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SUMMARY
Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of indi-
viduals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve predic-
tion accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human ge-
netic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix
demonstrated amean prediction accuracy improvement of 1.20-fold (95%confidence interval [CI], [1.10; 1.3];
p = 9.17 3 10�5) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 3 10�6), and PRSmix+ improved the prediction
accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 3 10�6) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 3
10�7) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combi-
nation methods with scores from pre-defined correlated traits, we demonstrated that our method improved
prediction accuracy for coronary artery disease up to 3.27-fold (95%CI, [2.1; 4.44]; p value after false discov-
ery rate (FDR) correction = 2.63 10�4). Our method provides a comprehensive framework to benchmark and
leverage the combined power of PRS for maximal performance in a desired target population.
INTRODUCTION

Thousands of polygenic risk scores (PRSs) have been developed

to predict an individual’s genetic propensity to diverse pheno-

types.1 PRSs are generated when risk alleles for distinct pheno-

types are weighted by their effect size estimates and summed.2

Risk alleles included in PRS have traditionally been identified

from genome-wide association study (GWAS) results conducted

on a training dataset, which are weighted and aggregated to

derive a PRS to predict distinct phenotypes. The association be-

tween PRS and the phenotype of interest is subsequently evalu-

ated in a test dataset that is non-overlapping with the training

dataset.3

Most PRS have been developed in specific cohorts that may

vary in terms of population demographics, admixture, environ-

ment, and SNP availability. Limited validation of many PRSs
This is an open access article under the CC BY-N
outside of the training datasets and poor transferability of

PRSs to other populationsmay limit their clinical utility. However,

pooling of data from individual PRSs generated and validated in

diverse cohorts has the potential to improve the predictive ability

of PRSs across diverse populations. The Polygenic Score (PGS)

Catalog is a publicly available repository that archives SNP effect

sizes for PRS estimation. The SNP effect sizes were developed

from various methods (e.g., P + T,4 LDpred,5,6 PRS-CS7) to

obtain the highest prediction accuracy in the studied dataset.

PRS metadata enable researchers to replicate PRSs in indepen-

dent cohorts and aggregate SNP effects to refine PRSs and

enhance the accuracy and generalizability in broader popula-

tions.8 However, optimizing PRS performance requires method-

ological approaches to adjust GWAS estimate effect sizes

that take into account correlated SNPs (i.e., linkage disequilib-

rium) and refine the PRS for the target population.4,5,7,9–12
Cell Genomics 4, 100523, April 10, 2024 ª 2024 The Author(s). 1
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Figure 1. The framework of the trait-specific and cross-trait PRS integration

In phase 1, we obtained the SNP effects from the PGSCatalog and then harmonized the effect alleles as the alternative alleles in the independent cohorts. In each

independent biobank (AoU, G&H), we estimated the PRS and split the data into training (80%) and testing (20%) datasets. In phase 2, in the training dataset, we

trained the Elastic Net model with high-power scores to estimate the mixing weights for the PRSs. The training phase could include PRSs from traits corre-

sponding to outcomes (PRSmix) or all traits (PRSmix+). The training was adjusted for age, sex, and 10 principal components (PCs). In phase 3, we adjusted the

per-allele effect sizes from each single PRS by multiplying with the corresponding mixing weights obtained in the training phase. The final per-allele effect sizes

are estimated as theweighted sum of the SNP effects across different single scores. In phase 4, we evaluated the re-estimated per-allele effect sizes in the testing

dataset.
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Furthermore, numerous scores are often present for single traits

with varied validation metrics in non-overlapping cohorts. There

is a lack of standardized approaches combining PRSs from this

growing corpus to enhance prediction accuracy and generaliz-

ability while minimizing bias for a target cohort.8,11,13 Addition-

ally, recent studies have selected scores based on prior knowl-

edge of clinical risk factors to the main traits.8,14,15 However,

this strategy may neglect important information from other traits.

Our study leverages the diversity of traits analyzed across co-

horts and PRS methodologies.

To address these issues, we sought to (1) validate previously

developed PRSs in two geographically and ancestrally distinct

cohorts, the All of Us (AoU) Research Program and the Genes &

Health (G&H) cohort, and (2) present and evaluate new methods

for combining previously calculated PRSs to maximize perfor-

mance beyond all best-performing published PRSs. To aggre-

gate the genetic information across different sources, we pro-

posed PRSmix, a framework to combine the PRS from the

same trait with the outcome trait. Previous studies highlighted

the effect of pleiotropic information on a trait’s genetic architec-

ture.14,16 Therefore, we proposed PRSmix+ to additionally

combine PRSs from other genetically correlated traits to further

improve the PRS for a given trait.

To assess the prediction improvement, we performed PRSmix

and PRSmix+ for 47 traits in European ancestry and 32 traits in

South Asian ancestry. We evaluated (1) the relative improvement

of the proposed framework over the best-performing pre-exist-

ing PRS for each trait; (2) the efficient training sample sizes

required to improve the PRS; (3) the predictive improvement in

six groups, namely anthropometrics, blood counts, cancer, car-
2 Cell Genomics 4, 100523, April 10, 2024
diometabolic, biochemistry, and other conditions; and (4) the

clinical utility and pleiotropic effect of the newly built PRS for cor-

onary artery disease (CAD). Overall, we show that PRSmix and

PRSmix+ significantly improved prediction accuracy. An Rpack-

age for preprocessing and harmonizing the SNP effects from the

PGSCatalog aswell as assessing and combining the scores was

developed to facilitate the combining of pre-existing PRSs for

both ancestry-specific and cross-ancestry contexts using the to-

tality of published PRSs. The development of this framework has

the potential to improve precision health by improving the gener-

alizability in the application of PRSs.17

RESULTS

Overview of methods
A single PRSmay only reflect genetic effects captured in the dis-

covery dataset of a single study that may be only a part of the to-

tal genetic effects underlying the trait of interest. Therefore, we

harmonized and combined multiple sets of PRSs to establish a

new set of scores, which gather information across studies

and traits. Our approach leveraged multiple well-powered

PRSs to improve prediction accuracy and is detailed in Figure 1.

Our combination frameworks leveraged the PGS Catalog18 as

the resource of SNP effects to estimate single PRSs. To avoid

overfitting, we used AoU and G&H cohorts (see STAR Methods)

due to non-overlapping samples from the original GWAS. We

randomly divided the target cohort into a training set (80%)

and a testing set (20%). We selected traits from the PGS Catalog

that have the highest number of PRSs. For the stability of the

linear combination, we curated binary traits with a prevalence
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Figure 2. Simulations to demonstrate the predictive improvement of PRSmix and PRSmix+

(A and B) The points and triangles represent the mean fold ratio of R2 between (A) PRSmix and (B) PRSmix+, respectively, versus the best single PRS.

