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Abstract
Across	mammals,	the	epigenome	is	highly	predictive	of	chronological	age.	These	“epi-
genetic	clocks,”	most	of	which	have	been	built	using	DNA	methylation	(DNAm)	pro-
files,	have	gained	traction	as	biomarkers	of	aging	and	organismal	health.	While	the	
ability	of	DNAm	to	predict	chronological	age	has	been	repeatedly	demonstrated,	the	
ability	of	other	epigenetic	features	to	predict	age	remains	unclear.	Here,	we	use	two	
types	of	epigenetic	information—DNAm,	and	chromatin	accessibility	as	measured	by	
ATAC-	seq—to	develop	age	predictors	in	peripheral	blood	mononuclear	cells	sampled	
from	a	population	of	domesticated	dogs.	We	measured	DNAm	and	ATAC-	seq	profiles	
for	71	dogs,	building	separate	predictive	clocks	from	each,	as	well	as	the	combined	
dataset.	We	also	use	 fluorescence-	assisted	cell	 sorting	 to	quantify	major	 lymphoid	
populations	 for	each	sample.	We	 found	 that	chromatin	accessibility	can	accurately	
predict	chronological	age	(R2

ATAC = 26%),	though	less	accurately	than	the	DNAm	clock	
(R2

DNAm = 33%),	and	the	clock	built	from	the	combined	datasets	was	comparable	to	
both	(R2

combined = 29%).	We	also	observed	various	populations	of	CD62L+	T	cells	sig-
nificantly	correlated	with	dog	age.	Finally,	we	found	that	all	three	clocks	selected	fea-
tures	 that	were	 in	or	near	at	 least	 two	protein-	coding	genes:	BAIAP2 and SCARF2,	
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1  |  INTRODUC TION

As	 we	 age,	 physiologic	 function	 steadily	 declines,	 while	 the	 risk	
of	morbidity	 and	mortality	 steadily	 rises	 (Kaeberlein	 et	 al.,	2015).	
Although	age	 is	a	reliable	predictor	of	overall	health	across	a	pop-
ulation,	there	is	substantial	interindividual	variability	in	how	quickly	
we	age,	with	some	aging	faster	or	slower	than	others	(Christensen	
et	al.,	2004).	To	understand	how	and	why	we	age,	research	has	fo-
cused on developing tools to measure this variation and reveal the 
genetic	and	environmental	factors	that	may	influence	it.

One	promising	area	of	study	includes	age-	associated	changes	in	
the	epigenome.	The	epigenome	consists	of	the	collection	of	struc-
tural	and	biochemical	changes	in	the	cell	that	alter	gene	expression	
levels	without	 changing	 the	actual	DNA	sequence,	 including	DNA	
methylation,	 histone	modifications,	 and	 changes	 to	 chromatin	 ac-
cessibility	(Sen	et	al.,	2016).	The	epigenome	integrates	information	
from	 both	 genes	 and	 environment,	 and	 is	 rich	 with	 changes	 that	
correlate	 with	 and	 potentially	 directly	 influence	 organismal	 aging	
(Oberdoerffer	&	Sinclair,	2007;	Sen	et	al.,	2016).	Changes	in	diverse	
epigenetic	elements,	including	global	loss	of	constitutive	heteroch-
romatin	 (Allshire	&	Madhani,	2018;	 Trojer	&	Reinberg,	2007),	 his-
tone	loss	(Dang	et	al.,	2009;	O'Sullivan	et	al.,	2010),	and	global	and	
local	changes	in	DNA	methylation	(Hernandez	et	al.,	2011; Rakyan 
et	al.,	2010;	Teschendorff	et	al.,	2010)	have	all	been	associated	with	
aging	 in	 vertebrate	 systems.	 In	 recent	 years,	 significant	 resources	
have been invested into using epigenetic markers to develop predic-
tive	models	of	age	in	hopes	not	only	of	predicting	chronologic	age,	
but	also	of	estimating	intrinsic	measures	of	overall	health	compared	
to the population mean. Researchers have argued that the amount 
by	which	predicted	age	departs	from	chronological	age	can	be	taken	
as	a	measure	of	underlying	health,	referred	to	as	age	acceleration.

In	 addition	 to	 DNAm-	based	 biomarkers	 of	 age	 (Bocklandt	
et	al.,	2011;	Hannum	et	al.,	2013;	Horvath,	2013;	Levine,	2013),	many	
other	age	predictors	exist,	including	a	wide	range	of	molecular	and	clin-
ical	measurements,	such	as	telomere	 length	(Blackburn	et	al.,	2006),	
gene	 expression	 transcripts	 (Holly	 et	 al.,	2013;	 Peters	 et	 al.,	2015),	
protein	 glycosylation	 and	 abundance	 (Krištić	 et	 al.,	 2014;	 Menni	
et	al.,	2015),	metabolite	levels	(Hertel	et	al.,	2016;	Zhao	et	al.,	2022),	
and composite clinical biomarkers such as systolic blood pressure and 
cholesterol	 levels	 (Belsky	et	 al.,	2015;	 Levine,	2013;	 Li	 et	 al.,	2015).	
Across	 these	 different	 age	 predictors,	 the	 most	 accurate	 and	 well	
characterized	 are	 the	 DNA	 methylation	 (DNAm)	 clocks,	 which	 are	
also	most	 thoroughly	 validated	by	 independent	 studies.	Two	widely	
cited	clocks	are	Horvath's	353	CpG	multi-	tissue	DNAm	age	estimator	

(Horvath,	2013),	and	Hannum's	71	CpG	single-	tissue	DNAm	age	es-
timator	(Hannum	et	al.,	2013).	Both	Horvath's	and	Hannum's	DNAm	
clocks	have	been	shown	to	be	highly	predictive	of	chronological	age	
(Hannum	 et	 al.,	 2013;	 Horvath,	 2013),	 predict	 of	 all-	cause	 mortal-
ity	and	 life	 span	 (Marioni	et	 al.,	2015;	Perna	et	 al.,	2016),	 and	claim	
to measure biologic age or age acceleration in an organism or tissue 
(Horvath,	 2013),	 measures	 that	 can	 sometimes	 predict	 age-	related	
phenotypes	and	diseases	(Bell	et	al.,	2019;	Quach	et	al.,	2017).

Applications	of	 the	DNAm	clock	now	span	many	diverse	areas	
of	clinical	and	biological	research,	including	clocks	that	are	specific	
to	human	 subpopulations	 (Horvath	et	 al.,	2016),	 clocks	developed	
for	nonhuman	mammalian	species,	including	but	not	limited	to	chim-
panzees,	mice,	dogs,	and	humpback	whales	(Ake	Lu	et	al.,	2021;	Ito	
et	al.,	2018;	Maegawa	et	al.,	2010;	Polanowski	et	al.,	2014;	Thompson	
et	al.,	2017),	and	pairing	of	clocks	with	studies	of	life	span-	extending	
interventions	(Sziráki	et	al.,	2018).	A	deeper	understanding	of	how	
these	DNAm	sites	relate	to	age	can	help	further	guide	future	appli-
cations	of	epigenetic	clocks.

