. In Arabidopsis

root, secondary growth starts from the divisions of the xylem-
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adjacent procambial cells, which function as the stem cell organizer

(Smetana et al., 2019). A local maximum of the auxin and consequent

expression of HD-ZIP III transcription factors promotes cellular

quiescence of the organizer cells (Smetana et al., 2019). In the stem,

the inhibition of polar auxin transport results in auxin accumulation

at the base of stems, therefore promoting secondary growth (Suer

et al., 2011). In tree stems, auxin distributes in a radial concentration

gradient, with the highest concentration at the cambium zone (Uggla

et al., 1996; Tuominen et al., 1997). Disruption of auxin signaling or

reducing auxin responsiveness led to reduced cambial cell division

(Tuominen et al., 1997; Nilsson et al., 2008).

Gibberellins (Gas) also regulate cambial activity. Either directly

applying active Gas or overexpression of a gibberellin biosynthesis

gene Gibberellin 20-oxidase (GA20ox) enhances cambial activity

(Wang et al., 1995; Eriksson et al., 2000). Shoot-produced GAs are

required for secondary growth in Arabidopsis hypocotyls (Ragni

et al., 2011). In addition, mutants with defects in GA biosynthesis

show reduced cambium activity, confirming GAs as positive

regulators of secondary growth (Ragni et al., 2011).
Ethylene, jasmonic acid, and strigolactones
in secondary growth

Hormones induced by environmental fluctuation, including

ethylene, jasmonic acid (JA), and strigolactone (SL), play roles in

secondary growth. In Arabidopsis, the ethylene overproducer1

(eto1) plants show increased vascular size in hypocotyls and

inflorescence stem (Etchells et al., 2012). A large number of

ETHYLENE RESPONSE FACTOR (ERF) transcription factors,

especially ERF018 and ERF109, are involved in vascular cell

division. Cambial activity is enhanced in another ethylene-

overproducing mutant, acs7-d, whose phenotype depends on

WOX4 function, indicating that TDIF and ethylene signaling

converge at the WOX4 level (Yang et al., 2020b). The function of

ethylene is conserved in tree species, as shown by ethylene or

aminocyclopropane-1-carboxylate (ACC) treatment that promotes

cambial division and wood formation (Love et al., 2009). Genome-

wide transcriptional profiling indicated that components of the JA

signaling pathway are positive cambium regulators in Arabidopsis

stem (Sehr et al., 2010). Furthermore, SL stimulates cambial activity

as mutations in SL signaling or biosynthesis inhibit cambial activity

(Agusti et al., 2011a). It is worth noting that all these known

hormonal signals positively regulate secondary growth.
Environmental signals regulate
secondary growth

Light

Light is one of the most critical environmental signals that

control various developmental processes (Jiao et al., 2007; De Wit

et al., 2016). The vascular system is an evolutionary innovation for

plant adaption to light competition, which theory is supported by
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fossil records (Beck, 1971; Stewart et al., 1993; Meyer-Berthaud

et al., 2010) and computer simulation studies (Knoll and Niklas,

1987; Fitch et al., 1994). Despite the importance of light in vascular

plant evolution, how light influences vascular development is not

well understood. In shade conditions, plants manifested various

developmental responses, including elongation of stems and

petioles, and increased apical dominance (Ballaré et al., 1990). In

Arabidopsis hypocotyls, shade increases the number and types of

water-conducting tracheary elements in the vascular cylinder,

which may need the function of WOX4 (Botterweg-Paredes et al.,

2020). Ghosh et al. reported that blue light inactivates the

expression of Phytochrome-Interacting Factors (PIFs) and CLE44,

therefore de-repressing vascular cell differentiation (Ghosh et al.,

2022). It is unclear whether procambium activity is affected by blue

light (Ghosh et al., 2022). Further studies indicated that shaded light

conditions with a low ratio of red to far-red light inhibit secondary

cell wall thickening through a PHYB-PIF4-MYC2/MYC4 module in

fiber cells of the Arabidopsis stem (Luo et al., 2022). Therefore, light

positively affects xylary cell differentiation and secondary

wall development.
Temperature

Temperature is another environmental factor affecting many

developmental processes, especially cambium reactivation and

xylem differentiation in trees. Trees from temperate zones

undergo seasonal vascular cambial cycles of activity and

dormancy. In late winter to early spring, new cells are formed in

the cambial, called cambial reactivation, which is mainly affected by

temperature (Begum et al., 2013; Agustı ́ and Blázquez, 2020). Under
natural conditions, cambium reactivation in different species

requires varied threshold temperatures and an accumulated

number of degrees more than the threshold value, also called the

cambial reactivation index (CRI) (Begum et al., 2013). Xylem

differentiation often starts within 3 or 4 weeks after cambium

reactivation (Rossi et al., 2007). Warm springs induce early

resumption of cambial cell proliferation and an early onset of

xylem differentiation (Rossi et al., 2007; Begum et al., 2008).

Extensive modulation of cambial transcriptome and proteome

occurs during the activity–dormancy cycle in aspen (Druart et al.,

2007). Localized heating of stems during dormancy induces

reactivation of the cambium in various trees, including evergreen

conifers (Barnett, 1992; Oribe & Kubo, 1997; Oribe et al., 2001;

Gričar et al., 2006) and poplar trees (Begum et al., 2007). These

studies have established a clear relationship between temperature

and morphological changes in trees, but the molecular mechanism

is still lacking due to the scarcity of genetic and genomic studies.