(C) The improvement per logarithmwith base 10 of sample size for various heritabilities was represented as a slope of a linear regression of fold ratio�log10(N). In

simulations, the correlation within simulated trait-specific PRSs was 0.8, and the correlation between trait-specific and correlated PRSs was 0.4 (see STAR

Methods). The whiskers demonstrate CIs across 200 replications. The dashed red lines represent the reference for fold ratio equal to 1 for (A) and (B), and equal to

0 for (C).
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>2% in the target cohort. Continuous traits were assessed using

incremental R2, which is estimated as the difference between the

full model of PRS and covariates (age, sex, and 10 principal com-

ponents [PCs]) and the null model of only covariates. For binary

traits, the prediction accuracy was converted to liability R2 with

disease prevalence approximated as the prevalence in the cor-

responding cohort.

To combine the scores, we employed Elastic Net19 to

construct linear combinations of the PRS. We proposed two

combination frameworks: (1) PRSmix combines the scores

developed from the same outcome trait, and (2) PRSmix+ com-

bines all the high-power scores across other traits. Trait-specific

combinations, PRSmix, can leverage the PRSs developed from

different studies and methods to more fully capture the genetic

effects underlying the traits. It has also been shown that complex

traits are determined by genes with pleiotropic effects.14 There-

fore, we additionally proposed a cross-trait combination,

PRSmix+, to make use of pleiotropic effects and further improve

prediction accuracy.

First, we evaluated the improvement for each method, defined

as the fold ratio of the method compared to the prediction accu-

racy of the best single PRS. For a fair comparison with the pro-

posed framework, we selected the best-performing PRS from

the set of traits matched with the outcome trait from the training

set and evaluated by incremental R2 in the testing set. First, we

performed simulations to assess the improvement with various

heritabilities and training sample sizes. We estimated the slope

of improvement of prediction accuracy by increasing training

sample sizes for various heritabilities.

Next, we applied the proposed frameworks in two distinct co-

horts: (1) the AoU program, in which 47 traits were tested in US
residents of European ancestry; and (2) the G&H cohort, in which

32 traits were tested in British South Asian ancestry (Table S1). In

each cohort, we compared the improvement of our proposed

framework with the single best score from the PGS Catalog.

We estimated the averaged fold ratio as a measure of the

improvement of prediction accuracy by our approach compared

to the best single score from PGS Catalog. We also classified

the traits into six categories as anthropometrics, blood counts,

cancer, cardiometabolic, biochemistry, and other conditions

(Tables S2 and S3). Cancer traits were not considered in the

younger G&H cohort due to their low prevalence (<2%). We

then present additional detailed analyses for CAD focused on

clinical utility improvements relative to existing PRSs.

Simulations were used to evaluate the combination
frameworks
To compare the performance of PRSmix and PRSmix+ against

the best single PRS and evaluate the sample sizes needed for

training the mixing weights, we performed simulations with real

genotypes of European ancestry in the UK Biobank given the

large sample sizes available (Figure 2). Briefly, we randomly

split 7,000 individuals as a testing dataset mimicking the testing

size of 20% of real data. In the remaining dataset, we used

200,000 individuals for GWAS to estimate the SNP effect sizes

for PRS calculations. Finally, with the rest of the data, we

randomly selected different sample sizes as the training sample

to evaluate the sample sizes needed to train the mixing

weights. To assess the improvement of PRS performance, we

computed the fold ratio of prediction accuracy R2 between

PRSmix and PRSmix+ against the best-performing single simu-

lated PRS.
Cell Genomics 4, 100523, April 10, 2024 3



Article
ll

OPEN ACCESS
Our results showed that the trait-specific combination,

PRSmix, showed no improvement with the training sample

smaller than 500 for most of the traits. Our simulations illustrated

that traits with low heritability required a larger sample size to

achieve an improvement compared to traits with high heritability

(Figures 2A and 2B). PRSmix demonstrated a better perfor-

mance compared to the best single PRS with training sample

sizes from Ntraining = 200 samples for the high heritable trait

(h2 = 0.4) to Ntraining = 5,000 samples for the low heritable trait

(h2 = 0.05) (Figures 2A and 2B). We observed that PRSmix

demonstrated a saturation of improvement from Ntraining =

5,000. PRSmix+ demonstrated negligible further improvement

when the training sample size was increased from 5,000 but

maintained consistent improvement relative to PRSmix and the

best single PRS. Moreover, we observed that traits with higher

heritability or higher best prediction accuracy of a single PRS

demonstrated a smaller improvement compared to traits with a

smaller heritability (Figure 2C).

Combining trait-specific PRSs improves prediction
accuracy (PRSmix)
To determine if a trait-specific combination, namely PRSmix,

would improve the accuracy of PRS prediction, we used

whole-genome sequencing data from European ancestry par-

ticipants in the AoU Research Program, and imputed G&H par-

ticipants of South Asian ancestry. We randomly split the inde-

pendent cohorts into training (80%) and testing sets (20%).

The training set was used to train the weights of each PRS,

referred as mixing weights, which indicates how much each

PRS explains the phenotypic variance in the training set, and

the PRS accuracies were evaluated in the testing set (Figure 1).

We curated 47 traits and 32 traits in the AoU and G&H cohorts,

respectively. For binary traits, we removed traits with a preva-

lence of smaller than 2% (see STAR Methods; Table S1). Traits

with the best-performance trait-specific single PRS that

showed a lack of power were also removed. Overall, we

observed a significant improvement compared to one using a

two-tailed paired t test with PRSmix. PRSmix significantly im-

proves the prediction accuracy compared to the best PRS esti-

mated from the PGS Catalog. PRSmix improved 1.20-fold

(95% CI, [1.10; 1.3]; p = 9.17 3 10�5) and 1.19-fold (95% CI,

[1.11; 1.27]; p = 1.92 3 10�6) compared to the best PRS

from PGS Catalog for European ancestry and South Asian

ancestry, respectively.

In European ancestry, we observed the greatest improvement

of PRSmix against the best single PRS for rheumatoid arthritis of

3.36-fold. Furthermore, in South Asian ancestry, we observed

that PRSmix of CAD had the best improvement of 2.32-fold

compared to the best-performance single PRS. Details of the

prediction accuracy are shown in Figures S1 and S2 and

Tables S2 and S3. This was consistent with findings in simula-

tions since traits with a lower single PRS performance demon-

strated a better improvement with the combination strategy.

Additionally, the number of final features with non-zero weight

in the model is provided in Table S4. On average, PRSmix incor-

porated 10 PRSs in both European and South Asian ancestry,

and PRSmix+ incorporated 69 and 32 PRSs in European and

South Asian ancestry, respectively.
4 Cell Genomics 4, 100523, April 10, 2024
Cross-trait combination further improved PRS accuracy
and highlighted the contribution of pleiotropic effects
(PRSmix+)
We next assessed the contribution of pleiotropic effects from

cross-trait PRSs to determine if these would further improve

the combination framework (PRSmix+) by including high-power

PRSs from within 2,600 PRSs in the PGS Catalog. To evaluate

the power of PRS and improve computational efficiency, we em-

ployed the theoretic power and variance of incremental R2 for

continuous traits and liability R2 for binary traits (see STAR

Methods). We observed that PRSmix+ further improved the pre-

diction accuracy compared to the best PGSCatalog in European

ancestry (Figure 3A) and South Asian ancestry (Figure 3B). We

observed an improvement of 1.72-fold (95% CI, [1.40; 2.04];

