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Abstract
Across mammals, the epigenome is highly predictive of chronological age. These “epi-
genetic clocks,” most of which have been built using DNA methylation (DNAm) pro-
files, have gained traction as biomarkers of aging and organismal health. While the 
ability of DNAm to predict chronological age has been repeatedly demonstrated, the 
ability of other epigenetic features to predict age remains unclear. Here, we use two 
types of epigenetic information—DNAm, and chromatin accessibility as measured by 
ATAC-seq—to develop age predictors in peripheral blood mononuclear cells sampled 
from a population of domesticated dogs. We measured DNAm and ATAC-seq profiles 
for 71 dogs, building separate predictive clocks from each, as well as the combined 
dataset. We also use fluorescence-assisted cell sorting to quantify major lymphoid 
populations for each sample. We found that chromatin accessibility can accurately 
predict chronological age (R2

ATAC = 26%), though less accurately than the DNAm clock 
(R2

DNAm = 33%), and the clock built from the combined datasets was comparable to 
both (R2

combined = 29%). We also observed various populations of CD62L+ T cells sig-
nificantly correlated with dog age. Finally, we found that all three clocks selected fea-
tures that were in or near at least two protein-coding genes: BAIAP2 and SCARF2, 
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1  |  INTRODUC TION

As we age, physiologic function steadily declines, while the risk 
of morbidity and mortality steadily rises (Kaeberlein et  al., 2015). 
Although age is a reliable predictor of overall health across a pop-
ulation, there is substantial interindividual variability in how quickly 
we age, with some aging faster or slower than others (Christensen 
et al., 2004). To understand how and why we age, research has fo-
cused on developing tools to measure this variation and reveal the 
genetic and environmental factors that may influence it.

One promising area of study includes age-associated changes in 
the epigenome. The epigenome consists of the collection of struc-
tural and biochemical changes in the cell that alter gene expression 
levels without changing the actual DNA sequence, including DNA 
methylation, histone modifications, and changes to chromatin ac-
cessibility (Sen et al., 2016). The epigenome integrates information 
from both genes and environment, and is rich with changes that 
correlate with and potentially directly influence organismal aging 
(Oberdoerffer & Sinclair, 2007; Sen et al., 2016). Changes in diverse 
epigenetic elements, including global loss of constitutive heteroch-
romatin (Allshire & Madhani, 2018; Trojer & Reinberg, 2007), his-
tone loss (Dang et al., 2009; O'Sullivan et al., 2010), and global and 
local changes in DNA methylation (Hernandez et al., 2011; Rakyan 
et al., 2010; Teschendorff et al., 2010) have all been associated with 
aging in vertebrate systems. In recent years, significant resources 
have been invested into using epigenetic markers to develop predic-
tive models of age in hopes not only of predicting chronologic age, 
but also of estimating intrinsic measures of overall health compared 
to the population mean. Researchers have argued that the amount 
by which predicted age departs from chronological age can be taken 
as a measure of underlying health, referred to as age acceleration.

In addition to DNAm-based biomarkers of age (Bocklandt 
et al., 2011; Hannum et al., 2013; Horvath, 2013; Levine, 2013), many 
other age predictors exist, including a wide range of molecular and clin-
ical measurements, such as telomere length (Blackburn et al., 2006), 
gene expression transcripts (Holly et  al., 2013; Peters et  al., 2015), 
protein glycosylation and abundance (Krištić et  al.,  2014; Menni 
et al., 2015), metabolite levels (Hertel et al., 2016; Zhao et al., 2022), 
and composite clinical biomarkers such as systolic blood pressure and 
cholesterol levels (Belsky et  al., 2015; Levine, 2013; Li et  al., 2015). 
Across these different age predictors, the most accurate and well 
characterized are the DNA methylation (DNAm) clocks, which are 
also most thoroughly validated by independent studies. Two widely 
cited clocks are Horvath's 353 CpG multi-tissue DNAm age estimator 

(Horvath, 2013), and Hannum's 71 CpG single-tissue DNAm age es-
timator (Hannum et al., 2013). Both Horvath's and Hannum's DNAm 
clocks have been shown to be highly predictive of chronological age 
(Hannum et  al.,  2013; Horvath,  2013), predict of all-cause mortal-
ity and life span (Marioni et  al., 2015; Perna et  al., 2016), and claim 
to measure biologic age or age acceleration in an organism or tissue 
(Horvath,  2013), measures that can sometimes predict age-related 
phenotypes and diseases (Bell et al., 2019; Quach et al., 2017).

Applications of the DNAm clock now span many diverse areas 
of clinical and biological research, including clocks that are specific 
to human subpopulations (Horvath et  al., 2016), clocks developed 
for nonhuman mammalian species, including but not limited to chim-
panzees, mice, dogs, and humpback whales (Ake Lu et al., 2021; Ito 
et al., 2018; Maegawa et al., 2010; Polanowski et al., 2014; Thompson 
et al., 2017), and pairing of clocks with studies of life span-extending 
interventions (Sziráki et al., 2018). A deeper understanding of how 
these DNAm sites relate to age can help further guide future appli-
cations of epigenetic clocks.

