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SUMMARY
Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of com-
plex traits and diseases, but there exists a substantial performance gap across populations. We propose
MUSSEL, amethod for ancestry-specific polygenic prediction that borrows information in summary statistics
from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical
modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies,
totaling 5.7million participants with a substantial ancestral diversity, MUSSEL shows promising performance
compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous
traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry popu-
lation. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architec-
ture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be
needed to generate the most robust PRSs across diverse populations.
INTRODUCTION

Polygenic models for predicting complex traits are widely devel-

oped, utilizing summary-level association statistics from

genome-wide association studies (GWASs). While being on

course to translate GWAS results into clinical practice, polygenic

risk scores (PRSs) encounter obstacles due to the poor predic-

tive performance on under-represented non-European (non-

EUR) ancestry populations, especially those with substantial Af-

rican ancestry.1–4 As sample sizes for GWASs in many non-EUR

populations remain low for many traits, applications of PRSs

often rely on EUR-based models, which underperform in other

populations due in part to differences in allele frequencies,

SNP effect sizes, and linkage disequilibrium (LD).1–3,5,6
Cell Genomics 4, 100539,
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To improve the poor performance of PRSs on non-EUR popu-

lations, several multi-ancestry methods have recently been

developed to combine information from available GWAS sum-

mary statistics and LD reference data across multiple ancestry

groups.7 One simple approach is the weighted PRS,8 which

trains a linear combination of the PRS developed using single-

ancestry methods (e.g., LD clumping and p value thresholding,

C + T) applied separately to available GWAS data across

different ancestry groups.8 More recent methods attempt to

borrow information across ancestry at the level of individual

SNPs based on Bayesian methods9,10 and penalized regres-

sions,11,12 or through the extension of C + T.13 However, applica-

tions show that no single method performs uniformly the best,

and their performance depends on many aspects, including
April 10, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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the underlying genetic architecture of the trait, the absolute

and relative sample sizes across populations, and the algorithm

for the estimation of LD based on the underlying reference

dataset.13

We propose MUSSEL, a novel method for developing

ancestry-specific PRS by jointly modeling ancestry-specific

GWAS summary data across diverse ancestries. The method

conducts Bayesian hierarchical modeling of SNP effect sizes

across ancestries via a multivariate spike-and-slab prior and

an ensemble learning step (MUSSEL) to seek an ‘‘optimal’’ com-

bination of a series of PRSs obtained under different tuning

parameter settings and across different ancestry groups. We

evaluate MUSSEL and benchmark it against a variety of alterna-

tives through large-scale simulation studies and analyses of 16

traits from four different studies: (1) the Population Architecture

using Genomics and Epidemiology (PAGE) Study supplemented

with data from the Biobank Japan (BBJ) and UK Biobank

(UKBB); (2) Global Lipids Genetics Consortium (GLGC); (3) All

of Us research program (AoU); and (4) 23andMe. These studies,

with training data and additional validation samples from the

UKBB study, included a total of 3.4 million European (EUR),

226,000 (226K) admixed African, African, or African American

(AFR), 437K admixed Americans or Hispanic/Latino (AMR),

389K East Asian (EAS), and 56K South Asian (SAS). Results

reveal the promising performance of MUSSEL for developing a

robust PRS in the multi-ancestry setting and identifying a num-

ber of practical considerations for implementations that are

crucial to the performance of the method.

DESIGN

MUSSEL overview
Considering that GWAS summary-level association statistics

can be shared much more easily among research teams than in-

dividual-level genotype and phenotype data from GWASs, we

will focus on PRS methods that can use summary statistics

from theGWAS training samples. The implementation of our pro-

posed method, MUSSEL, as well as other multi-ancestry

methods to which we will compare MUSSEL, requires three

(ancestry-specific) datasets from each training ancestry group:

(1) GWAS summary data; (2) LD reference data; and (3) a valida-

tion (tuning + testing) dataset with genotype and phenotype data

for an adequate number of individuals that are independent of

GWAS samples and LD reference samples.