In	this	study,	we	sought	to	expand	our	understanding	of	these	
predictive	clocks	and	the	biology	of	aging	by	looking	beyond	DNAm	
measures	of	the	epigenome	and	age.	In	particular,	in	addition	to	CpG	
methylation,	here	we	also	measure	chromatin	accessibility,	building	
two	independent	age	predictors,	as	well	as	one	combined	age	predic-
tor,	from	the	same	tissue	samples.	We	define	chromatin	accessibility	
as	regions	of	open	chromatin	that	are	accessible	specifically	to	the	
modified	transposase	used	 in	 the	assay	 for	 transposase-	accessible	
chromatin	 using	 sequencing	 (Buenrostro	 et	 al.,	 2013;	 ATAC-	seq).	
Chromatin	 accessibility	 as	 measured	 by	 ATAC-	seq	 has	 been	 used	
in	a	wide	variety	of	basic	and	clinical	research	fields,	including	em-
bryonic	development	(Wu	et	al.,	2016),	tumor	development	(Davie	
et	al.,	2015),	and	aging/age-	related	disorders	(Moskowitz	et	al.,	2017; 
Wang	et	al.,	2018).

We	build	and	compare	these	age	predictors	across	a	population	of	
individuals	from	a	relatively	new	model	system	of	aging,	the	compan-
ion	dog	(Canis lupus familiaris).	The	dog	is	an	attractive	model	for	aging	
research	for	a	multitude	of	reasons.	First,	as	the	most	phenotypically	
variable	mammal	on	earth,	dogs	demonstrate	considerable	variation	
across	breeds	not	only	in	morphology	and	behavior	(Sutter	et	al.,	2007; 
Boyko	et	al.,	2010;	MacLean	et	al.,	2019),	but	also	in	life	span	and	dis-
ease	susceptibility	(Fleming	et	al.,	2011;	Hayward	et	al.,	2016).	Larger	
breeds	 tend	 to	 have	 shorter	 life	 spans	 than	 smaller	 breeds	 (Galis	
et	al.,	2007;	Patronek	et	al.,	1997),	suggesting	that	larger	breeds	may	
be	aging	faster	than	smaller	breeds	(Kraus	et	al.,	2013).	This	leads	us	to	
hypothesize	that	for	a	given	age,	individuals	of	larger	breeds	should,	on	

both previously implicated in processes related to cognitive or neurological impair-
ment.	Taken	together,	these	results	highlight	the	potential	of	chromatin	accessibility	
as	a	complementary	epigenetic	resource	for	modeling	and	investigating	biologic	age.

K E Y W O R D S
aging,	ATAC-	seq,	DNA	methylation,	dogs,	epigenetic	clock
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average,	have	an	older	biological	age	than	individuals	of	smaller	breeds,	
as	measured	by	age	acceleration	 in	an	epigenetic	clock.	Second,	 the	
unique	breed-	based	population	structure	of	dogs	results	in	high	levels	
of	genetic	and	phenotypic	homogeneity	within	individual	pure	breeds,	
coupled	with	high	levels	of	genetic	and	phenotypic	heterogeneity be-
tween	breeds	(Lindblad-	Toh	et	al.,	2005;	Ostrander	&	Kruglyak,	2000; 
Parker	et	al.,	2004).	This	structure	affords	researchers	some	level	of	
control	over	genetics	as	well	as	 increased	confidence	when	compar-
ing	measurements	of	trait-	means	across	breeds.	And	lastly,	dogs	share	
our environment in a way that can never be replicated in laboratory 
settings.	They	are	exposed	to	the	same	kinds	of	environmental	factors	
as	people	are,	such	as	second-	hand	smoke,	air	pollution,	and	ambient	
noise.	This	affords	researchers	the	opportunity	to	learn	about	the	ef-
fect	of	these	factors	on	human	health	from	dog	data.

Here,	 we	 measured	 DNA	 methylation	 and	 chromatin	 accessi-
bility	profiles	of	peripheral	blood	mononuclear	cells	 (PBMCs)	from	
71	companion	dogs.	We	used	 reduced	representation	bisulfite	se-
quencing	(Meissner	et	al.,	2005;	RRBS-	seq)	to	measure	DNA	meth-
ylation	and	ATAC-	seq	to	profile	global	chromatin	accessibility.	While	
other	groups	have	built	methylation	age	predictors	from	cohorts	of	
companion	dogs	(Horvath	et	al.,	2022;	Thompson	et	al.,	2017;	Wang	
et	al.,	2020),	our	study	is	the	first	we	know	of	to	profile	both	meth-
ylation	 and	 chromatin	 accessibility	 from	 the	 same	 cohort	 of	 com-
panion	dogs.	With	these	data,	we	developed	a	DNAm	clock	and,	to	
the	best	of	our	knowledge,	 the	first	canine	ATAC-	seq	clock,	and	a	
combined	 DNAm/ATAC	 clock	 for	 estimating	 canine	 age.	We	 also	
carried	out	univariate	modeling	to	estimate	the	effects	of	age	and	
other	biologic	and	environmental	factors	on	each	feature.	We	found	
that	 (1)	 chromatin	 accessibility	 can	 accurately	 predict	 chronologic	
age	 (R2

ATAC = 26%),	 though	 less	 accurately	 than	 the	 DNAm	 clock	
(R2

DNAm = 33%),	 and	 the	 clock	 built	 from	 the	 combined	 datasets	
was	 comparable	 to	 both	 (R2

combined = 29%),	 (2)	 various	 populations	
of	CD62L+	T	cells	significantly	correlated	with	dog	age,	(3)	all	three	
clocks	selected	features	that	were	 in	or	near	at	 least	 two	protein-	
coding genes: BAIAP2 and SCARF2,	 both	 previously	 implicated	 in	
processes	 related	 to	 cognitive	 or	 neurologic	 impairment,	 and	 (4)	
different	 sets	of	meta	data	 features	were	 consistently	 selected	 in	
the	model-	building	process	 for	 the	different	data	 types.	Taken	to-
gether,	this	suggests	that	the	biologic	information	captured	by	age-	
associated	changes	in	chromatin	accessibility	likely	differ	from	those	
captured	 by	 DNAm	 changes,	 demonstrating	 that	 ATAC-	profiled	
chromatin	 accessibility	 may	 offer	 a	 complementary	 biologic	 per-
spective	to	that	of	DNAm	that	may	help	further	elucidate	the	rela-
tionship between the epigenome and age.

2  |  RESULTS

2.1  |  Study cohort

All	dogs	in	this	study	were	recruited	at	Texas	A&M	University,	and	
were	pets	of	staff	and	student	volunteers.	All	animals	were	declared	
to	 be	 healthy	 by	 the	 owner.	 Age,	 breed,	 sex,	 and	 environmental	

survey	information	were	reported	by	each	owner.	Ages	ranged	from	
1	 to	 16 years	 old.	 Sixty-	eight	 out	 of	 71	 animals	 (96%)	were	 steri-
lized,	 so	we	chose	not	 to	 include	sterilization	status	as	a	 factor	 in	
this	study.	The	distributions	of	age	and	breed	size	of	the	cohort	are	
shown in Figure 1a,b,	and	the	breakdown	of	age	and	breed	size	by	
sex	are	shown	in	Figure S1.	There	was	no	correlation	between	age	
and	 breed	 size	 of	 profiled	 dogs	 (Figure 1c).	 The	most	 highly	 rep-
resented	 breeds	 included	 Dachshunds,	 Border	 Collies,	 Labrador	
Retrievers,	and	Australian	Shepherds	(Figure 1d).	However,	the	ma-
jority	of	the	cohort	(60%)	was	composed	of	breeds	represented	by	
only one individual animal.