In this study, we sought to expand our understanding of these 
predictive clocks and the biology of aging by looking beyond DNAm 
measures of the epigenome and age. In particular, in addition to CpG 
methylation, here we also measure chromatin accessibility, building 
two independent age predictors, as well as one combined age predic-
tor, from the same tissue samples. We define chromatin accessibility 
as regions of open chromatin that are accessible specifically to the 
modified transposase used in the assay for transposase-accessible 
chromatin using sequencing (Buenrostro et  al.,  2013; ATAC-seq). 
Chromatin accessibility as measured by ATAC-seq has been used 
in a wide variety of basic and clinical research fields, including em-
bryonic development (Wu et al., 2016), tumor development (Davie 
et al., 2015), and aging/age-related disorders (Moskowitz et al., 2017; 
Wang et al., 2018).

We build and compare these age predictors across a population of 
individuals from a relatively new model system of aging, the compan-
ion dog (Canis lupus familiaris). The dog is an attractive model for aging 
research for a multitude of reasons. First, as the most phenotypically 
variable mammal on earth, dogs demonstrate considerable variation 
across breeds not only in morphology and behavior (Sutter et al., 2007; 
Boyko et al., 2010; MacLean et al., 2019), but also in life span and dis-
ease susceptibility (Fleming et al., 2011; Hayward et al., 2016). Larger 
breeds tend to have shorter life spans than smaller breeds (Galis 
et al., 2007; Patronek et al., 1997), suggesting that larger breeds may 
be aging faster than smaller breeds (Kraus et al., 2013). This leads us to 
hypothesize that for a given age, individuals of larger breeds should, on 

both previously implicated in processes related to cognitive or neurological impair-
ment. Taken together, these results highlight the potential of chromatin accessibility 
as a complementary epigenetic resource for modeling and investigating biologic age.
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average, have an older biological age than individuals of smaller breeds, 
as measured by age acceleration in an epigenetic clock. Second, the 
unique breed-based population structure of dogs results in high levels 
of genetic and phenotypic homogeneity within individual pure breeds, 
coupled with high levels of genetic and phenotypic heterogeneity be-
tween breeds (Lindblad-Toh et al., 2005; Ostrander & Kruglyak, 2000; 
Parker et al., 2004). This structure affords researchers some level of 
control over genetics as well as increased confidence when compar-
ing measurements of trait-means across breeds. And lastly, dogs share 
our environment in a way that can never be replicated in laboratory 
settings. They are exposed to the same kinds of environmental factors 
as people are, such as second-hand smoke, air pollution, and ambient 
noise. This affords researchers the opportunity to learn about the ef-
fect of these factors on human health from dog data.

Here, we measured DNA methylation and chromatin accessi-
bility profiles of peripheral blood mononuclear cells (PBMCs) from 
71 companion dogs. We used reduced representation bisulfite se-
quencing (Meissner et al., 2005; RRBS-seq) to measure DNA meth-
ylation and ATAC-seq to profile global chromatin accessibility. While 
other groups have built methylation age predictors from cohorts of 
companion dogs (Horvath et al., 2022; Thompson et al., 2017; Wang 
et al., 2020), our study is the first we know of to profile both meth-
ylation and chromatin accessibility from the same cohort of com-
panion dogs. With these data, we developed a DNAm clock and, to 
the best of our knowledge, the first canine ATAC-seq clock, and a 
combined DNAm/ATAC clock for estimating canine age. We also 
carried out univariate modeling to estimate the effects of age and 
other biologic and environmental factors on each feature. We found 
that (1) chromatin accessibility can accurately predict chronologic 
age (R2

ATAC = 26%), though less accurately than the DNAm clock 
(R2

DNAm = 33%), and the clock built from the combined datasets 
was comparable to both (R2

combined = 29%), (2) various populations 
of CD62L+ T cells significantly correlated with dog age, (3) all three 
clocks selected features that were in or near at least two protein-
coding genes: BAIAP2 and SCARF2, both previously implicated in 
processes related to cognitive or neurologic impairment, and (4) 
different sets of meta data features were consistently selected in 
the model-building process for the different data types. Taken to-
gether, this suggests that the biologic information captured by age-
associated changes in chromatin accessibility likely differ from those 
captured by DNAm changes, demonstrating that ATAC-profiled 
chromatin accessibility may offer a complementary biologic per-
spective to that of DNAm that may help further elucidate the rela-
tionship between the epigenome and age.

2  |  RESULTS

2.1  |  Study cohort

All dogs in this study were recruited at Texas A&M University, and 
were pets of staff and student volunteers. All animals were declared 
to be healthy by the owner. Age, breed, sex, and environmental 

survey information were reported by each owner. Ages ranged from 
1 to 16 years old. Sixty-eight out of 71 animals (96%) were steri-
lized, so we chose not to include sterilization status as a factor in 
this study. The distributions of age and breed size of the cohort are 
shown in Figure 1a,b, and the breakdown of age and breed size by 
sex are shown in Figure S1. There was no correlation between age 
and breed size of profiled dogs (Figure  1c). The most highly rep-
resented breeds included Dachshunds, Border Collies, Labrador 
Retrievers, and Australian Shepherds (Figure 1d). However, the ma-
jority of the cohort (60%) was composed of breeds represented by 
only one individual animal.