p = 7.58 3 10�6) and 1.42-fold (95% CI, [1.25; 1.59]; p =

8.013 10�7) higher compared to the best PGS Catalog for Euro-

pean ancestry and South Asian ancestry, respectively. PRSmix+

significantly improved the prediction accuracy compared to

PRSmix in both European and South Asian ancestry with 1.46-

fold (95% CI, [1.17; 1.75]; p = 0.002) and 1.19-fold (95% CI,

[1.07; 1.32]; p = 0.001), respectively (Figure S3). PRSmix yielded

an equivalent number of non-zero mixing weights between Euro-

pean ancestry (median = 8; interquartile range [IQR] = [5; 12]) and

South Asian ancestry (median = 8; IQR = [3; 14]). However,

PRSmix+ demonstrated a higher number of non-zero weights

in European ancestry (median = 55; IQR = [30; 76]) compared

to South Asian ancestry (median = 32; IQR = [11; 49]). The me-

dian absolute mixing weights were similar between European

ancestry and South Asian ancestry (Figure S4). We note that

most of the best PRSs across traits were developed from 2021

onward. The details of the most recent trait-specific PRSs,

PRSs with largest sample sizes, best PRSs being compared,

and score with highest weights for European ancestry and South

Asian ancestry are provided in Tables S5 and S6, respectively.

Consistent with our simulation results, a smaller improvement

was observed for traits with a higher baseline prediction accu-

racy from PGS Catalog (Figure S5), noting that the baseline pre-

diction accuracy depends on the heritability and genetic archi-

tecture (i.e., polygenicity). In contrast, more improvement was

observed for traits with lower heritability, thus lower prediction

accuracy, when comparing the single best PRS (Figure 1C).

We next transferred the PRS weights trained in European

ancestry on South Asian ancestry to assess the transferability

of the linear combination across ancestries, and we observed

a better performance compared to the best score from PGSCat-

alog for most of the traits and a slightly lower performance for

A1c, asthma, platelet, rheumatoid arthritis, red cell distribution

width (RDW), and triglyceride (Table S7). However, performing

a linear combination with the matched ancestry still demon-

strated a better performance than using transferred weights.

We also compared PRSmix and PRSmix+ using all scores or

only ancestry-matched scores from PGS Catalog (Figure S6).

We observed that combining using all scores improved the pre-

diction accuracy better than combining only ancestry-matched

scores to the target population. With PRSmix, using all scores

improved the prediction accuracy 1.2-fold (95% CI, [1.09;

1.31]; p = 0.0002) compared to using ancestry-matched scores.

With PRSmix+, using all scores improved the prediction
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Figure 3. Comparison of PRSmix and PRSmix+ versus the best PGS Catalog in European and South Asian ancestries
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for binary traits was assessed with liability-R2 where disease prevalence was approximately estimated as a proportion of cases in the testing set. The bars

represent the ratio of prediction accuracy of PRSmix and PRSmix+ versus the best PRS from the PGS Catalog across 47 traits and 32 traits in AoU and G&H
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accuracy 1.12-fold (95% CI, [1.07; 1.18]; p = 2.14 3 10�5)

compared to using ancestry-matched scores (Figure S6).

Prediction accuracy and predictive improvement across
various types of traits
We next compared PRSmix and PRSmix+ with the best PRS

estimated from the PGSCatalog across six categories, including

anthropometrics, blood counts, cancer, cardiometabolic,

biochemistry, and other conditions (see STAR Methods).

PRSmix demonstrates a higher prediction accuracy across all

types of traits in both European and South Asian ancestries (Fig-

ure 4). We observed a similar trend in the predictive performance

of PRSmix+ across different types of traits. In European

ancestry, the smallest improvement with PRSmix+ was in

anthropometric traits of 1.14-fold (95% CI, [1.03; 1.25]; p =

0.01) while other conditions (including depression, asthma,

migraine, current smoker, hypothyroid, osteoporosis, glaucoma,

rheumatoid arthritis, and gout) obtained the highest mean pre-

dictive improvement but also with high variance of 2.66-fold

(95% CI, [1.30; 4.01]; p = 0.01) (Table S8). In South Asian

ancestry, the mean predictive improvement was highest in the

other conditions (including asthma, migraine, current smoker,

and rheumatoid arthritis) type at 2.10-fold (95% CI, [0.787;

3.405]; p = 0.1). Biochemistry demonstrated the smallest

improvement of 1.23-fold (95% CI, [1.15; 1.31]; p = 5.8 3

10�9). We note that PRSmix and PRSmix+ improve prediction

accuracy for all traits (Tables S2 and S3). The large variance

could be due to the wide range of improvement and the small

number of traits in each subtype.
Comparison with previous combination methods
There have been several studiesproposed to incorporatemultiple

traits to improve prediction accuracy of the target trait.8,15,20 For

example, the weighted index for multi-trait summary statistics

best linear unbiased predictor (wMT-SBLUP)15 created a

weighted index for correlatedPRSsand required the input sample

sizes, genetic correlation, and heritability across all pairs of traits

fromGWAS summary statistics to be determined. Krapohl et al.20

andAlbiñanaet al.13 combinedPRSsusing scoresestimated from

LDpred2.5 Here, we benchmarkedPRSmix andPRSmix+ against

wMT-SBLUP using summary statistics and a combination of

PRSs developed by LDpred2 with a pre-defined set of correlated

traits to themain outcomes and an extension of scores generated

by different methods from PGS Catalog (Figure 5).

We first observed that integrating scores by Elastic Net with

scores from pre-defined traits improved prediction accuracy

compared to wMT-SBLUP ranging between 1.08-fold (95% CI,

[1.03; 1.12]; p value after false discovery rate (FDR) correction =

0.36) for type 2 diabetes (T2D) and 2.87-fold (95%CI, [1.58; 4.15];

p = 0.006) for CAD (Tables S9 and S10). PRSmix demonstrated a

similar performance with a combination of LDpred2 scores for

BMI, CAD, and depression. PRSmix+, with scores from both

pre-defined traits and PGS Catalog, demonstrated a consistent

boost in prediction accuracy compared towMT-SBLUPbetween

1.12-fold (95% CI, [1.02; 1.21]; p = 0.016) for T2D and 3.27-fold

(95%CI, [2.1; 4.44]; p = 2.63 10�4) for CAD. PRSmix+ equipped

with both LDpred2-auto and PGS Catalog scores also outper-

formed the Elastic Net combination of LDpred2 scores best

observed with 1.6-fold (95% CI, [1.31; 1.89]; p = 1.1 3 10�4)
Cell Genomics 4, 100523, April 10, 2024 5
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Figure 4. Prediction accuracy and improve-

ment across various types of traits in the Eu-

ropean and South Asian ancestry

We classified the traits into six main categories for

European ancestry in the AoU cohort and five cat-

egories for South Asian ancestry in the G&H cohort

due to the low prevalence of cancer traits in G&H.

The prediction accuracies (A and C) are estimated

as incremental R2 and liability R2 for continuous

traits and binary traits, respectively. The relative

improvements (B and D) are estimated as the fold

ratio between the prediction accuracies of PRSmix

and PRSmix+ against the best PGS Catalog. The

order on the axis followed the decrease in the

prediction accuracy of PRSmix+. The boxplots in

(A) and (C) show the first to the third quartile of

prediction accuracies for 47 traits and 32 traits in

European and South Asian ancestries, respec-

tively. The whiskers reflect the maximum and min-

imum values within the 1.5 3 IQR for each group.