We	 isolated	 PBMCs	 from	 the	 fresh	whole	 blood	 samples	 and	
split	 them	 two	aliquots—one	used	 for	 flow	 cytometry	 to	measure	
relative	cell	type	proportions,	and	the	other	used	to	measure	chro-
matin	accessibility	and	methylation	using	ATAC-	seq	and	RRBS-	seq,	
respectively.

2.2  |  Cell types and environmental factors 
correlated with age

Our	goal	here	was	to	evaluate	the	relationship	between	epigenetic	
features	and	dog	age.	However,	we	first	determined	if	environmen-
tal	factors	or	PBMC	type	proportions	were	also	correlated	with	age,	
in which case we would include them as potential covariates in our 
statistical	models.	To	do	this,	we	measured	the	correlations	between	
all	owner-	reported	metrics	about	each	animal's	environment,	as	well	
as	cell	type	proportions	as	measured	by	flow	cytometry,	with	animal	
age.	 In	total,	 this	 included	31	different	cell	 types	 (Data	S1)	and	10	
different	categorical	environmental	factors,	including	variables	such	
as	diet	and	exercise	type	(for	full	list,	see	Data	S1).

Across	all	these	variables,	relative	proportions	of	two	cell	types,	
CD62L+/CD44+/CD8+	T	 cells	 and	CD62L+/CD44+/double nega-
tive	(CD4-	/CD8-	;	DN)	T	cells,	were	significantly	correlated	with	age	
(Figure 2a,b),	with	older	animals	having	greater	proportions	of	these	
cells.	CD44+/CD62L+	status	is	commonly	used	to	identify	popula-
tions	of	central	memory	T	cells	in	mice,	humans,	and	sometimes	dogs	
(Nakajima	et	 al.,	2021;	 Sallusto	et	 al.,	2004;	Withers	 et	 al.,	2018),	
which have been shown to increase in number and proportion with 
age	in	humans	(Saule	et	al.,	2006).	In	addition	to	these	two	cell	types,	
exercise	type	was	also	found	to	significantly	vary	with	dog	age,	with	
younger	animals	exhibiting	more	vigorous	exercise	 than	older	ani-
mals,	as	expected	 (Figure 2c).	 In	order	 to	account	 for	variability	 in	
cell	type	proportions	explaining	epigenetic	changes,	all	cell	type	pro-
portions	measured	by	flow	cytometry	were	included	as	features	for	
selection	in	the	subsequent	clock	models.

2.3  |  Functional annotation of epigenetic 
features and their association with age

To	assess	global	properties	of	the	ATAC	and	methylation	datasets,	
we	performed	feature	 level	analysis	on	 individual	ATAC-	seq	peaks	
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and	 RRBS-	seq	 DNAm	 sites	 (15,417	 ATAC	 peaks	 and	 13,336	 CpG	
sites	after	quality	control	filtering,	see	Section	4:	Methods).	First,	we	
mapped	each	locus	to	the	Epigenome	Catalog	of	the	Dog,	a	multi-	
tissue	canine	chromatin	 state	map	 (EpiC	Dog;	Son	et	 al.,	2023)	 to	
approximate	a	 functional	annotation	for	each	feature.	EpiC	Dog	 is	
a	curated	repository	of	regulatory	elements	across	chromatin	data-
sets	collected	from	11	different	tissue	types	in	the	companion	dog	
(Figure S2a;	Son	et	al.,	2023).	PBMCs	were	not	profiled	in	EpiC	Dog,	

so	we	chose	to	compare	to	the	annotations	from	canine	spleen	tis-
sue.	Functional	annotation	of	features	from	both	datasets	revealed	
that	the	vast	majority	of	DNAm	sites	fell	into	inactive,	quiescent	re-
gions	of	the	genome,	while	the	majority	of	ATAC	features	fell	within	
more	active	regulatory	regions,	 including	enhancers	and	transcrip-
tion	start	sites	(Figure S2b).

Next,	we	modeled	each	feature	as	a	function	of	age	to	identify	
age-	associated	ATAC	peaks	 and	DNAm	 sites.	We	 included	weight	

F I G U R E  1 Sample	cohort	information.	
(a,b)	Age	and	estimated	breed	weight	
distribution	of	71	dogs	in	the	cohort.	(c)	
Correlation between age and estimated 
breed	weight.	(d)	Top	10	most	highly	
represented breeds in the cohort.

F I G U R E  2 Cell	types	and	survey	
questions	correlated	with	age.	(a,b)	Out	of	
31	PBMC	types	measured	with	our	flow	
cytometry	panel,	two	types	correlated	
significantly	with	age	as	tested	using	
a	linear	model.	Y	axis	units	represent	
percentage	of	previous	gated	population	
as	measured	by	FlowJo.	See	Data	S2 
for	gating	criteria	and	results.	(c)	Out	of	
the	lifestyle	survey	questions	filled	out	
by	owners,	responses	to	one	question	
(exercise	type)	was	significantly	associated	
with	age	as	tested	using	ANOVA.
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category,	sex,	and	other	meta	features	correlated	with	age	(Figure 2)	
as	 covariates	 in	 the	model	 (Equation 1	 in	Methods).	We	observed	
that	1131	ATAC	peaks	and	40	DNAm	sites	were	significantly	associ-
ated	with	age	(Figure S2c).	For	both	gene	regulatory	measures,	more	
age-	associated	sites	were	decreasing	in	signal	(either	accessibility	or	
methylation)	with	age	rather	 than	 increasing	 (Figure S2c).To	deter-
mine whether or not certain chromatin states were enriched within 
age-	associated	features,	we	performed	Fisher's	exact	tests	on	age-	
associated	 ATAC	 features	 and	 whether	 or	 not	 they	 were	 signifi-
cantly	increasing	or	decreasing	with	age.	Across	the	age-	associated	
ATAC	 features	 we	 observed	 features	 decreasing	 with	 age	 were	
more	 likely	 to	be	enriched	 for	peaks	 that	 fell	 in	active	TSS,	active	
TSS	 flanking	 regions,	 and	 active	weak	 enhancers	 and	 vice	 versa—
features	 increasing	with	age	were	depleted	for	the	same	elements	
(Figure S2d).	We	also	observed	that	the	opposite	pattern	was	true	of	
active	enhancer	and	quiescent	regions—these	regions	were	enriched	
in	ATAC	features	that	were	found	to	significantly	increase	with	age	
(Figure S2d).	 Taken	 together,	 this	 suggests	 that	 typically	 inactive	
regions	of	chromatin	may	become	more	open	and	therefore	active	
with	age,	consistent	with	the	heterochromatin	 loss	model	of	aging	
(Villeponteau,	1997).

2.4  |  The canine epigenetic clock

To	 evaluate	 the	 ability	 of	 our	 methylation	 and	 ATAC-	seq	 data	 to	
predict	 age	 in	our	 cohort	of	 dogs,	we	built	 separate	predictors	of	
age	using	elastic	net	regression	(Equation 2	in	Methods)	performed	
on	each	dataset.	 In	addition	to	evaluating	each	dataset	separately,	
we also tried building a model using both combined datasets to ask 
whether	combining	information	from	both	types	of	epigenetic	land-
scapes	improved	age	prediction.	We	also	included	certain	metadata	
features	including	breed	weight	category	and	all	PBMC	types	from	
flow	cytometry	as	features	available	for	selection	in	our	training	pro-
cess,	which	we	refer	to	as	“meta	features.”