We isolated PBMCs from the fresh whole blood samples and 
split them two aliquots—one used for flow cytometry to measure 
relative cell type proportions, and the other used to measure chro-
matin accessibility and methylation using ATAC-seq and RRBS-seq, 
respectively.

2.2  |  Cell types and environmental factors 
correlated with age

Our goal here was to evaluate the relationship between epigenetic 
features and dog age. However, we first determined if environmen-
tal factors or PBMC type proportions were also correlated with age, 
in which case we would include them as potential covariates in our 
statistical models. To do this, we measured the correlations between 
all owner-reported metrics about each animal's environment, as well 
as cell type proportions as measured by flow cytometry, with animal 
age. In total, this included 31 different cell types (Data S1) and 10 
different categorical environmental factors, including variables such 
as diet and exercise type (for full list, see Data S1).

Across all these variables, relative proportions of two cell types, 
CD62L+/CD44+/CD8+ T cells and CD62L+/CD44+/double nega-
tive (CD4-/CD8-; DN) T cells, were significantly correlated with age 
(Figure 2a,b), with older animals having greater proportions of these 
cells. CD44+/CD62L+ status is commonly used to identify popula-
tions of central memory T cells in mice, humans, and sometimes dogs 
(Nakajima et  al., 2021; Sallusto et  al., 2004; Withers et  al., 2018), 
which have been shown to increase in number and proportion with 
age in humans (Saule et al., 2006). In addition to these two cell types, 
exercise type was also found to significantly vary with dog age, with 
younger animals exhibiting more vigorous exercise than older ani-
mals, as expected (Figure 2c). In order to account for variability in 
cell type proportions explaining epigenetic changes, all cell type pro-
portions measured by flow cytometry were included as features for 
selection in the subsequent clock models.

2.3  |  Functional annotation of epigenetic 
features and their association with age

To assess global properties of the ATAC and methylation datasets, 
we performed feature level analysis on individual ATAC-seq peaks 
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and RRBS-seq DNAm sites (15,417 ATAC peaks and 13,336 CpG 
sites after quality control filtering, see Section 4: Methods). First, we 
mapped each locus to the Epigenome Catalog of the Dog, a multi-
tissue canine chromatin state map (EpiC Dog; Son et  al., 2023) to 
approximate a functional annotation for each feature. EpiC Dog is 
a curated repository of regulatory elements across chromatin data-
sets collected from 11 different tissue types in the companion dog 
(Figure S2a; Son et al., 2023). PBMCs were not profiled in EpiC Dog, 

so we chose to compare to the annotations from canine spleen tis-
sue. Functional annotation of features from both datasets revealed 
that the vast majority of DNAm sites fell into inactive, quiescent re-
gions of the genome, while the majority of ATAC features fell within 
more active regulatory regions, including enhancers and transcrip-
tion start sites (Figure S2b).

Next, we modeled each feature as a function of age to identify 
age-associated ATAC peaks and DNAm sites. We included weight 

F I G U R E  1 Sample cohort information. 
(a,b) Age and estimated breed weight 
distribution of 71 dogs in the cohort. (c) 
Correlation between age and estimated 
breed weight. (d) Top 10 most highly 
represented breeds in the cohort.

F I G U R E  2 Cell types and survey 
questions correlated with age. (a,b) Out of 
31 PBMC types measured with our flow 
cytometry panel, two types correlated 
significantly with age as tested using 
a linear model. Y axis units represent 
percentage of previous gated population 
as measured by FlowJo. See Data S2 
for gating criteria and results. (c) Out of 
the lifestyle survey questions filled out 
by owners, responses to one question 
(exercise type) was significantly associated 
with age as tested using ANOVA.
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category, sex, and other meta features correlated with age (Figure 2) 
as covariates in the model (Equation  1 in Methods). We observed 
that 1131 ATAC peaks and 40 DNAm sites were significantly associ-
ated with age (Figure S2c). For both gene regulatory measures, more 
age-associated sites were decreasing in signal (either accessibility or 
methylation) with age rather than increasing (Figure S2c).To deter-
mine whether or not certain chromatin states were enriched within 
age-associated features, we performed Fisher's exact tests on age-
associated ATAC features and whether or not they were signifi-
cantly increasing or decreasing with age. Across the age-associated 
ATAC features we observed features decreasing with age were 
more likely to be enriched for peaks that fell in active TSS, active 
TSS flanking regions, and active weak enhancers and vice versa—
features increasing with age were depleted for the same elements 
(Figure S2d). We also observed that the opposite pattern was true of 
active enhancer and quiescent regions—these regions were enriched 
in ATAC features that were found to significantly increase with age 
(Figure  S2d). Taken together, this suggests that typically inactive 
regions of chromatin may become more open and therefore active 
with age, consistent with the heterochromatin loss model of aging 
(Villeponteau, 1997).

2.4  |  The canine epigenetic clock

To evaluate the ability of our methylation and ATAC-seq data to 
predict age in our cohort of dogs, we built separate predictors of 
age using elastic net regression (Equation 2 in Methods) performed 
on each dataset. In addition to evaluating each dataset separately, 
we also tried building a model using both combined datasets to ask 
whether combining information from both types of epigenetic land-
scapes improved age prediction. We also included certain metadata 
features including breed weight category and all PBMC types from 
flow cytometry as features available for selection in our training pro-
cess, which we refer to as “meta features.”