The bars in (B) and (D) represent the mean predic-

tion accuracy across the traits in that group and the

whiskers demonstrate 95% CIs. The red dashed

lines in (B) and (D) represent the ratio equal to 1 as a

reference for comparison with the best PGS Cata-

log score. The asterisks indicate p values: *p < 0.05

and **p < 0.05/number of traits in each type with a

two-tailed paired t test.
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for depression. Interestingly, height, a highly polygenic trait,21

similarly demonstrated the best performance under a trait-spe-

cific combination (PRSmix with trait-specific LDpred2-auto and

PGS Catalog scores) and PRSmix+ equipped with both

LDpred2-auto and PGS Catalog scores (Figure 5). Employing

pleiotropic effects only provided a small improvementwith height

(Table S10). On the other hand, T2D demonstrated that all

methods of cross-trait combinations provided a significant

improvement over the trait-specific combination (Figure 5).
Clinical utility for CAD
To evaluate the utility of the proposedmethods, we assessed the

PRSmix and PRSmix+ for CAD, which is the leading cause of

disability and premature death among adults.22–24 The single

best CAD PRSs (PRSCAD) s from the PGS Catalog in the training

set were fromKoyama et al.25 and Tamlander et al.26 in European

and South Asian ancestries, respectively (Figure S7 and S8). In

the testing set, liability R2 with Koyama et al. for European

ancestry was 0.03 (95% CI, [0.03; 0.04]; p < 2 3 10�16) and

with Tamlander et al. for South Asian ancestry was 0.006 (95%

CI, [0.003; 0.009]; p = 2.39 3 10�4) (Figure 6).
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Subsequently, we assessed the clinical

utility of the integrative model with PRS

and established QRISK3, clinical risk

factors, including age, sex, total choles-

terol, high-density lipoprotein cholesterol

(HDL-C), systolic blood pressure, BMI,

T2D, and current smoking status versus

the traditional model with clinical risk fac-

tors (Figure 7; Table S11). In European
ancestry, the CAD PRSmix+ integrative score improved the

continuous net reclassification of 33% (95% CI, [22%; 44%];

p = 4.15 3 10�9) compared to PRSmix (30%; 95% CI, [20%;

44%]; p = 1.4 3 10�10) and the best PRS from the PGS Catalog

(24%; 95% CI, [13%; 36%]; p = 2.05 3 10�5). In South Asian

ancestry, the integrated score with PRSmix+ showed significant

continuous net reclassification of 27% (95%CI, [16%; 39%]; p =

3.69 3 10�6) compared to PRSmix (23%; 95% CI, [11%; 34%];

p = 6.56 3 10�5) and the best PGS Catalog (11%; 95% CI,

[�0.3%; 23%]; p = 0.05). Our results also demonstrated an

improvement in net reclassification for models without clinical

risk factors.

We assessed the incremental area under the curve (AUC) be-

tween the full model of PRS and covariates and the null model

with only covariates (Table S12). PRSmix+ demonstrated an in-

cremental AUC of 0.02 (95% CI, [0.018; 0.02]; p < 2.2 3 10�16)

and 0.008 (95% CI, [0.007; 0.009]; p < 2.2 3 10�16) in European

and South Asian ancestries, respectively. PRSmix obtained an

incremental AUC of 0.016 (95% CI, [0.016; 0.017]; p < 2.2 3

10�16) and 0.006 (95% CI, [0.005; 0.007]; p < 2.23 10�16) in Eu-

ropean and South Asian ancestries, respectively. The best PGS

Catalog had the smallest incremental AUC of 0.012 (95% CI,
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Figure 5. Benchmarking previous methods with PRSmix and PRSmix+

LDpred2-auto was used as the baseline method to input in the methods. Five traits from Maier et al.15 and 26 publicly available GWASs for European ancestry

were curated. The components of each combination method are denoted in parentheses. wMT-SBLUP was conducted with the input of sample sizes from the

GWAS summary statistics and heritabilities and genetic correlation between all pairs of traits using LD score regression. PRSmix (LDpred2 + PGS Catalog)

combined target trait-specific scores within 26 scores and PGS Catalog. Elastic Net (LDpred2) was performed using Elastic Net with all scores from 26 traits

generated with LDpred2-auto. PRSmix+ (LDpred2 + PGS Catalog) was conducted using 26 scores from LDpred2-auto and scores from all traits obtained from

PGSCatalog. Incremental R2 and liability R2 were used for continuous traits and binary traits, respectively. The whiskers demonstrate 95%CIs ofmean prediction

accuracy. CAD, coronary artery disease; T2D, type 2 diabetes.
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[0.011; 0.013]; p < 2.2 3 10�16) and 0.003 (95% CI, [0.002;

0.003]; p < 2.23 10�16) in European and South Asian ancestries,

respectively.

We also compared the risks for individuals in the top decile

versus the remaining population (Table S13). For European

ancestry, an increased risk with odds ratio (OR) per 1 SD of the

best PGS Catalog, PRSmix, and PRSmix+ were 1.43 (95% CI,

[1.30–1.57]; p < 2.2 3 10�16), 1.60 (95% CI, [1.45–1.76];

p < 2.2 3 10�16), and 1.74 (95% CI = [1.58; 1.91]; p < 2.2 3

10�16), respectively. The top decile of PRSmix+ compared to

the remaining population demonstrated an increased risk of

OR = 2.53 (95%CI, [1.96; 3.25]; p = 8.643 10�13). The top decile

for the best PGS Catalog versus the remainder was OR = 1.67

(95% CI, [1.27; 2.19]; p = 2 3 10�4). For South Asian ancestry,

an increased risk with OR per 1 SD of the best PGS Catalog,

PRSmix, and PRSmix+ was 1.24 (95% CI, [1.13; 1.37];

p < 1.52 3 10�16), 1.39 (95% CI, [1.33; 1.46]; p < 2.2 3 10�16),

1.40 (95% CI, [1.27; 1.55]; p < 2.2 3 10�16), and 1.50 (95%

CI = [1.36; 1.66]; p < 2.2 3 10�16), respectively. In South Asian

ancestry, PRSmix+ demonstrated an OR of 2.34 (95% CI,

[1.79; 3.05]; p = 4.22 3 10�10), and, with the best PGS Catalog,

OR was 1.73 (95% CI, [1.30; 2.28]; p = 1.31 3 10�4) for the top

decile versus the remaining population.

Moreover, we observed that there was amodest improvement

for PRSmix from the training size of 5,000 in both European and

South Asian ancestries (Figure S9), which aligned with our simu-

lations (Figures 2A and 2B). Our results demonstrated the gener-

alization of our combination methods across diverse ancestries

to improve prediction accuracy. To obtain maximized prediction
accuracy in real data, SNP heritability, polygenicity, and hetero-

geneity in the definition of the disease may influence the sample

sizes need for combination. However, our simulation highlighted

the most important information, including heritability and the ge-

netic correlation between traits to combine. Improvements from

the combination benefit from imposing the penalty by the

ElasticNet on unimportant features across multiple scores in

the combination. With PRSmix+, our empirical result with CAD

showed that there was amodest improvement with training sam-

ple sizes larger than 5,000.