Due	 to	our	 limited	 sample	 size	 (71	dogs)	 and	 large	 feature	 set	
sizes,	we	used	leave-	one-	out	cross	validation	(LOOCV)	approaches	
to	evaluate	the	ability	of	each	data	type	to	predict	age	in	each	data-
set	 using	 elastic	 net	 regression	 implemented	 from	 the	 R	 package	
glmnet	(see	Section	4:	Methods).	Briefly,	we	ran	cv.glmnet()	71	times,	
each	 time	 “manually”	 leaving	out	one	observed	dog,	and	used	 the	
resultant	model	to	predict	the	 left	out	sample	 (Figure 3a).	This	re-
sults	in	71	“final”	models,	each	used	to	predict	the	left	out	sample.	
This	allows	us	to	evaluate	the	predictive	capacity	of	each	data	type	
while	ensuring	that	there	is	no	overfitting	within	the	model	building	
process.

All	three	data	types	demonstrate	similar	accuracy	when	predict-
ing	age	(Figure 3a),	with	the	DNAm	clock	(R2

adj = 0.33,	RMSE = 3.08)	
slightly	 outperforming	 the	 other	 two,	 followed	 by	 the	 com-
bined	 clock	 (R2

adj = 0.29,	 RMSE = 3.15),	 and	 finally	 the	ATAC	 clock	
(R2

adj = 0.26,	 RMSE = 3.22).	While	 the	 correlation	 strength	 of	 pre-
dicted	 versus	 actual	 age	 from	 the	 three	 datasets	 are	 very	 similar,	
the	nature	of	the	models	built	varied	between	the	three	data	types.	

All	ATAC	models	showed	fewer	numbers	of	features	selected	than	
DNAm	 and	 combined	 clocks	 (Figure 3b),	 which	 is	 also	 consistent	
with	 greater	 observed	 mean	 values	 of	 lambda	 selected	 for	 each	
ATAC	clock	(Figure S3a).

To	determine	whether	the	clock	was	better	at	predicting	age	
for	certain	 types	of	breed,	we	partitioned	the	predicted	ages	by	
large,	medium,	and	small	breeds.	Across	all	 three	data	types,	we	
observe	the	strongest	and	most	significant	correlations	between	
predicted	and	actual	age	across	the	large	breeds,	though	it	is	most	
apparent	in	the	ATAC	clock	results	(Figure 3c).	For	all	models,	dogs	
from	small	breeds	showed	the	worst	performance	 in	age	predic-
tion	(Figure 3c).

2.5  |  Gene related to cognitive and neuronal 
function are enriched near sites selected for 
three clocks

To	determine	whether	or	not	there	was	any	biological	significance	
to	 the	 genes	 located	 near	 the	 features	 selected	 for	 each	 clock,	
we	mapped	each	 feature	 to	 the	closest	known	gene	 in	 the	canine	
genome.	 We	 included	 all	 features	 selected	 one	 or	 more	 times	
across	 all	 71	 models	 (nATAC = 147	 features,	 nDNAm = 281	 features,	
nCombined = 324	features).

Six	 genes	 were	 found	 to	 overlap	 between	 the	 three	 clocks	
(Figure 3d),	 two	of	which	are	protein	coding	genes:	BAR/IMD	do-
main	 containing	 adaptor	 protein	 (BAIAP2)	 and	 scavenger	 recep-
tor	 class	F	member	2	 (SCARF2).	BAIAP2	 (also	known	as	 IRSp53),	 a	
brain-	specific	 insulin	 receptor	 tyrosine	kinase	 substrate	which	has	
been	shown	to	be	involved	in	impaired	memory,	learning,	and	other	
cognitive	deficits	in	mouse	models	of	Alzheimer's	(Gatta	et	al.,	2014; 
Kim	et	al.,	2009).	 Increased	SCARF2	expression	has	been	detected	
in	glioblastoma,	an	age-	associated	neurologic	disorder,	compared	to	
regular	brain	tissue	(Kim	et	al.,	2022).

2.6  |  Weight and certain cell types were commonly 
selected as predictive features in certain clocks

To	get	a	sense	of	whether	or	not	certain	meta	features	(PBMC	types	
and	breed	weight	category),	which	were	also	included	as	features	for	
selection	in	the	elastic	net	model	training	process,	are	important	for	
predicting	age,	we	examined	the	71	different	feature	sets	selected	
for	each	data	type.	We	found	that	across	all	the	metadata	features	
(PBMC	types	and	breed	weight	category)	that	were	included	as	op-
tions	for	features	to	be	selected	by	the	elastic	net	training	process,	
only	a	handful	of	features	were	selected	in	greater	than	10	models:	
weight	category,	CD62L-		DN	T	cells,	and	CD62L+	CD8	T	cells	in	14	
of	the	ATAC	models	(Figure 4; Table S1).	Breed	weight	category	was	
selected	as	a	feature	across	all	71	models	in	both	ATAC	and	DNAm	
clocks	(but	not	the	combined	clock),	while	CD62L-		DN	T	cell	propor-
tions	were	selected	 in	almost	all	 (70	out	of	71)	 instances	of	ATAC	
clock	 building,	 but	 only	 once	 or	 twice	 in	 the	DNAm	or	 combined	
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F I G U R E  3 The	canine	epigenetic	clock.	(a)	Comparison	of	age	versus	predicted	age	predicted	from	elastic	net	models	from	71	dogs	for	
three	different	sets	of	features.	(b)	Distribution	of	number	of	features	selected	per	model.	(c)	Results	from	the	top	row	of	(a)	are	split	by	
breed	size	category	for	all	models.	(d)	Numbers	of	genes	closest	to	features	selected	from	each	clock	that	overlap.	Of	the	six	genes	that	are	
found	near	features	selected	for	all	three	clocks,	two	are	associated	with	known	protein-	coding	genes:	BAIAP2 and SCARF2.	All	statistics	
generated	from	ordinary	least	squares	linear	regression.

F I G U R E  4 Meta	features	selected	by	
epigenetic	clocks.	Summary	of	the	number	
of	instances	meta	features	(including	all	
PBMC	types	and	breed	weight	category)	
were	selected	across	all	final	models.	
The	maximum	number	of	instances	each	
feature	can	be	selected	across	each	data	
type	is	71	(one	for	each	dog).
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clocks.	 CD62L+	 CD8	 T	 cells	were	 selected	 in	 14	 of	 the	 71	ATAC	
models	only	(Figure 4; Table S1).

2.7  |  Residual age measures are not associated 
with breed weight

Next,	 we	 evaluated	 the	 ability	 of	 our	 clocks	 to	 assess	 biological	
health	 relative	 to	 a	 dog's	 age,	 that	 is,	 age	 acceleration,	which	 can	
take	on	a	positive	(acceleration)	or	negative	(deceleration)	value.	We	
generated	 an	 estimate	 of	 age	 acceleration	 by	 taking	 the	 residuals	
of	 an	 ordinary	 least	 squares	 linear	 regression	 of	 predicted	 versus	
observed	 age.	 From	 this	 point	 onward,	 we	 refer	 to	 this	 measure	
as	“residual	age.”	Our	method	of	measuring	residual	age	 is	compa-
rable	 to	 the	measures	of	 “age	acceleration”	 from	Horvath's	 clocks	
(Horvath,	2013;	Thompson	et	al.,	2017),	which	have	been	shown	to	
be	predictive	of	overall	health	(Bell	et	al.,	2019;	Horvath	et	al.,	2014; 
Quach	et	al.,	2017).