Due to our limited sample size (71 dogs) and large feature set 
sizes, we used leave-one-out cross validation (LOOCV) approaches 
to evaluate the ability of each data type to predict age in each data-
set using elastic net regression implemented from the R package 
glmnet (see Section 4: Methods). Briefly, we ran cv.glmnet() 71 times, 
each time “manually” leaving out one observed dog, and used the 
resultant model to predict the left out sample (Figure 3a). This re-
sults in 71 “final” models, each used to predict the left out sample. 
This allows us to evaluate the predictive capacity of each data type 
while ensuring that there is no overfitting within the model building 
process.

All three data types demonstrate similar accuracy when predict-
ing age (Figure 3a), with the DNAm clock (R2

adj = 0.33, RMSE = 3.08) 
slightly outperforming the other two, followed by the com-
bined clock (R2

adj = 0.29, RMSE = 3.15), and finally the ATAC clock 
(R2

adj = 0.26, RMSE = 3.22). While the correlation strength of pre-
dicted versus actual age from the three datasets are very similar, 
the nature of the models built varied between the three data types. 

All ATAC models showed fewer numbers of features selected than 
DNAm and combined clocks (Figure  3b), which is also consistent 
with greater observed mean values of lambda selected for each 
ATAC clock (Figure S3a).

To determine whether the clock was better at predicting age 
for certain types of breed, we partitioned the predicted ages by 
large, medium, and small breeds. Across all three data types, we 
observe the strongest and most significant correlations between 
predicted and actual age across the large breeds, though it is most 
apparent in the ATAC clock results (Figure 3c). For all models, dogs 
from small breeds showed the worst performance in age predic-
tion (Figure 3c).

2.5  |  Gene related to cognitive and neuronal 
function are enriched near sites selected for 
three clocks

To determine whether or not there was any biological significance 
to the genes located near the features selected for each clock, 
we mapped each feature to the closest known gene in the canine 
genome. We included all features selected one or more times 
across all 71 models (nATAC = 147 features, nDNAm = 281 features, 
nCombined = 324 features).

Six genes were found to overlap between the three clocks 
(Figure 3d), two of which are protein coding genes: BAR/IMD do-
main containing adaptor protein (BAIAP2) and scavenger recep-
tor class F member 2 (SCARF2). BAIAP2 (also known as IRSp53), a 
brain-specific insulin receptor tyrosine kinase substrate which has 
been shown to be involved in impaired memory, learning, and other 
cognitive deficits in mouse models of Alzheimer's (Gatta et al., 2014; 
Kim et al., 2009). Increased SCARF2 expression has been detected 
in glioblastoma, an age-associated neurologic disorder, compared to 
regular brain tissue (Kim et al., 2022).

2.6  |  Weight and certain cell types were commonly 
selected as predictive features in certain clocks

To get a sense of whether or not certain meta features (PBMC types 
and breed weight category), which were also included as features for 
selection in the elastic net model training process, are important for 
predicting age, we examined the 71 different feature sets selected 
for each data type. We found that across all the metadata features 
(PBMC types and breed weight category) that were included as op-
tions for features to be selected by the elastic net training process, 
only a handful of features were selected in greater than 10 models: 
weight category, CD62L- DN T cells, and CD62L+ CD8 T cells in 14 
of the ATAC models (Figure 4; Table S1). Breed weight category was 
selected as a feature across all 71 models in both ATAC and DNAm 
clocks (but not the combined clock), while CD62L- DN T cell propor-
tions were selected in almost all (70 out of 71) instances of ATAC 
clock building, but only once or twice in the DNAm or combined 
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F I G U R E  3 The canine epigenetic clock. (a) Comparison of age versus predicted age predicted from elastic net models from 71 dogs for 
three different sets of features. (b) Distribution of number of features selected per model. (c) Results from the top row of (a) are split by 
breed size category for all models. (d) Numbers of genes closest to features selected from each clock that overlap. Of the six genes that are 
found near features selected for all three clocks, two are associated with known protein-coding genes: BAIAP2 and SCARF2. All statistics 
generated from ordinary least squares linear regression.

F I G U R E  4 Meta features selected by 
epigenetic clocks. Summary of the number 
of instances meta features (including all 
PBMC types and breed weight category) 
were selected across all final models. 
The maximum number of instances each 
feature can be selected across each data 
type is 71 (one for each dog).
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clocks. CD62L+ CD8 T cells were selected in 14 of the 71 ATAC 
models only (Figure 4; Table S1).

2.7  |  Residual age measures are not associated 
with breed weight

Next, we evaluated the ability of our clocks to assess biological 
health relative to a dog's age, that is, age acceleration, which can 
take on a positive (acceleration) or negative (deceleration) value. We 
generated an estimate of age acceleration by taking the residuals 
of an ordinary least squares linear regression of predicted versus 
observed age. From this point onward, we refer to this measure 
as “residual age.” Our method of measuring residual age is compa-
rable to the measures of “age acceleration” from Horvath's clocks 
(Horvath, 2013; Thompson et al., 2017), which have been shown to 
be predictive of overall health (Bell et al., 2019; Horvath et al., 2014; 
Quach et al., 2017).