Finally, we conducted phenome-wide association studies

(PheWASs) in AoU between PRSCAD with 1,815 phecodes to

compare the pleiotropy of PRS and assess the relationship be-

tween CAD PRS and disease phenotypes given the inherent

use of pleiotropy in development (Table S14). As expected,

PRSmix+ had a stronger association for coronary atheroscle-

rosis relative to the single best PRS from the PGS Catalog.

PRSmix+ associations with cardiometabolic risk factors were

significantly greater with averaged fold ratio = 1.10 (95% CI,

[1.09–1.12]; p value with paired t test = 1.07 3 10�25) and 1.07

(95% CI, [1.05–1.081]; p = 4.8 3 10�13) for circulatory system

and endocrine/metabolic system (Table S15). The PheWAS

result for PRSmix+ aligned with the list of traits from the selected

PRS (Table S14).

DISCUSSION

In this paper, we propose a trait-specific framework (PRSmix),

and cross-trait framework (PRSmix+) to leverage the combined
Cell Genomics 4, 100523, April 10, 2024 7
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Figure 6. Comparison of prediction accuracies with PRSmix, PRSmix+, and CAD PRS from PGS Catalog

PRSmix was computed as a linear combination of CAD PRS and PRSmix+ was computed as a linear combination of all significant PRSs obtained from the PGS

Catalog. The PRSs were evaluated in the testing set with liability R2 in the (A) European ancestry from the AoU cohort and (B) South Asian ancestry from the G&H

cohort. The bars indicate the mean prediction accuracy and the whiskers show 95% CIs.
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power of existing scores. We performed and evaluated our

method using the AoU and G&H cohorts showcasing a frame-

work to develop the optimal PRS for a given trait in a target pop-

ulation leveraging all existing PRSs. Across 47 traits in the AoU

cohort and 32 traits in the G&H cohort with either continuous

traits or binary traits with prevalence >2%, we demonstrated

substantial improvement in average prediction R2 by using a

linear combination with Elastic Net with 5-fold cross-validation.

The empiric observations are concordant with simulations. To

our knowledge, there has been a number of emerging studies

to combine PRS, but there is a limited number of frameworks

that comprehensively evaluate, harmonize, and leverage the

combination of these scores.8,27,28 Our studies permit several

conclusions for the development, implementation, and transfer-

ability of PRS.

First, externally derived and validated PRSs are generally not

the optimal PRS for a given cohort. Consistent with other risk

predictors, recalibration within the ultimate target population im-

proves performance.29 By leveraging the PGS Catalog, our work

carefully harmonizes the risk alleles to estimate PRS across all

scores and provides newly estimated per-allele SNP effects

(provided to the PGS Catalog) to assist the interpretability of

the models.

Second, previous studies selected an arbitrary training sam-

ple size to estimate the mixing weights, which may lead to a

poor power of the combination frameworks and inaccurate es-

timate of sampling variance.10 We assessed the expected

sample sizes to estimate the mixing weights via simulations

and real data. Our results demonstrated that, while low herita-

bility traits benefit the most, they require a greater training

sample size.
8 Cell Genomics 4, 100523, April 10, 2024
Third, we leveraged all PRSs, including those not trained on

the primary trait, to systematically optimize PRS for a target

cohort. We showed that PRSmix improved the prediction by

combining the scores matching the outcome trait. In addition,

we showed that PRSmix+ was able to leverage the power of

cross-traits, which highlighted the contribution of pleiotropic ef-

fects to enhance PRS performance. We leverage prior work

demonstrating the effects of pleiotropy on complex traits.14,30,31

Our results demonstrated that South Asian ancestry required an

equivalent number of trait-specific scores to combine similar to

the European ancestry. Since the majority of scores in PGS Cat-

alog were developed on European ancestry, PRSmix+ incorpo-

rated a higher number of PRSs in the European ancestry

compared to the South Asian ancestry.

Fourth, we showed that using a linear combination in a

matched ancestry still demonstrated a better performance

than using transferred pre-trained weights from another

ancestry. This indicates that methods that attempt to re-adjust

PRS weights cross-ancestry are less effective for prediction

than directly getting the weights from the matched ancestry.

We showed that providing the linear combination model with

all scores from all ancestries demonstrated a better predictive

accuracy than using only ancestry-matched PRSs to the

outcome trait. Additionally, the variability between the two co-

horts would decrease prediction accuracy. There might be

more contributing factors that influence the prediction accuracy,

such as sample sizes of the PGS panel and polygenicity of the

traits,6,32 ancestral consistency between discovery GWAS and

linkage disequilibrium (LD) reference panels in PRS methods,33

ancestry proportions in the discovery GWAS,33 and cohort-spe-

cific contexts.34
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Figure 7. Net reclassification improvement

for CAD with the addition of PRSs to the

baselinemodel in European and South Asian

ancestries

The baseline model for risk prediction includes

QRISK3, age, sex, total cholesterol, HDL-C, sys-

tolic blood pressure, BMI, T2D, and current

smoking status. We compared the integrative

models with PGS Catalog, PRSmix, and PRSmix+

in addition to clinical risk factors versus the base-

linemodel with only factors. The points indicate the

mean estimate for continuous net reclassification

improvement (NRI) and the whiskers indicate 95%

CIs estimated from 500 bootstraps. HDL-C, high-

density lipoprotein cholesterol.
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Fifth, we demonstrated that our method outperformed previ-

ous methods combining scores. We showed that PRSmix+ out-

performed wMT-SBLUP15 using a limited number of correlated

traits. wMT-SBLUP required GWAS’s sample sizes, heritability,

and genetic correlation between all traits. LDpred2-auto

required GWAS summary statistics and initialized heritability

and proportion of causal SNPs. Krapohl et al.20 and Abraham

et al.8 proposed to use Elastic Net to combine the scores devel-

oped from summary statistics, and correlated traits were

selected with prior knowledge. However, these strategies

consider scores developed from particular methods using pre-

defined summary statistics. Our framework utilizes all PRSs

available in the PGS Catalog, which were optimized for their

target traits. Additional summary statistics and PRSs could be

added to further enhance the models. We let our Elastic Net

model penalize the component PRSs without the need for

prior knowledge. Elastic Net can select PRSs to include and effi-

ciently handle multi-collinearity.35–37 Furthermore, PRSmix and

PRSmix+ only required a set of SNP effects to estimate the

PRSs and estimated the prediction accuracy to the target trait

to select the best scores for the combination. Additionally,

compared to the preselected traits for stroke by Abraham

et al.,8 we also observed that our method could identify more

related risk factors to include compared to previous work con-

ducted on stroke such as usual walking pace, arthropathies,

and lipoprotein(a) (Figure S10; Tables S16 and S17). Therefore,

our method is more comprehensive in an unbiased way in terms

of choosing the risk factors and traits to include with empirically

improved performance.We demonstrated that T2D has a greater

prediction accuracy when incorporating information from multi-

ple traits. T2D is a common highly polygenic condition correlated

with other cardiometabolic risk factors as well as social/lifestyle

factors. Previous PRSs for T2D may not closely consider pleio-

tropic effects from correlated traits to improve PRS for T2D.