If	age	acceleration	is	predictive	of	life	span	and	overall	health,	we	
may	expect	to	see	a	positive	relationship	between	residual	age	and	
breed	size.	More	specifically,	we	predict	 that	 larger	breeds,	which	
are	 shorter	 lived	and	age	at	 a	more	 rapid	 rate	 (Kraus	et	 al.,	2013; 
Patronek	et	al.,	1997),	would	show	a	higher	residual	age	than	smaller	
dogs.	To	test	this,	we	modeled	residual	age	as	a	function	of	breed	
size	(as	measured	by	the	mean	weight	of	that	breed	reported	by	the	
American	Kennel	Club)	with	the	three	clocks.	We	did	not	find	any	
strong correlation between residual age and breed weight across any 
of	our	three	clocks	(Figure 5).

Furthermore,	 if	 our	 epigenetic	 age	measures	 both	 represent	 a	
shared	marker	of	biological	aging,	then	we	would	expect	the	resid-
ual	age	measures	to	be	correlated	with	one	another	(i.e.,	 if	a	given	
dog	had	a	positive,	or	“accelerated,”	DNAm	residual	age,	then	they	
would	have	a	similarly	positive	ATAC-	seq	residual	age).	We	found	no	
relationship	between	 residual	 age	 from	 the	methylation	 clock	and	
residual	age	from	any	of	our	three	clocks	(Figure S3b).	Collectively,	
our	data	do	not	provide	evidence	that	residual	age	as	estimated	from	

either	clock	is	predictive	of	breed	size,	and	therefore	likely	life	span,	
in companion dogs.

3  |  DISCUSSION

Here,	we	present	what	is	to	the	best	of	our	knowledge	one	of	the	
first	ATAC-	based	predictors	of	age,	coupled	with	DNAm	and	a	com-
bined	predictor	of	age	from	the	same	set	of	animals.	There	are	three	
notable	 findings	 from	 this	 study	 that	we	highlight	here.	 First,	 this	
study	shows	that	it	is	possible	to	build	an	accurate	predictor	of	age	
using	 chromatin	 accessibility	 data	 as	measured	 by	 ATAC-	seq,	 and	
performs	comparably	to	an	age	predictor	built	from	DNAm	data	or	
one	build	from	both	ATAC	and	DNAm	when	using	a	rigorous,	LOOCV	
approach	to	evaluate	age	prediction	(Figure 3a).

Second,	while	all	three	clocks	are	able	to	predict	age	to	a	compara-
ble	degree,	other	aspects	of	their	performance	and	feature	selection	
suggest	that	each	data	type	captures	different	biologic	information	
about	 the	aging	process,	 and	 thus,	may	each	offer	unique	biologic	
insight	 into	 the	biology	of	 aging.	This	 is	 demonstrated	by	 the	 fact	
that	 the	 three	different	 clocks	 repeatedly	 selected	different	 types	
of	meta	features	(PBMC	types	or	breed	weight;	Figure 4).	While	the	
DNAm	and	combined	clocks	rarely	selected	any	PBMC	types	as	fea-
tures	to	predict	age,	the	ATAC	clock	almost	always	included	one	cell	
type—CD62L-		DN	T	cells—in	 its	 list	of	 features	 for	 age	prediction,	
despite	 the	 fact	 that	 both	 the	 DNAm	 and	 chromatin	 accessibility	
datasets	were	collected	from	the	same	set	of	PBMC	samples.	This	
suggests	that	DNAm	and	chromatin	accessibility	might	be	influenced	
by	 age	 and	 other	 biologic	 and	 environmental	 factors	 in	 different	
ways.	As	such,	while	the	majority	of	efforts	studying	epigenetic	age	
have	been	heavily	focused	on	the	methylome,	we	could	gain	deeper	
insight	into	aging	biology	by	characterizing	and	understanding	other	
features	of	the	epigenome,	such	as	chromatin	structure.

Finally,	while	the	two	types	of	epigenetic	data	can	predict	age,	
we	were	unable	to	find	evidence	for	their	ability	to	capture	biological	
age,	 or	 general	 health,	 of	 the	 animals	 as	 estimated	by	breed	 size/

F I G U R E  5 Residual	age	predictions.	Relationship	between	estimated	breed	weight	and	residual	age	prediction	from	the	three	clocks	from	
the	final	model.
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longevity.	 Neither	 the	 ATAC,	 DNAm,	 nor	 combined	 residual	 age	
measures	correlated	with	breed	(Figure 5).	While	there	is	extensive	
evidence	 in	 human	 studies	 for	 the	 ability	 of	 age	 clocks	 to	 predict	
health	and	longevity	metrics	(Horvath,	2013;	Horvath	et	al.,	2014; 
Marioni	et	al.,	2015;	Perna	et	al.,	2016),	we	were	not	able	to	detect	
it	here	by	using	breed	size	as	an	estimate	for	breed	longevity.	This	
could	be	due	to	many	factors,	 including	a	small	sample	size	of	our	
study,	and/or	noise	from	the	model	building	methods.	Moreover,	we	
lack	diagnostic	health	information,	assuming	instead	that	for	a	given	
age,	 an	 individual	 from	a	 shorter	 lived	breed	would	have	an	older	
biologic	age	than	one	from	a	 longer	 lived	breed.	The	 lack	of	asso-
ciation	with	life	span	might	also	be	a	unique	property	of	epigenetic	
age	predictors	in	canines,	as	at	least	two	previous	dog	clock	studies	
have	also	tried	and	failed	to	find	association	between	biologic	age	
as	 estimated	 by	 DNAm	 clocks	 and	 breed	 size/longevity	 (Horvath	
et	al.,	2022;	Thompson	et	al.,	2017).

At	 least	 three	other	 studies	have	used	DNA	methylation	data	
to	build	predictors	of	age	in	dogs.	The	first	study	to	do	so	was	de-
scribed	by	(Thompson	et	al.	(2017)),	followed	by	(Wang	et	al.	(2020)),	
and	most	recently,	 (Horvath	et	al.,	2022).	While	all	of	 these	stud-
ies,	 ours	 included,	 successfully	 built	 DNAm	 clocks	 in	 companion	
dogs,	each	 reveals	unique	aspects	of	 the	canine	epigenetic	clock.	
The	Thompson	study	was	the	first	to	compare	the	DNAm	clock	in	
dogs	to	ones	built	from	wolves	and	humans	(Thompson	et	al.,	2017).	
Wang	et	al.	demonstrated	that	syntenic	regions	of	the	mammalian	
DNA	methylome	that	change	with	age	can	be	used	to	predict	age	
across	 species,	 specifically	dogs	and	mice,	 and	 that	 these	 regions	
occur	in	modules	of	developmental	genes	(Wang	et	al.,	2020).	Most	
recently,	 Horvath	 et	 al.	 built	 individual	 and	 shared	DNAm	 clocks	
between	a	 large	cohort	of	dogs	and	humans.	While	they	failed	to	
find	 association	 between	 biologic	 age	 as	 directly	 estimated	 from	
their	DNAm	clocks,	 they	built	a	novel	predictor	of	 “average	time-	
to-	death,”	which	generated	estimates	that	were	 indeed	predictive	
of	breed	weight	and	longevity	(Horvath	et	al.,	2022).	In	our	study,	
given	our	small	cohort	and	relatively	small	number	of	breeds	with	
sufficient	 representation,	we	 lacked	 the	statistical	power	 to	build	
a	 rigorous	 time-	to-	death	clock.	Rather,	our	primary	objective	was	
to	compare	 two	different	 types	of	epigenetic	 information	using	a	
single	population	of	dogs.