If age acceleration is predictive of life span and overall health, we 
may expect to see a positive relationship between residual age and 
breed size. More specifically, we predict that larger breeds, which 
are shorter lived and age at a more rapid rate (Kraus et  al., 2013; 
Patronek et al., 1997), would show a higher residual age than smaller 
dogs. To test this, we modeled residual age as a function of breed 
size (as measured by the mean weight of that breed reported by the 
American Kennel Club) with the three clocks. We did not find any 
strong correlation between residual age and breed weight across any 
of our three clocks (Figure 5).

Furthermore, if our epigenetic age measures both represent a 
shared marker of biological aging, then we would expect the resid-
ual age measures to be correlated with one another (i.e., if a given 
dog had a positive, or “accelerated,” DNAm residual age, then they 
would have a similarly positive ATAC-seq residual age). We found no 
relationship between residual age from the methylation clock and 
residual age from any of our three clocks (Figure S3b). Collectively, 
our data do not provide evidence that residual age as estimated from 

either clock is predictive of breed size, and therefore likely life span, 
in companion dogs.

3  |  DISCUSSION

Here, we present what is to the best of our knowledge one of the 
first ATAC-based predictors of age, coupled with DNAm and a com-
bined predictor of age from the same set of animals. There are three 
notable findings from this study that we highlight here. First, this 
study shows that it is possible to build an accurate predictor of age 
using chromatin accessibility data as measured by ATAC-seq, and 
performs comparably to an age predictor built from DNAm data or 
one build from both ATAC and DNAm when using a rigorous, LOOCV 
approach to evaluate age prediction (Figure 3a).

Second, while all three clocks are able to predict age to a compara-
ble degree, other aspects of their performance and feature selection 
suggest that each data type captures different biologic information 
about the aging process, and thus, may each offer unique biologic 
insight into the biology of aging. This is demonstrated by the fact 
that the three different clocks repeatedly selected different types 
of meta features (PBMC types or breed weight; Figure 4). While the 
DNAm and combined clocks rarely selected any PBMC types as fea-
tures to predict age, the ATAC clock almost always included one cell 
type—CD62L- DN T cells—in its list of features for age prediction, 
despite the fact that both the DNAm and chromatin accessibility 
datasets were collected from the same set of PBMC samples. This 
suggests that DNAm and chromatin accessibility might be influenced 
by age and other biologic and environmental factors in different 
ways. As such, while the majority of efforts studying epigenetic age 
have been heavily focused on the methylome, we could gain deeper 
insight into aging biology by characterizing and understanding other 
features of the epigenome, such as chromatin structure.

Finally, while the two types of epigenetic data can predict age, 
we were unable to find evidence for their ability to capture biological 
age, or general health, of the animals as estimated by breed size/

F I G U R E  5 Residual age predictions. Relationship between estimated breed weight and residual age prediction from the three clocks from 
the final model.
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longevity. Neither the ATAC, DNAm, nor combined residual age 
measures correlated with breed (Figure 5). While there is extensive 
evidence in human studies for the ability of age clocks to predict 
health and longevity metrics (Horvath, 2013; Horvath et al., 2014; 
Marioni et al., 2015; Perna et al., 2016), we were not able to detect 
it here by using breed size as an estimate for breed longevity. This 
could be due to many factors, including a small sample size of our 
study, and/or noise from the model building methods. Moreover, we 
lack diagnostic health information, assuming instead that for a given 
age, an individual from a shorter lived breed would have an older 
biologic age than one from a longer lived breed. The lack of asso-
ciation with life span might also be a unique property of epigenetic 
age predictors in canines, as at least two previous dog clock studies 
have also tried and failed to find association between biologic age 
as estimated by DNAm clocks and breed size/longevity (Horvath 
et al., 2022; Thompson et al., 2017).

At least three other studies have used DNA methylation data 
to build predictors of age in dogs. The first study to do so was de-
scribed by (Thompson et al. (2017)), followed by (Wang et al. (2020)), 
and most recently, (Horvath et al., 2022). While all of these stud-
ies, ours included, successfully built DNAm clocks in companion 
dogs, each reveals unique aspects of the canine epigenetic clock. 
The Thompson study was the first to compare the DNAm clock in 
dogs to ones built from wolves and humans (Thompson et al., 2017). 
Wang et al. demonstrated that syntenic regions of the mammalian 
DNA methylome that change with age can be used to predict age 
across species, specifically dogs and mice, and that these regions 
occur in modules of developmental genes (Wang et al., 2020). Most 
recently, Horvath et  al. built individual and shared DNAm clocks 
between a large cohort of dogs and humans. While they failed to 
find association between biologic age as directly estimated from 
their DNAm clocks, they built a novel predictor of “average time-
to-death,” which generated estimates that were indeed predictive 
of breed weight and longevity (Horvath et al., 2022). In our study, 
given our small cohort and relatively small number of breeds with 
sufficient representation, we lacked the statistical power to build 
a rigorous time-to-death clock. Rather, our primary objective was 
to compare two different types of epigenetic information using a 
single population of dogs.