PRS for T2D could still have room for improvements by further

incorporating genetically correlated traits in the future. Further-

more, with a limited pre-defined list of correlated traits, we

showed that cross-trait combination may give a similar perfor-

mance to combining trait-specific scores in PGS Catalog (BMI,
CAD, depression in Figure 5). Across

different traits, we demonstrated that

PRSmix+ and PRSmix has an overall bet-
ter power compared to other methods. Cross-trait combination

for height does not significantly improve prediction accuracy,

whereas T2D demonstrated a higher accuracy with any cross-

trait combination methods. Intuitively, height has been known

as a well-established highly polygenic trait thanks to its enor-

mous sample sizes in a recent study21 with well-powered scores

from the PGS Catalog.

Sixth, greater performance is observed even for non-Euro-

pean ancestry groups underrepresented in GWAS and PRS

studies. We empirically demonstrate the value of training and

incorporating pleiotropy with all available PRSs to improve per-

formance, including multiple metrics of clinical utility for CAD

prediction in multiple ancestries. In South Asian ancestry, we

observed that PRSmix and PRSmix+ demonstrated a significant

improvement with the best improvement for CAD. Of note for

CAD, the relative improvements in South Asian ancestry were

higher than in European ancestry for PRSmix and equivalent

for PRSmix+. Transferability of PRS has been shown to improve

the clinical utility of PRS in non-European ancestry.17,38 Although

the prediction accuracy for South Asian ancestry is still limited,

our results highlighted the transferability of predictive improve-

ment with PRSmix and PRSmix+ to South Asian ancestry. We

anticipate that ongoing and future efforts to improve our under-

standing of the genetic architecture in non-European ancestries

will further improve the transferability of PRS across ancestry.

Last, traits with low heritability or generally low-performing sin-

gle PRS benefit the most from this approach, especially with

PRSmix+, such as migraine in both European and South Asian

ancestries. Additionally, our results showed that pleiotropic ef-

fects play an important role in understanding and improving pre-

diction accuracies of complex traits. However, anthropometric

traits, which are highly polygenic39 and have good predictive

performance using the best PGS Catalog, also showed improve-

ment with the combination framework in both European and

South Asian ancestries.

Given that PRSmix+ outperformed PRSmix, one might

consider whether there is a reason to use PRSmix instead of

PRSmix+. We observed that, in cases of highly heritable traits

or high performance with a single PRS, there was only marginal
Cell Genomics 4, 100523, April 10, 2024 9
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improvement of PRSmix+ over PRSmix. In this scenario, PRSmix

could provide similar predictive performance while being less

time consuming because trait-specific PRS inputs only are

required. However, for traits with lower heritability, PRSmix+

shows a marked improvement over PRSmix and would be

preferred. Wang et al.40 showed that the theoretical prediction

accuracy of the target trait using the PRS from the correlated trait

is a function of genetic correlation, heritability, number of genetic

variants, and sample size. Future directions could include

defining the minimum parameters required for the performance

of the PRSmix+ model to improve on single trait-specific PRS.

In conclusion, our framework demonstrates that leveraging

different PRSs either trait specific or cross-trait can substantially

improve model stability and prediction accuracy beyond all ex-

isting PRSs for a target population. Importantly, we provide soft-

ware to achieve this goal in independent cohorts.

Limitations of the study
Our work has several limitations. First, the majority of scores from

PGS Catalog were developed in European ancestry populations.

Further non-European SNP effects will likely improve the single

PRS power, which may, in turn, also improve the prediction accu-

racy of our proposed methods. Second, the Elastic Net makes a

strong assumption that the outcome trait depends on a linear as-

sociation with the PRS and covariates. However, a recent study

demonstrated that there is no statistical significance difference

between linear and non-linear combinations for neuropsychiatric

diseases.27 Third,weestimated themixingweights for each single

SNP as amixingweight of the PRS. Future studies could consider

linkage disequilibrium between the SNPs and functional annota-

tions of each SNP. Fourth, our frameworkswere conducted on bi-

nary traits with a prevalence >2%. Additional combination PRS

models are emerging that seek to use pre-existing genotypic

data from genetically related, but low-prevalence, conditions to

improve the prediction accuracy of rare conditions.27 Fifth, the

baseline demographic characteristics (i.e., age, sex, social eco-

nomic status) in the target cohort might limit the validation and

transferability of PRS.41 Although these factors were considered

by using a subset of the target cohorts as training data, it is neces-

sary to have PRS developed on similar baseline characteristics.

Last, with the expanding of all biobanks, theremight be no perfect

distinction between the samples deriving PRS and the testing

cohort, and future studies may consider the potential intersection

of samples to train the linear combination.
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R version 4.0.0 v.4.0.0 https://www.r-project.org/about.html

PRSmix (at publication) v.1.0.0 Zenodo: https://doi.org/10.5281/zenodo.10581592
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Pradeep Natarajan (pnatarajan@mgh.

harvard.edu).

Materials availability
The study did not generate any new reagents or materials.

Data and code availability
d UKBiobank individual-level data are available for request through the UKBiobank with application (https://www.ukbiobank.ac.

uk). The All of Us individual-level data are available for request through the All of Us platform (https://www.researchallofus.org).

The All of Us and Genes & Health individual-level data is a controlled access dataset and may be granted at https://www.

researchallofus.org/ and https://www.genesandhealth.org/, respectively. Data can be accessed through the secure All of Us

Researcher Workbench platform, which is a cloud-based analytic platform that was built on the Terra platform.57 Researchers

gain access to the platform after they complete a 3-step process including registration, completion of ethics training, and at-

testing to a data use agreement attestation.58 All of Us uses a tiered approach based on what genomic data is accessible

through the Controlled Tier, and includes both whole genome sequencing (WGS), genotyping array variant data in multiple for-

mats, as well as variant annotations, access to computed ancestry, and quality reports.59 This study includes data on the

98,600 participants with (WGS) data in the All of Us v6 Curated Data Repository release. Participant data in this data release

was collected between May 6, 2018 and April 1, 2021. This project is registered in the All of Us program under the workspace

name ‘‘Polygenic risk score across diverse ancestries and biobanks. The code is provided at https://github.com/buutrg/

PRSmix. The version at the publication is at https://doi.org/10.5281/zenodo.10581592. The published article includes all other

data generated or analyzed during this study.

d Individual-level genomic data and longitudinal phenotypic data from the UK Biobank, a large-scale population-based cohort

with genotype and phenotype data in approximately 500,000 volunteer participants recruited from 2006 to 2010 was used.