Several	 caveats	 should	 be	 considered	 here.	 First,	 the	 sample	
size	 (n = 71	dogs)	 is	 relatively	small,	and	while	we	are	still	able	 to	
build	 a	 highly	 predictive	 age	 model	 with	 this	 group	 of	 animals,	
the	 lack	 of	 correlation	 of	 our	 residual	 age	 measures	 with	 breed	
or	 life	 expectancy	might	 be	 due	 to	 lack	 of	 statistical	 power.	We	
also	acknowledge	 that	 the	distribution	of	dog	breeds	 included	 in	
this	dataset	is	skewed	toward	larger	breeds,	which	may	impact	the	
models shown in Figure 3c.	However,	 due	 to	 the	 fact	 that	 other	
studies	 have	 reported	 similar	 observations	 of	 more	 accelerated	
aging	 in	 larger	dogs	 (Rubbi	et	al.,	2022),	we	feel	this	result	 is	still	
important	to	highlight.	In	the	future,	the	Dog	Aging	Project	(Creevy	
et	al.,	2022),	will	build	epigenetic	clocks	in	a	set	of	over	1000	dogs	
followed	 longitudinally	over	 the	course	of	 their	 lives.	Our	 results	
establish	 the	 feasibility,	 and	 provide	 us	 with	 a	 lower	 bound	 on	

efficacy	 for	 such	measures.	 These	 future	 studies	will	 include	 ef-
forts	to	build	not	only	a	global	biologic	clock	for	all	dogs,	but	breed-	
specific	ones	as	well.

Second,	 the	 demographic	 data	 for	 the	 dogs	 in	 this	 study,	 in-
cluding	age	and	breed,	were	reported	by	the	owners	and	have	not	
been	verified	through	objective	measures	(e.g.,	veterinary	electronic	
medical	records,	registration	records).	While	we	have	no	reason	to	
believe	 any	 of	 the	 self-	reported	 responses	 are	 inaccurate,	 we	 ac-
knowledge	that	information	about	pets,	particularly	age	and	breed,	
are not always well documented and might be subject to error.

Despite	these	caveats,	our	results	point	to	the	exciting	new	land-
scape	of	studies	of	health	and	aging	now	being	pursued	in	compan-
ion	dogs.	The	unique	breed	structure	and	highly	variable	longevity	
patterns	 of	 the	 domestic	 dog	 offer	 straightforward	 aging-	related	
hypotheses	 to	 generate	 and	 test.	 Dogs	 suffer	 from	 many	 of	 the	
same	diseases	as	humans	do	(Hoffman	et	al.,	2018),	with	a	concom-
itantly	sophisticated	health-	care	system,	and	are	exposed	to	many	
of	 the	 same	 environmental	 risk	 factors	 as	 humans.	 Furthermore,	
canine	 health	 itself,	 independent	 from	modeling	 human	 health,	 is	
an	important	area	of	study,	motivated	by	the	fact	that	owners	care	
a	great	deal	about	their	canine	companions.	Thus,	there	is	tremen-
dous	potential	 for	 canine	biologic	 and	 chronological	 age	 clocks	 to	
be	applied	in	diverse	contexts.	These	clocks	have	the	potential	not	
only	to	inform	us	about	the	health	of	pets,	but	also	to	generate	very	
accurate	estimates	of	chronological	age,	as	the	majority	of	adopted	
or	rescued	animals	have	no	veterinary	records	with	which	to	inform	
owners	about	age.	We	hope	that	studies	such	as	ours	will	generate	
more	 enthusiasm	 and	 excitement	 about	 using	 companion	 dogs	 to	
learn about human health.

4  |  METHODS

4.1  |  Study cohort

We	 measured	 chromatin	 accessibility	 and	 methylation	 status	 of	
PBMCs	in	71	healthy	companion	dogs	using	ATAC-	seq	and	RRBS-	
seq,	respectively.	All	dogs	were	recruited	at	Texas	A&M	University	
and	comprised	of	pets	of	staff	and	student	volunteers.	All	animals	
were	 declared	 to	 be	 healthy	 by	 the	 owner,	 although	 no	 formal	
veterinary	 exams	were	 performed.	 Age,	 breed,	 and	 environmen-
tal	 survey	 information	were	 reported	by	 each	owner.	 Sixty-	eight	
out	of	71	animals	were	sterilized,	so	we	chose	not	to	include	steri-
lization	status	as	a	 factor	 in	 this	 study.	 Individual	animal	weights	
were	not	recorded.	Average	adult	breed	weight	as	reported	by	the	
American	 Kennel	 Club	 in	 2012	 was	 used	 throughout	 the	 analy-
sis.	All	procedures	for	this	study	were	reviewed	and	approved	by	
the	TAMU	 Institutional	Animal	Care	 and	Use	Committee	 (IACUC	
2016–0224	CA).	Because	dog	owners	provided	information	about	
their	dogs	in	the	home	environment,	the	study	was	also	reviewed	
and	approved	by	the	TAMU	Institutional	Review	Board	(IRB2016-	
0532D).	 Informed	 consent	 was	 obtained	 from	 all	 owners	 at	 the	
time	of	enrollment.
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The	distributions	of	age	and	breed	size	of	the	cohort	are	shown	
in Figure 1a,b.	There	was	no	correlation	between	age	and	breed	size	
of	 profiled	 dogs	 (Figure 1c).	 The	 most	 highly	 represented	 breeds	
included	 Dachshunds,	 Border	 Collies,	 Labrador	 Retrievers,	 and	
Australian	 Shepherds	 (Figure 1d).	 However,	 the	 cohort	 was	 com-
posed	primarily	of	breeds	represented	by	only	one	individual	animal.

Whole	 blood	 was	 drawn	 and	 PBMCs	 were	 isolated	 in	 Texas,	
cryopreserved	 (detailed	 below),	 and	 then	 shipped	 to	 Seattle,	
Washington	where	the	remaining	epigenetic	profiling	and	analyses	
were	performed.

4.2  |  Sample collection and PBMC isolation

Using	 a	 needle	 and	 syringe,	 blood	 (5 mL)	 was	 collected	 from	 a	
peripheral vein by routine venipuncture and immediately trans-
ferred	to	K2EDTA	vacutainers.	Blood	was	mixed	with	an	equal	vol-
ume	of	 2%	 fetal	 bovine	 serum	 (HyClone)	 in	 phosphate	 buffered	
saline	 (HyClone),	 and	 transferred	 to	a	barrier	 tube	 (SepMate-	15,	
StemCell	 technologies)	 prefilled	with	 4.5 mL	 of	 density	 gradient	
medium	 (Lymphoprep	 1.077,	 StemCell	 technologies).	 After	 cen-
trifugation	at	1200 g	for	15 min	at	room	temperature,	the	superna-
tant	was	collected	and	washed	three	times	with	10 mL	of	2%	fetal	
bovine	 serum	 in	 phosphate	 buffered	 saline	 by	 centrifugation	 at	
300 g	for	10 min	at	room	temperature.	Based	on	a	hemocytometer	
count,	 cells	were	 resuspended	 at	 a	 concentration	 of	 1 × 106 per 
mL	 in	 fetal	bovine	serum	with	10%	DMSO.	After	25 min	 incuba-
tion	at	 room	temperature,	 the	cells	were	 transferred	to	a	−80°C	
freezer	within	a	Styrofoam	container.	Samples	were	held	at	−80°C	
for	a	maximum	of	4 days	before	shipping	on	dry	ice.	Once	arriving	
in	Seattle,	samples	were	rapidly	thawed	at	37°C	for	60 s,	a	small	
volume	was	stained	with	Trypan	Blue,	and	 then	counted	using	a	
hemocytometer to obtain cell concentration and viability esti-
mates.	 Samples	were	 then	 immediately	 distributed	 into	 aliquots	
for	downstream	analyses,	including	ATAC-	seq,	RRBS-	seq,	and	flow	
cytometry analysis.