Several caveats should be considered here. First, the sample 
size (n = 71 dogs) is relatively small, and while we are still able to 
build a highly predictive age model with this group of animals, 
the lack of correlation of our residual age measures with breed 
or life expectancy might be due to lack of statistical power. We 
also acknowledge that the distribution of dog breeds included in 
this dataset is skewed toward larger breeds, which may impact the 
models shown in Figure  3c. However, due to the fact that other 
studies have reported similar observations of more accelerated 
aging in larger dogs (Rubbi et al., 2022), we feel this result is still 
important to highlight. In the future, the Dog Aging Project (Creevy 
et al., 2022), will build epigenetic clocks in a set of over 1000 dogs 
followed longitudinally over the course of their lives. Our results 
establish the feasibility, and provide us with a lower bound on 

efficacy for such measures. These future studies will include ef-
forts to build not only a global biologic clock for all dogs, but breed-
specific ones as well.

Second, the demographic data for the dogs in this study, in-
cluding age and breed, were reported by the owners and have not 
been verified through objective measures (e.g., veterinary electronic 
medical records, registration records). While we have no reason to 
believe any of the self-reported responses are inaccurate, we ac-
knowledge that information about pets, particularly age and breed, 
are not always well documented and might be subject to error.

Despite these caveats, our results point to the exciting new land-
scape of studies of health and aging now being pursued in compan-
ion dogs. The unique breed structure and highly variable longevity 
patterns of the domestic dog offer straightforward aging-related 
hypotheses to generate and test. Dogs suffer from many of the 
same diseases as humans do (Hoffman et al., 2018), with a concom-
itantly sophisticated health-care system, and are exposed to many 
of the same environmental risk factors as humans. Furthermore, 
canine health itself, independent from modeling human health, is 
an important area of study, motivated by the fact that owners care 
a great deal about their canine companions. Thus, there is tremen-
dous potential for canine biologic and chronological age clocks to 
be applied in diverse contexts. These clocks have the potential not 
only to inform us about the health of pets, but also to generate very 
accurate estimates of chronological age, as the majority of adopted 
or rescued animals have no veterinary records with which to inform 
owners about age. We hope that studies such as ours will generate 
more enthusiasm and excitement about using companion dogs to 
learn about human health.

4  |  METHODS

4.1  |  Study cohort

We measured chromatin accessibility and methylation status of 
PBMCs in 71 healthy companion dogs using ATAC-seq and RRBS-
seq, respectively. All dogs were recruited at Texas A&M University 
and comprised of pets of staff and student volunteers. All animals 
were declared to be healthy by the owner, although no formal 
veterinary exams were performed. Age, breed, and environmen-
tal survey information were reported by each owner. Sixty-eight 
out of 71 animals were sterilized, so we chose not to include steri-
lization status as a factor in this study. Individual animal weights 
were not recorded. Average adult breed weight as reported by the 
American Kennel Club in 2012 was used throughout the analy-
sis. All procedures for this study were reviewed and approved by 
the TAMU Institutional Animal Care and Use Committee (IACUC 
2016–0224 CA). Because dog owners provided information about 
their dogs in the home environment, the study was also reviewed 
and approved by the TAMU Institutional Review Board (IRB2016-
0532D). Informed consent was obtained from all owners at the 
time of enrollment.



    |  9 of 13JIN et al.

The distributions of age and breed size of the cohort are shown 
in Figure 1a,b. There was no correlation between age and breed size 
of profiled dogs (Figure  1c). The most highly represented breeds 
included Dachshunds, Border Collies, Labrador Retrievers, and 
Australian Shepherds (Figure  1d). However, the cohort was com-
posed primarily of breeds represented by only one individual animal.

Whole blood was drawn and PBMCs were isolated in Texas, 
cryopreserved (detailed below), and then shipped to Seattle, 
Washington where the remaining epigenetic profiling and analyses 
were performed.

4.2  |  Sample collection and PBMC isolation

Using a needle and syringe, blood (5 mL) was collected from a 
peripheral vein by routine venipuncture and immediately trans-
ferred to K2EDTA vacutainers. Blood was mixed with an equal vol-
ume of 2% fetal bovine serum (HyClone) in phosphate buffered 
saline (HyClone), and transferred to a barrier tube (SepMate-15, 
StemCell technologies) prefilled with 4.5 mL of density gradient 
medium (Lymphoprep 1.077, StemCell technologies). After cen-
trifugation at 1200 g for 15 min at room temperature, the superna-
tant was collected and washed three times with 10 mL of 2% fetal 
bovine serum in phosphate buffered saline by centrifugation at 
300 g for 10 min at room temperature. Based on a hemocytometer 
count, cells were resuspended at a concentration of 1 × 106 per 
mL in fetal bovine serum with 10% DMSO. After 25 min incuba-
tion at room temperature, the cells were transferred to a −80°C 
freezer within a Styrofoam container. Samples were held at −80°C 
for a maximum of 4 days before shipping on dry ice. Once arriving 
in Seattle, samples were rapidly thawed at 37°C for 60 s, a small 
volume was stained with Trypan Blue, and then counted using a 
hemocytometer to obtain cell concentration and viability esti-
mates. Samples were then immediately distributed into aliquots 
for downstream analyses, including ATAC-seq, RRBS-seq, and flow 
cytometry analysis.