Baseline assessments were conducted at 22 assessment centers across the UK using touch screen questionnaire, computer

assisted verbal interview, physical tests, and sample collection including for DNA (https://www.ukbiobank.ac.uk). The UK Bio-

bank Application is 7089.

d Polygenic risk scores were obtained from the Polygenic Score (PGS) Catalog,18 which is a publicly accessible resource cata-

loging published PRS, including the metadata. The metadata provides information describing the computational algorithms

used to generate the score, and performance metrics to evaluate a PRS.18 At the time of this study, over 2,600 PRS were cata-

loged in the PGS Catalog (version July 18, 2022) designed to predict 538 distinct traits. The PGS Catalog is freely available at

https://www.pgscatalog.org/. Our new scores are deposited in the PGS Catalog.

d The weights from the PRSmix and PRSmix+ scores in this manuscript have been returned to the PGS Catalog. The R package

to implement PRSmix and PRSmix+ in independent datasets is at https://github.com/buutrg/PRSmix.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The All of Us Research Program is a longitudinal cohort continuously enrolling (starting May 2017) U.S. adults ages 18 years and older

fromacross theUnitedStates,withanemphasisonpromoting inclusionofdiversepopulations traditionally underrepresented inbiomed-

ical research, including gender and sexualminorities, racial and ethnicminorities, and participants with low levels of income and educa-

tional attainment.43 Participants in the program can opt-in to providing self-reported data, linking electronic health record data, and

providing physicalmeasurement and biospecimen data.44 Details about theAll of Us study goals and protocols, including survey instru-

ment development,45 participant recruitment, data collection, and data linkage and curation were previously described in detail.44,46

The Genes & Health biobank
Genes & Health is a community-based genetics study enrolling British South Asian, with an emphasis on British Bangladeshi (two-

thirds) and British Pakistani (remaining) people, with a goal of recruiting at least 100,000 participants. Currently, over 52,000 partic-

ipants have enrolled since 2015. All participants have consented for lifelong electronic health record access and genetic analysis. The

studywas approved by the London South East National Research Ethics Service Committee of the Health Research Authority. 97.4%

of participants in Genes & Health are in the lowest two quintiles of the Index of Multiple Deprivation in the United Kingdom. The cohort

is broadly representative of the background population with regard to age, but slightly over-sampled with females and those with

medical problems since two-thirds of people were recruited in healthcare settings such as General Practitioner surgeries.47

A linear combination of scores
We proposed PRSmix to combine PRS of outcome traits and PRSmix+ to combine high-power PRS (defined in the following sub-

section) from all traits obtained from PGS Catalog. The linear combination was conducted by using an Elastic Net algorithm from the

‘‘glmnet’’ R package48 (version 4.1) to combine the estimated PRS. First, we randomly split the independent cohorts into 80% of

training and 20% testing. The PRS in the training set was standardized with mean 0 and variance 1. Before conducting linear com-

bination, we first evaluated the performance of each individual PRS by their power and pP-value (see below). Summary-based

methods to estimate genetic correlation between traits require full GWAS summary statistics includingmarginal effect sizes and stan-

dard error whereas the PGS Catalog only provides the adjusted SNP effect sizes from various PRS methods. We employed the pre-

dictive R2 to estimate variance explained of PRS for the outcome trait to select the secondary traits. PRS demonstrating theoretically

significant predictive R2 and high power were selected for combination. We selected high-power scores defined as power >0.95 with

pP-value % 0.05 for the combination with Elastic Net.

An Elastic Net algorithmwas usedwith 5-fold cross-validation and default parameters to estimate themixing weights of each PRS.

The mixing weights were then divided by the corresponding original standard deviation of the PRS in the training set.

ba i = bu i = si

Where bu i and si is the mixing weight estimated from the Elastic Net and standard deviation of PRSi in the training set, respectively. ba i

is the adjusted mixing weight for PRSi. To derive the per-allele effect sizes from the combination framework, we multiplied the SNP

effects with the corresponding adjusted mixing weights:

bg j =
XM
i = 1

ba i � bji

Where bg i is the adjusted effect size of SNPj and bij is the original effect sizes of SNPj in PRSi. We set bji = 0 if SNPj is not in PRSi. The

adjusted effect sizes were then utilized to calculate the final PRS.

The mixing weights for PGS Catalog scores for PRSmix and PRSmix+ in European ancestry are provided in Tables S16 and S17,

respectively. For South Asian ancestry, the mixing weights for PRSmix and PRSmix+ in European ancestry are provided in

Tables S18 and S19, respectively.

Power and variance of PRS accuracy
The prediction accuracy (R2) was calculated as incremental R2which is a difference of R2 between themodel with PRS and covariates

including age, sex, and 10 PCs versus the base model with only covariates. Incremental R2 indicates the difference between the full

model and the covariate-only model which isolated the explanatory power of PRS.2 Prediction accuracy for binary traits was as-

sessed with liability R2 where disease prevalence was approximately estimated as a proportion of cases in the testing set.

We selected high-power PRS to conduct the combination by assessing the power and variance of prediction accuracy. The power

of PRS can be estimated based on the power of the two-tailed test of association as follow3,49:

1 � 4
�
4� 1ð1 � a = 2Þ �

ffiffiffi
l

p �
+4

�
4� 1ða =2Þ �

ffiffiffi
l

p �
(Equation 1)

where 4 is the Chi-squared distribution function, a is the significance level, and l is the non-centrality parameter which can be esti-

mated as
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l =
NR2

1 � R2
(Equation 2)

where N, R2 is the sample size and estimated prediction accuracy in the testing set, respectively. R2 can be estimated as incremental

R2 or liabilityR2 for continuous traits and binary traits, respectively. Briefly, incrementalR2 compared the difference in goodness-of-fit

between a full model with PRS and covariates including age, sex, and first 10 PCs, and a null model with only covariates. Additionally,

for binary traits, liability R2 was estimated with the disease prevalence approximated as the prevalence in the samples. The theoret-

ical variance and standard error of R2 can be estimated as follow50–52:

se
�
R2

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

�
R2

�q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

�
1 � R2

�ðN � 2Þ2
ðN2 � 1

�ðN+3Þ
vuut (Equation 3)

Therefore, we can analytically estimate the confidence interval of prediction accuracy for each of the score.

To compare the improvement, for instance between PRSmix and the best PGS Catalog, we estimate the mean fold-ratio of R2

across different traits with its 95% confidence interval and evaluated the significance difference from 1 using a two-tailed paired

t-test.

Simulations
WeusedUKBiobank European ancestry to conduct simulations for trait-specific and cross-trait combinations. Overall, we simulated

4 traits with heritability h2 equal to 0.05, 0.1, 0.2, and 0.4. We randomly selected M = 1000 causal SNPs among 1.1 million HapMap3

variants with INFO >0.6, MAF >0.01 and pP-value Hardy-Weinberg equilibrium >10�7. We removed individuals with PC1 and PC2 > 3

standard deviation from the mean to remove outliers of the inferred genetic ancestry. We randomly remove one in a pair of related

individuals with closer than 2nd degree. The genetic components were simulated as a linear combination of 6 PRSs where PRS1,

PRS2, and PRS3 were considered trait-specific scores with genetic correlations equal to 0.8. PRS4, PRS5 and PRS6 are simulated

as cross-trait scores with genetic correlation equal to 0.4. The SNP effects for PRSs are simulated by a multivariate normal distribu-

tionMVN(0, S) whereS is the covariance matrix between PRSs. Themain diagonal contains the heritability of the traits as h2 = M and

the covariance between PRSs are simulated as rg � h2 =M where rg is the genetic correlation between PRSs (0.8 for trait-specific

scores and 0.4 for cross-trait scores). The PRSs of the outcome are estimated by the weighted combination of PRS where the

weights follow U(0,1). 7 phenotypes were simulated as y = g+ e; e � Nð0; 1 � h2Þ where g is PRS and e is the residuals.