4.3  |  ATAC- seq library preparation

ATAC-	seq	 was	 performed	 on	 canine	 PBMCs	 largely	 following	
the	 original	 protocol	 from	 (Buenrostro	 et	 al.	 (2013)),	 with	 some	
modifications	(Kakebeen	et	al.,	2020).	Briefly,	250,000	cells	were	
washed	3x	in	1x	PBS	by	spinning	for	2 min	at	2000 g.	In	contrast	to	
the	original	published	methods,	we	skipped	the	cell	lysis	step	and	
moved immediately to the transposition reaction by adding the 
transposition	buffer	and	 transposase	directly	 to	 the	washed	cell	
pellet.	Transposition	was	carried	out	at	37°C	for	1 h.	DNA	from	the	
transposed	sample	was	then	purified	using	a	Qiagen	Minelute	kit	
as	per	manufacturer's	 instructions.	PCR	amplification	of	purified	
DNA	was	 then	 conducted	 using	 Nextera	 PCR	 primers	 and	 NEB	
Next	High-	Fidelity	2x	PCR	Master	Mix	(cat	no.	M0541s)	using	the	

recipe	 and	 cycling	 program	 as	 previously	 described	 (Buenrostro	
et	al.,	2013).	Amplification	was	monitored	 in	parallel	using	qPCR	
in	order	 to	 reduce	GC	and	 size	bias.	The	amplified	 reaction	was	
then	 purified	 using	 a	 Qiagen	 PCR	 Cleanup	 kit.	 The	 final	 library	
was	eluted	in	Qiagen	Elution	Buffer	(10 mM	Tris	Buffer,	pH 8)	and	
stored	at	−20°C	until	ready	for	sequencing.

Samples	were	prepared	as	described	above	in	batch	sizes	rang-
ing	from	6	to	12	samples.	After	all	the	samples	were	processed,	all	
libraries	were	pooled	for	sequencing	using	the	Illumina	Nextseq	500	
High	Output	Kit	at	the	Brotman	Baty	Institute	at	the	University	of	
Washington.

4.4  |  ATAC- seq data analysis

Software	and	parameters	used	for	adaptor	trimming,	read	alignment,	
and	peak	calling	parameters	were	followed	as	described	in	(Kakebeen	
et	 al.,	 2020).	 Briefly,	 adapters	 were	 trimmed	 from	 reads	 and	 low-	
quality	 sequences	 (Phred	 <33)	 were	 removed	 using	 Trim	 Galore!	
(https://	github.	com/	Felix	Krueg	er/	TrimG	alore	).	 Reads	 were	 aligned	
to	 CanFam	 3.1	 using	 Bowtie2	 (option:–very-	sensitive)	 (Langmead	
&	 Salzberg,	 2012).	 Duplicate	 reads	 were	 marked	 using	 Picard	
“MarkDuplicates”	(http:// broad insti tute. github. io/ picard/ ).	Duplicate	
reads	were	removed	using	SAMtools	(Danecek	et	al.,	2021).

A	consensus	peak	set	was	used	to	determine	feature	signal	for	
all	samples.	The	consensus	peaks	were	called	on	a	merged	BAM	file	
composed	of	 equally	 subsampled	 reads	 from	all	 donors	 in	 the	ex-
periment.	Peaks	with	summits	that	were	closer	than	500 bp	to	one	
another	were	merged	and	considered	as	a	single	feature.	Peaks	were	
filtered	to	include	peaks	with	a	median	coverage	of	>20 reads across 
all	samples.	Peaks	that	mapped	to	mitochondrial	or	DNA	scaffolds	
were	also	removed.	After	filtering,	15,417	features	remained	in	the	
dataset.

Count values were then converted to reads per kilobases mapped 
(RPKM)	by	dividing	the	number	of	reads	at	each	peak	region	by	the	
peak	width	(estimated	from	Macs2	peak-	calling	software)	and	total	
reads	mapped	for	each	sample.	These	values	were	then	 log	trans-
formed,	centered,	and	scaled	prior	to	model	building.

4.5  |  RRBS seq library preparation

RRBS	libraries	were	generated	from	~300 ng	of	DNA	extracted	from	
canine	PBMCs	following	a	modified	version	of	Boyle	et	al.	 (2012).	
A	detailed	protocol	can	be	found	at	https:// doi. org/ 10. 17504/  proto 
cols.	io.	e6nvw	kxb9v	mk/	v1

4.6  |  RRBS seq data analysis

Samples	 were	 sequenced	 on	 the	 Illumina	 NovaSeq	 6000	 plat-
form	 at	 the	Northwest	Genomics	Center.	 Sequenced	 reads	were	

https://github.com/FelixKrueger/TrimGalore
http://broadinstitute.github.io/picard/
https://doi.org/10.17504/protocols.io.e6nvwkxb9vmk/v1
https://doi.org/10.17504/protocols.io.e6nvwkxb9vmk/v1
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trimmed	 with	 software	 Trim	 Galore!,	 and	 trimmed	 reads	 were	
mapped	to	the	dog	genome	(CanFam	3.1).	Total	methylated	and	un-
methylated	CpG	sites	were	counted	from	mapped	reads.	CpG	sites	
were	filtered	to	include	sites	with	a	mean	depth	of	5X	and	median	
methylation	level	between	0.1	and	0.9	to	exclude	constitutively	hy-
per-		or	hypo-	methylated	sites.	Sites	that	mapped	to	mitochondrial	
or	 scaffold	DNA	were	 also	 removed.	After	 filtering,	 14,336	 sites	
remained	 in	 the	 dataset.	 These	 values	were	 centered	 and	 scaled	
prior to model building.