4.3  |  ATAC-seq library preparation

ATAC-seq was performed on canine PBMCs largely following 
the original protocol from (Buenrostro et  al.  (2013)), with some 
modifications (Kakebeen et al., 2020). Briefly, 250,000 cells were 
washed 3x in 1x PBS by spinning for 2 min at 2000 g. In contrast to 
the original published methods, we skipped the cell lysis step and 
moved immediately to the transposition reaction by adding the 
transposition buffer and transposase directly to the washed cell 
pellet. Transposition was carried out at 37°C for 1 h. DNA from the 
transposed sample was then purified using a Qiagen Minelute kit 
as per manufacturer's instructions. PCR amplification of purified 
DNA was then conducted using Nextera PCR primers and NEB 
Next High-Fidelity 2x PCR Master Mix (cat no. M0541s) using the 

recipe and cycling program as previously described (Buenrostro 
et al., 2013). Amplification was monitored in parallel using qPCR 
in order to reduce GC and size bias. The amplified reaction was 
then purified using a Qiagen PCR Cleanup kit. The final library 
was eluted in Qiagen Elution Buffer (10 mM Tris Buffer, pH 8) and 
stored at −20°C until ready for sequencing.

Samples were prepared as described above in batch sizes rang-
ing from 6 to 12 samples. After all the samples were processed, all 
libraries were pooled for sequencing using the Illumina Nextseq 500 
High Output Kit at the Brotman Baty Institute at the University of 
Washington.

4.4  |  ATAC-seq data analysis

Software and parameters used for adaptor trimming, read alignment, 
and peak calling parameters were followed as described in (Kakebeen 
et  al.,  2020). Briefly, adapters were trimmed from reads and low-
quality sequences (Phred <33) were removed using Trim Galore! 
(https://​github.​com/​Felix​Krueg​er/​TrimG​alore​). Reads were aligned 
to CanFam 3.1 using Bowtie2 (option:–very-sensitive) (Langmead 
& Salzberg,  2012). Duplicate reads were marked using Picard 
“MarkDuplicates” (http://​broad​insti​tute.​github.​io/​picard/​). Duplicate 
reads were removed using SAMtools (Danecek et al., 2021).

A consensus peak set was used to determine feature signal for 
all samples. The consensus peaks were called on a merged BAM file 
composed of equally subsampled reads from all donors in the ex-
periment. Peaks with summits that were closer than 500 bp to one 
another were merged and considered as a single feature. Peaks were 
filtered to include peaks with a median coverage of >20 reads across 
all samples. Peaks that mapped to mitochondrial or DNA scaffolds 
were also removed. After filtering, 15,417 features remained in the 
dataset.

Count values were then converted to reads per kilobases mapped 
(RPKM) by dividing the number of reads at each peak region by the 
peak width (estimated from Macs2 peak-calling software) and total 
reads mapped for each sample. These values were then log trans-
formed, centered, and scaled prior to model building.

4.5  |  RRBS seq library preparation

RRBS libraries were generated from ~300 ng of DNA extracted from 
canine PBMCs following a modified version of Boyle et al.  (2012). 
A detailed protocol can be found at https://​doi.​org/​10.​17504/​​proto​
cols.​io.​e6nvw​kxb9v​mk/​v1

4.6  |  RRBS seq data analysis

Samples were sequenced on the Illumina NovaSeq 6000 plat-
form at the Northwest Genomics Center. Sequenced reads were 

https://github.com/FelixKrueger/TrimGalore
http://broadinstitute.github.io/picard/
https://doi.org/10.17504/protocols.io.e6nvwkxb9vmk/v1
https://doi.org/10.17504/protocols.io.e6nvwkxb9vmk/v1
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trimmed with software Trim Galore!, and trimmed reads were 
mapped to the dog genome (CanFam 3.1). Total methylated and un-
methylated CpG sites were counted from mapped reads. CpG sites 
were filtered to include sites with a mean depth of 5X and median 
methylation level between 0.1 and 0.9 to exclude constitutively hy-
per- or hypo-methylated sites. Sites that mapped to mitochondrial 
or scaffold DNA were also removed. After filtering, 14,336 sites 
remained in the dataset. These values were centered and scaled 
prior to model building.