We split the simulated cohort into 3 data sets for: 1) GWAS (200,000 individuals – 60%) 2) training set (130,000 individuals – 38%):

training the mixing weights with a linear combination and 3) testing set (7000 individuals – 2%): testing the combined PRS. We incor-

porated PRS1, PRS2 and PRS3 to assess the trait-specific PRSmix framework. We combined all 6 single PRS to evaluate the cross-

trait PRSmix+ framework. We compared the fold-ratio of the R2 of the combined PRS to the R2 of best single PRS to assess the

improvement of the combination strategy. To evaluate the improvement across different heritabilities, we estimated the slope of

improvement per log10(N) increase of training sample sizes on the fold-ratio of predictive improvement.

Sample and genotyping quality control
The AoU data version 5 contains more than 700million variants fromwhole genome sequencing.44We curated European ancestry by

predicted genetic ancestry with a probability >90%provided by AoU yielding 48,112 individuals in the AoU. For variant quality control

beyond AoU central efforts, we further filtered SNPs to includeMAF >0.001 which retained 12,416,130 SNPs.We performed a similar

quality control for imputed genotype data for South Asian ancestry in the Genes & Health cohort with additional criteria of INFO score

>0.6 and genotype missing rate <5%. Individuals with a missing rate >5% were removed. Eventually, 44,396 individuals and

8,935,207 SNPs remained in Genes & Health.

Clinical outcomes
Clinical phenotypes were curated using a combination of electronic health record data, direct physical measurements, and/or self-

reported personal medical history data, from the All of Us v6 Data Release as detailed in Table S20. Individuals in the Genes and

Health cohort were also curated with similar definitions based on ICD10, SNOMED and operation codes (Table S21). Traits with

the best performing single trait-specific PRS with power <0.95 such as hemoglobin, sleep apnea, and depression were removed.

Binary traits with a prevalence <2% were removed.

Assessment of clinical utility
Weapplied PRSmix and PRSmix+ for coronary artery disease as a clinical application. The phenotypic algorithm includes at least one

ICD or CPT code below: ICD9 410x, 411x, 412x; ICD10 I22x, I23x, I24.1, I25.2 CPT 92920–92979 (PCI), 33533–33536, 33517–33523,

33510–33516 (CABG) or self-reported personal history of MI or CAD. CAD in Genes and Health cohort was defined with at least one

ICD10 I22x, I23x, I24.1, I25 or operation codes K401, K402, K403, K404, K411, K451, K452, K453, K454, K455, K491, K492, K499,

K502, K751, K752, K753, K754, K758, K759 or SNOMED codes 1755008, 22298006, 54329005, 57054005, 65547006, 70211005,

70422006, 73795002, 233838001, 304914007, 401303003, 401314000.
Cell Genomics 4, 100523, April 10, 2024 e3
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We calculated the QRISK3 10-year predicted risk for CAD using the R package QRISK3 v0.3.0. Definition of QRISK3 are described

with Type 1 diabetes, Type 2 diabetes, chronic kidney diseases (stage 3,4,5), atrial fibrillation, systemic lupus erythematosus,

migraine, rheumatoid arthritis, severe mental illness following.53

The category-free NRI was used to evaluate the clinical utility. NRI was calculated by adding the PRS to the baseline logistic model

including age, sex, the first 10 principal components, and clinical risk factors. The clinical risk factors include total cholesterol,

HDL-C, BMI, type 2 diabetes, and current smoking status or model includes only age, sex, and 10 principal components. NRI

was calculated as the sum of NRI for cases and NRI for controls:

NRI = PðupjcaseÞ � PðdownjcaseÞ+PðdownjcontrolÞ � PðupjcontrolÞ
PðupjcaseÞ and PðdownjcaseÞ estimate the proportion of cases that had higher or lower risk after classification with logistic regres-

sion, respectively. The confidence interval for NRI was estimated with 500 bootstraps. We also compared the risk increase between

individuals in the top decile of PRS versus those remaining in the population. In addition to liability R2 to compare the PRS perfor-

mance, we also used the incremental area under the curve (AUC) to compare the PRS. The incremental AUC was estimated as

the difference between the AUC of models with the integrative score versus the model with only clinical variables. We also used

the baseline model with QRISK354 which estimate the 10-year risk of ASCVD and adjusted for traditional risk factor described above.

wMT-SBLUP and linear combination of LDpred2-auto derived scores
LDpred2-auto: LDpred2 is a Bayesianmethod that computes the adjusted SNP effect sizes fromGWAS summary statistics. LDpred2

utilizes the SNP effect sizes as prior and incorporates LD between markers to infer the posterior effect sizes. In our work, we imple-

mented LDpred2-auto55 since this method can infer heritability and the proportion of causal variants. LDpred2-auto was conducted

with 800 burn-in iterations and 500 iterations. The proportion of causal variants was initialized between 10�4 and 0.9. Furthermore,

LDpred2-auto does not require a validation set, the SNP effect sizes were averaged between scores. We used 1,138,726 HapMap3

variants that overlapped with SNPs from whole-genome sequencing data in the All of Us cohort. The LD reference panel developed

from European ancestry was provided by the LDpred2-tutorial.

wMT-SBLUP: wMT-SBLUP15 calculates the mixing weights of PRS using sample sizes from GWAS summary statistics, SNP-her-

itability and genetic correlation. We compared wMT-SBLUP with our method using 5 traits that were originally assessed with wMT-

SBLUP including CAD, T2D, depression, height, and BMI. We curated 26 publicly available GWAS summary statistics (Table S22)

and performed LDpred2-auto with quality controls suggested by Privé et al..5,55 We used LD score regression to estimate SNP-her-

itability and genetic correlation across 26 traits. For each of the 5 outcome traits, we selected correlated traits with pP-value of ge-

netic correlation less than 0.05.

Elastic Net for linear combination: we also implemented linear combination by Elastic Net with the LDpred2-auto-derived PRSs for

contributing traits since this strategy was proposed by several works.8,20,27 We selected scores with significant variance explained

(pP-value<0.05) to the outcome trait and conducted Elastic Net using the glmnet R package.48

Phenome-wide association study
We obtained the list of 1815 phecodes from the PheWAS website (last accessed December 2022).56 The phecodes were based on

ICD-9 and ICD-10 to classify individuals. PheWAS was conducted on European ancestry only in AoU. For each phecodes as the

outcome, we conducted an association analysis using logistic regression on PRS and adjusted for age, sex, and first 10 PCs. The

significance threshold for PheWAS was estimated as 2.75 x 10�5 (0.05/1815) after Bonferroni correction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed on the AoU Researcher Workbench in Jupyter Notebook 14 using R version 4.0.0 programming language.

Results are reported in compliance with the AoU Data and Statistics Dissemination Policy.

ADDITIONAL RESOURCES

This study is not a clinical trial, there is no clinical registry number. There is no external sites that have been generated to support

discussion or use of the information/data/material created by the manuscript.
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