4.7  |  Flow cytometry

Cryopreserved	canine	PBMC	samples	were	thawed	in	a	37°C	water	
bath,	half	of	 the	amount	of	 each	 sample	was	used	 for	 flow	cyto-
metrical	staining,	and	half	was	refrozen	for	future	analysis.	Samples	
for	flow	cytometry	were	transferred	into	50 mL	conical	tubes	and	
diluted	in	RPMI-	1640	culture	media.	Cells	were	washed	twice	with	
RPMI-	1640	by	spinning	at	300 g	for	8 min,	the	resulting	cellular	pel-
lets	were	resuspended	in	50 μL	of	FACS	staining	buffer	(2%	fetal	bo-
vine	serum	in	PBS)	and	stained	with	18 μL	of	antibody	cocktail,	which	
includes	FITC-	conjugated	anti-	canine	CD3	clone	CA17.2A12	 (Bio-	
Rad	MCA1774F),	PE-	Cyanine	7-	conjugated	anti-	canine	CD4,	clone	
YKIX302.9	 (eBioscience	 25–5040-	42),	 Pacific	 Blue-	conjugated	
anti-	canine	 CD8,	 clone	 YCATE55.9	 (Bio-	Rad	MCA1039PB),	 APC-	
AlexaFluor	 750-	conjugated	 anti-	human	 CD11b	 clone	 Bear1	
(Beckman	 Coulter	 A97052),	 Brilliant	 Violet	 605-	conjugated	 anti-	
human	 CD14,	 clone	 M5E2	 (Becton	 Dickenson	 564,054),	 Alexa	
Fluor	 647-	conjugated	 anti-	canine	CD21,	 clone	CA2.1D6	 (Bio-	Rad	
MCA1781A647),	 Brilliant	 Violet	 785-	conjugated	 anti-	mouse/
human	CD44,	clone	IM7	(Biolegend	103,059),	PE-	conjugated	anti-	
human	CD62L	 clone	 FMC46	 (Bio-	Rad	MCA1076PE),	 and	Brilliant	
UltraViolet	395-	conjugated	anti-	human	CD94,	 clone	HP-	3D9	 (BD	
OptiBuild	743954).	Cells	were	stained	for	20 min	at	4°C	and	washed	
twice	with	FACS	staining	buffer.	After	the	last	wash,	stained	cells	
were	 resuspended	 in	 FACS	 buffer	 containing	 7-	AAD	 (1:500	 di-
lution)	 and	 immediately	 run	 on	 an	 LSR	 Fortessa	 flow	 cytometer	
(BD	Biosciences).	Data	were	 analyzed	 using	 FlowJo	 10.	Doublets	
were	 excluded	 based	 on	 FSC-	A/FSC-	H	 and	 SSC-	A/SSC-	H	 gating.	
Lymphocytes,	monocytes,	and	granulocytes	were	gated	based	on	
FSC-	A	and	SSC-	A	parameters,	confirmed	by	 lineage-	restricted	ex-
pression	of	CD11b	and	CD14.	T	cells	were	defined	as	CD3+/CD21-		
lymphocytes,	 B	 cells	were	 defined	 as	CD3-	/CD21+	 lymphocytes,	
NK	cells	were	defined	as	CD3-	/CD21-	/CD94+ lymphocytes; within 
T	cells	we	identified	the	following	populations:	CD94+	T	cells	de-
fined	 as	 CD3+/CD21-	/CD94+ lymphocytes and conventional 
CD94-		T	 cells	 defined	 as	CD3+/CD21-	/CD94-		 lymphocytes.	CD4	
and	CD8	T	cells	were	defined	within	CD94-		T	cells	as	CD4+/CD8-	/
CD3+/CD21-	/CD94-		lymphocytes	and	CD4-	/CD8+/CD3+/CD21-	/
CD94lymphocytes,	 respectively.	 Double-	positive	 and	 double-	
negative	T	cells	were	defined	within	CD94-		T	cells	as	CD4+/CD8+/
CD3+/CD21-	/CD94-		 lymphocytes	 and	CD4-	/CD8-	/CD3+/CD21-	/
CD94-		 lymphocytes,	 respectively.	 Within	 CD4	 and	 CD8	 T	 cells,	

we	defined	CD62L-		and	CD62L+	subsets	as	well	as	CD44Low	and	
CD44High	subsets.

4.8  |  Statistical analysis

All	data	analysis	and	visualization	were	performed	using	the	statisti-
cal	analysis	software	package	R	version	4.1+	 (R	Core	Team,	2018).	
P-	values	were	adjusted	for	multiple	comparisons	using	the	Benjamini–
Hochberg–Yekutieli	procedure	(Benjamini	&	Hochberg,	1995).

4.8.1  |  Age-	associated	features

We	 used	 ordinary	 least	 squares	 linear	 models	 to	 identify	 age-	
associated	peaks,	modeling	 each	 feature	 as	 a	 function	of	 age	 and	
other	covariates,	which	included	estimated	breed	weight,	sex,	exer-
cise	 level,	CD62L+/CD44+/CD8+	T	cell	proportion,	and	CD62L+/
CD44+/DN	T	cell	proportion.	The	 latter	 three	covariates	were	 in-
cluded	because	all	are	associated	with	age	(Figure 2):

4.8.2  |  Chromatin	state	annotation

We	performed	the	annotation	of	age-	associated	ATAC	peaks	and	CpG	
sites	 by	 utilizing	 genomic	 feature	 annotations	 sourced	 from	multiple	
references.	Specifically,	chromatin	state	information	was	obtained	from	
the	Epigenome	Catalog	of	the	Dog.	CpG	islands	were	extracted	from	the	
UCSC	Genome	Browser,	specifically	for	the	CanFam3.1	genome	assem-
bly.	Additionally,	information	pertaining	to	gene	promoters	and	genes	
was	also	obtained	from	the	UCSC	repository	utilizing	the	CanFam3.1	
reference	genome.	All	annotations	were	carried	out	using	a	combina-
tion	of	Bedtools	Intersect	(bedtools	v2.31.0)	and	FindOverlaps()	func-
tion	from	the	GenomicRanges	package	in	R	(package).

4.8.3  |  Chromatin	state	enrichment	analysis

We	conducted	a	chromatin	state	enrichment	analysis	using	a	Fisher's	
exact	test	in	R	using	fisher.test	()	to	investigate	the	relationship	be-
tween	 chromatin	 states	 (designated	 as	 1–13)	 and	 age-	associated	
ATAC	peaks	categorized	as	increasing	or	decreasing.

4.8.4  |  Epigenetic	clocks

We	 use	 the	 R	 package	 glmnet	 (version	 4.1–4)	 to	 build	 epigenetic	
clocks	using	either	ATAC-	seq	or	RRBS-	seq	data.	We	used	an	elastic	
net	model	using	the	loss	function

(1)Feature ∼ age + weight + sex + exercise + cell. CD8 + cdll. DN
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where N	 is	 the	number	of	 samples,	yi	 is	 the	 age	of	dog	 i,	 and	x is 
the	epigenetic	profile.	The	model	 is	built	with	two	parameters,	 in-
cluding	 a	mixing	parameter	 alpha	 (α)	 and	 a	 regularization	parame-
ter	 lambda	(λ).	Briefly,	α determines whether or not the model will 
use	Ridge	regression	(α = 0),	Lasso	regression	(α = 1),	or	a	mixture	of	
both	(0 < α < 1).	The	role	of	the	regularization	parameter	is	to	mini-
mize	mean-	squared	error.	The	greater	the	value	of	λ,	the	greater	the	
penalty	and	 the	 smaller	 the	overall	 coefficient	 size	of	 the	models.	
We	trained	our	models	by	setting	α	to	0.5	(elastic	net,	or	an	equal	
balance	 between	 Ridge	 and	 Lasso)	 and	 optimizing	 λ.	 We	 used	 a	
leave-	one-	out-	cross	validation	 (LOOCV)	approach.	Specifically,	we	
used	the	function	cv.glmnet,	but	“manually”	excluded	a	single	ob-
servation	each	time,	resulting	in	one	model	per	dog	per	data	type.	
The	predicted	ages	from	this	method	are	shown	 in	Figure 3a.	The	
distributions	of	the	number	of	features	and	optimal	 lambda	values	
from	each	of	these	models	are	shown	in	Figure 3b and Figure S3a,	
respectively.
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