4.7  |  Flow cytometry

Cryopreserved canine PBMC samples were thawed in a 37°C water 
bath, half of the amount of each sample was used for flow cyto-
metrical staining, and half was refrozen for future analysis. Samples 
for flow cytometry were transferred into 50 mL conical tubes and 
diluted in RPMI-1640 culture media. Cells were washed twice with 
RPMI-1640 by spinning at 300 g for 8 min, the resulting cellular pel-
lets were resuspended in 50 μL of FACS staining buffer (2% fetal bo-
vine serum in PBS) and stained with 18 μL of antibody cocktail, which 
includes FITC-conjugated anti-canine CD3 clone CA17.2A12 (Bio-
Rad MCA1774F), PE-Cyanine 7-conjugated anti-canine CD4, clone 
YKIX302.9 (eBioscience 25–5040-42), Pacific Blue-conjugated 
anti-canine CD8, clone YCATE55.9 (Bio-Rad MCA1039PB), APC-
AlexaFluor 750-conjugated anti-human CD11b clone Bear1 
(Beckman Coulter A97052), Brilliant Violet 605-conjugated anti-
human CD14, clone M5E2 (Becton Dickenson 564,054), Alexa 
Fluor 647-conjugated anti-canine CD21, clone CA2.1D6 (Bio-Rad 
MCA1781A647), Brilliant Violet 785-conjugated anti-mouse/
human CD44, clone IM7 (Biolegend 103,059), PE-conjugated anti-
human CD62L clone FMC46 (Bio-Rad MCA1076PE), and Brilliant 
UltraViolet 395-conjugated anti-human CD94, clone HP-3D9 (BD 
OptiBuild 743954). Cells were stained for 20 min at 4°C and washed 
twice with FACS staining buffer. After the last wash, stained cells 
were resuspended in FACS buffer containing 7-AAD (1:500 di-
lution) and immediately run on an LSR Fortessa flow cytometer 
(BD Biosciences). Data were analyzed using FlowJo 10. Doublets 
were excluded based on FSC-A/FSC-H and SSC-A/SSC-H gating. 
Lymphocytes, monocytes, and granulocytes were gated based on 
FSC-A and SSC-A parameters, confirmed by lineage-restricted ex-
pression of CD11b and CD14. T cells were defined as CD3+/CD21- 
lymphocytes, B cells were defined as CD3-/CD21+ lymphocytes, 
NK cells were defined as CD3-/CD21-/CD94+ lymphocytes; within 
T cells we identified the following populations: CD94+ T cells de-
fined as CD3+/CD21-/CD94+ lymphocytes and conventional 
CD94- T cells defined as CD3+/CD21-/CD94-  lymphocytes. CD4 
and CD8 T cells were defined within CD94- T cells as CD4+/CD8-/
CD3+/CD21-/CD94- lymphocytes and CD4-/CD8+/CD3+/CD21-/
CD94lymphocytes, respectively. Double-positive and double-
negative T cells were defined within CD94- T cells as CD4+/CD8+/
CD3+/CD21-/CD94-  lymphocytes and CD4-/CD8-/CD3+/CD21-/
CD94-  lymphocytes, respectively. Within CD4 and CD8 T cells, 

we defined CD62L- and CD62L+ subsets as well as CD44Low and 
CD44High subsets.

4.8  |  Statistical analysis

All data analysis and visualization were performed using the statisti-
cal analysis software package R version 4.1+ (R Core Team, 2018). 
P-values were adjusted for multiple comparisons using the Benjamini–
Hochberg–Yekutieli procedure (Benjamini & Hochberg, 1995).

4.8.1  |  Age-associated features

We used ordinary least squares linear models to identify age-
associated peaks, modeling each feature as a function of age and 
other covariates, which included estimated breed weight, sex, exer-
cise level, CD62L+/CD44+/CD8+ T cell proportion, and CD62L+/
CD44+/DN T cell proportion. The latter three covariates were in-
cluded because all are associated with age (Figure 2):

4.8.2  |  Chromatin state annotation

We performed the annotation of age-associated ATAC peaks and CpG 
sites by utilizing genomic feature annotations sourced from multiple 
references. Specifically, chromatin state information was obtained from 
the Epigenome Catalog of the Dog. CpG islands were extracted from the 
UCSC Genome Browser, specifically for the CanFam3.1 genome assem-
bly. Additionally, information pertaining to gene promoters and genes 
was also obtained from the UCSC repository utilizing the CanFam3.1 
reference genome. All annotations were carried out using a combina-
tion of Bedtools Intersect (bedtools v2.31.0) and FindOverlaps() func-
tion from the GenomicRanges package in R (package).

4.8.3  |  Chromatin state enrichment analysis

We conducted a chromatin state enrichment analysis using a Fisher's 
exact test in R using fisher.test () to investigate the relationship be-
tween chromatin states (designated as 1–13) and age-associated 
ATAC peaks categorized as increasing or decreasing.

4.8.4  |  Epigenetic clocks

We use the R package glmnet (version 4.1–4) to build epigenetic 
clocks using either ATAC-seq or RRBS-seq data. We used an elastic 
net model using the loss function

(1)Feature ∼ age + weight + sex + exercise + cell. CD8 + cdll. DN
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where N is the number of samples, yi is the age of dog i, and x is 
the epigenetic profile. The model is built with two parameters, in-
cluding a mixing parameter alpha (α) and a regularization parame-
ter lambda (λ). Briefly, α determines whether or not the model will 
use Ridge regression (α = 0), Lasso regression (α = 1), or a mixture of 
both (0 < α < 1). The role of the regularization parameter is to mini-
mize mean-squared error. The greater the value of λ, the greater the 
penalty and the smaller the overall coefficient size of the models. 
We trained our models by setting α to 0.5 (elastic net, or an equal 
balance between Ridge and Lasso) and optimizing λ. We used a 
leave-one-out-cross validation (LOOCV) approach. Specifically, we 
used the function cv.glmnet, but “manually” excluded a single ob-
servation each time, resulting in one model per dog per data type. 
The predicted ages from this method are shown in Figure 3a. The 
distributions of the number of features and optimal lambda values 
from each of these models are shown in Figure 3b and Figure S3a, 
respectively.
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