In Arabidopsis leaves, high temperatures increase vein density

and tracheary element number, likely facilitating higher rates of

transpiration (Stewart et al., 2016). Interestingly, the Swedish

ecotype exhibited more pronounced responses than the Italian

ecotype, indicating that genetic variation may affect temperature

response (Stewart et al., 2016). In another study, the expression of

AtPXL1, a paralog of PXY, is induced by both cold and heat stress

(Stewart et al., 2016). In addition, the atpxl1mutant plants showed a
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temperature-hypersensitive phenotype (Stewart et al., 2016). It

would be interesting to study if PXY activity is essential for

acclimation under fluctuating temperatures.
Mechanical force

Plants are consistently experiencing mechanical forces,

including endogenous compression resulting from growing body

weight, increasing number and volume of surrounding cells, and

environmental forces from wind, touch, and leaning. Among the

mechanical forces, body weight has been well studied on secondary

growth in the model plant Arabidopsis (Ko et al., 2004; Sehr et al.,

2010). Using artificial weight treatment, Ko et al. found that weight

induces cambial differentiation, and the weight signal relies on

auxin signaling components (Ko et al., 2004). The weight-load-

sensing system regulates cell-wall-related genes through

transcriptional regulation in the xylem (Koizumi et al., 2009). In

addition to auxin signaling, other hormonal signals, such as ABA,

ethylene, and JA signaling, are also involved in body-weight-

induced secondary growth in Arabidopsis (Sehr et al., 2010;

Etchells et al., 2012; Campbell et al., 2018) (Figure 1C).

Furthermore, ethylene controls cambial proliferation during

tension wood development in Populus (Love et al., 2009).

Therefore, mechanical cues may regulate cambial cell

proliferation and subsequent cell differentiation through both

auxin-dependent and auxin-independent pathways.
Water availability

Water availability is another factor that affects secondary

growth. Drought induces the biosynthesis of ABA, which

regulates the differentiation and patterning of primary and

secondary xylem (Ramachandran et al., 2018). In Arabidopsis

roots, ABA treatment induced extra xylem strands. At the same

time, mutants in the last steps of ABA biosynthesis, abi2-1 and abi3-

1, displayed discontinuous or absent xylem strands, indicating the

importance of ABA in xylary wall formation (Ramachandran et al.,

2018). Additionally, endodermis localized ABA non-cell

autonomously regulates the xylem cell types (Ramachandran

et al., 2018). It was proposed that ABA induces the biosynthesis

of miRNA165/166 in the endodermis, and then, miRNA165/166

moves to the developing xylem cells, where the miRNAs control

certain HD-ZIP III factors in regulating protoxylem and metaxylem

identity (Carlsbecker et al., 2010; Ramachandran et al., 2018)

(Figure 1C). Furthermore, ABA regulates xylem patterning and

maturation via miR165a/166b-regulated expression of HD-ZIPIII

mRNAs and associated VND7 levels in tomatoes (Bloch

et al., 2019).

Drought-induced ABA signal may reduce secondary growth

through interactions with other hormonal pathways. For instance,

water stress and ABA treatments decrease biologically active CK

contents, demonstrating a mechanism for survival under abiotic

stress conditions (Bloch et al., 2019). Additionally, decreased levels

of CK increased ABA sensitivity, suggesting a complex crosstalk
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between these two hormones (Nishiyama et al., 2011; Bloch et al.,

2019). Furthermore, JA induces xylem differentiation by reducing

CK-dependent promotion of cell division in the vasculature in the

root (Jang et al., 2017). JA is known for its function in secondary

growth in the stem (Sehr et al., 2010) and is essential to ABA

accumulation in roots under water deficiency (de Ollas et al., 2015).

Therefore, JA and CKs are in a signaling network regulating xylem

differentiation under water stress conditions.
Discussion and future perspectives

Recent research advances have enhanced our understanding of

cambial activity control and secondary growth. The growing

interest in developing environmentally resilient crops requires

new knowledge of how exogenous factors influence secondary

growth, especially under unfavorable conditions. Research on

secondary growth faces numerous technological challenges,

including difficulties in direct observation of vascular tissues,

lacking genetic materials in non-model plant species, and

mechanism differences in different organs (Wang, 2020; Turley

and Etchells, 2022).

New technologies, such as advanced microscopy and cell-based

computational modeling, will be essential to visualize and analyze

cambium activity. For example, whole-mount imaging coupled with

gene expression at three-dimensional (3D) domains enabled

analysis at single-cell precision (Truernit et al., 2008). Tools that

combine the quantitative 3D image analysis and clonal analysis may

be essential to understand cambium development (Bencivenga

et al., 2016). In addition, integrating cell-based computational

model and the function of central cambium regulators help to

determine the framework for instructing tissue organization

(Lebovka et al., 2023). Lastly, pulse labeling, lineage tracing, and

molecular genetic techniques have advanced our understanding on

the bifacial nature of vascular stem cells in both hypocotyl and root

tissues in model plants Arabidopsis (Shi et al., 2019; Smetana et al.,

2019). The combination of these techniques will help further

elucidate the mechanisms of vascular development.

Research on environmental factors in secondary growth is

limited to primarily morphological observations in tree species. In

the future, research should focus on investigating the perception
Frontiers in Plant Science 05
and signaling of these environmental factors using model plants

and advanced omics technologies. Dissecting the functional

mechanisms of the exogenous factors on vascular development

may provide new insights into the regulation of cambial activity and

generate new knowledge for developing new strategies in biomass

deposition and carbon reduction in the era of climate change and

global warming.
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