We now introduce MUSSEL, a novel method for enhanced

ancestry-specific polygenic risk prediction based on available

GWAS summary-level association statistics and LD reference

data across multiple ancestry groups. MUSSEL consists of two

steps (Figure 1): (1) a Bayesian modeling step (MUSS) to model

the genetic correlation structure in SNP effect sizes across

ancestry groups while accounting for ancestry-specific LD

across SNPs; and (2) an ensemble learning (EL) step via a super

learner (SL) to construct an ‘‘optimal’’ linear combination of a se-

ries of PRSs obtained fromMUSS under different tuning-param-

eter settings and across all ancestry groups. Additionally, a step

0 was conducted before step 1 to obtain tuned causal SNP pro-

portion and heritability parameters for each training ancestry

group from LDpred2. These parameters will be used to specify
2 Cell Genomics 4, 100539, April 10, 2024
the prior causal SNP proportions and heritability parameters

in MUSS.

Step 1: MUSS: Bayesian modeling with multivariate
spike-and-slab prior
MUSS tailors effect-size estimates for each ancestry group by

incorporating data from other ancestry groups via Bayesian hier-

archical modeling with a multivariate spike-and-slab prior on

SNP effect sizes across ancestry groups. For population-spe-

cific SNPs, i.e., SNPs with minor allele frequency (MAF) > 0.01

in only one ancestry group, we assume a spike-and-slab prior

as in LDpred2. For SNPs that are polymorphic across multiple

populations, the between-SNP correlation is induced in two as-

pects: (1) we assume a SNP is causal in all those populations or

none, and (2) the effect sizes for causal SNPs across populations

are correlated (see STAR Methods for details). The prior specifi-

cation is distinct compared to the recent method PRS-CSx9 in

two aspects: (1) the use of a multivariate spike-and-slab prior

versus a continuous shrinkage prior to perform shrinkage esti-

mation; and (2) flexible specification of genetic correlation struc-

ture across ancestry groups in MUSSEL compared to PRS-CSx,

which assumes a single hyperparameter is shared across

different ancestry groups and thus incorporates as fairly rigid

specification of the correlation structure.

We infer posterior estimates of LD-adjusted SNP effect sizes

across different ancestries via an efficient Markov chain Monte

Carlo (MCMC) algorithm (STAR Methods). Multiple PRSs will

be developed for each ancestry under carefully designed set-

tings of two sets of tuning parameters: (1) the causal SNP pro-

portion in each ancestry group, which will be used to specify

the correlated prior causal probabilities across ancestry groups

(STAR Methods); and (2) the between-ancestry genetic correla-

tion in SNP effect sizes. Ancestry-specific SNP effect sizes are

estimated based on MCMC with an approximation strategy pre-

viously implemented in the LDpred2 algorithm,14 which substan-

tially reduces the number of iterations required to reach conver-

gence with a spike-and-slab type prior on a large number of

correlated SNPs. The detailed MCMC algorithm and estimation

procedure are described in STAR Methods.

Step 2: Ensemble learning via super learner
Research has shown that combining multiple C + T PRSs under

different p-value thresholds15 or combining the best ancestry-

specific PRSs across multiple ancestry groups8,9 can signifi-

cantly improve predictive performances. Thus, as a second

step of MUSSEL, we consider combining PRSs obtained from

the MUSS step both across different tuning-parameter settings

and across ancestry groups via an SL model trained on the tun-

ing dataset. SL is an EL method for seeking an ‘‘optimal’’ linear

combination of various base learners for prediction.16 In our an-

alyses, we consider three linear base learners, namely linear

regression, elastic net regression,17 and ridge regression.18 A

similar SL procedure was also implemented recently in another

multi-ancestry method, CT-SLEB.13 In our simulation studies

and real data examples, we will show explicitly how much

improvement in predictive power can be obtained separately

through the Bayesian modeling step and the EL step. Consid-

ering that both weighted PRS and PRS-CSx construct a linear



Figure 1. MUSSEL workflow

(Step 0) Apply LDpred2 to each of the K training

populations (ancestry groups) to obtain estimated

causal SNP proportions (pk ; k = 1;.;K) and heri-

tability (h2k ; k = 1;.; K) parameters based on the

tuning set; these parameters will be used to specify

the prior distributions and tuning-parameter settings

for Bayesian learning with MUSS. (Step 1) MUSS:

jointly model all training populations to obtain a total

of (L 3 K) PRS models under L different tuning-

parameter settings for Pr ðd1j ;.; dKjÞ (functions of pk

s) and rk1k2 s across K training populations. (Step 2)

for each target population, conduct ensemble

learning (EL) via a super learner (SL) algorithm with a

set of base learners (e.g., elastic net regression,

ridge regression, and linear regression) to train an

‘‘optimal’’ linear combination of the (L 3 K) PRS

models from the MUSS step to obtain the final

MUSSEL model. The prediction performance of the

final PRS derived using MUSSEL should be evalu-

ated on an independent testing set.
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combination of the best PRS for each ancestry group, we tried

the same approach on our Bayesian model (MUSS) and called

this alternative method ‘‘weighted MUSS.’’ We observe on

both simulated data and real data that the gain in predictive po-

wer by this linear combination strategy is mostly lower than, and

sometimes comparable to, the gain by our proposed EL strategy

(Figures S1–S13, ‘‘weighted MUSS’’ versus ‘‘MUSSEL’’).

RESULTS

Simulation settings
We first investigate the performance of MUSSEL and a series of

existing methods under various simulated scenarios of the ge-

netic architecture of a continuous trait and absolute and relative

GWAS sample sizes across ancestry groups. This large-scale

dataset, including simulated genotype and phenotype data for

a total of 600,000 individuals across EUR, AFR, AMR, EAS,

and SAS, was recently released by our group.13 Detailed simula-

tion setup is described in Zhang et al.13 and briefly summarized

in the supplemental information.

We apply eight existing approaches for comparison, which

include two single-ancestry methods applied to GWAS and

LD reference data from the target population: (1) C + T and
C

(2) LDpred2; the same single-ancestry

methods applied to GWAS and LD refer-

ence data for EUR: (3) EUR C + T and (4)

EUR LDpred2; and three existing multi-

ancestry methods applied to ancestry-

specific GWAS and LD reference data for

all ancestry groups: (5) weighted C + T

(weighted PRS using C + T as the base

method), (6) weighted LDpred2 (weighted

PRS using LDpred2 as the base method),

(7) PRS-CSx,9 and (8) CT-SLEB.13 Results

from another two recently proposed

multi-ancestry methods, PolyPred+19 and

XPASS,10 on the same simulated dataset
are reported in Zhang et al.13 Table 1 provides a comparison of

the various methods in terms of data requirement, similarities,

and differences. Taking into account both ancestral diversity

and computational efficiency, throughout the text we restrict all

our analyses to the SNPs among approximately 2.0 million

SNPs in HapMap 320 plus Multi-Ethnic Genotyping Array

(MEGA)21 that are also available in the discovery GWAS, LD

reference panel, and validation (tuning + testing) samples. We

assess the predictive performance of a PRS by prediction R2,

i.e., the proportion of variance of the trait explained by the

PRS. The corresponding 95% bootstrap confidence intervals

(CIs) are calculated based on 10,000 bootstrap samples using

the Bca approach22 implemented in the R package ‘‘boot’’23

(Figures S1–S10; Tables S1, S2, S3, S4, and S5). Results from

the various methods are compared in five simulation settings:

(1) fixed common SNP heritability, strong negative selection,

with a genetic correlation set to r = 0.8 between any two

ancestry groups (Figures 2, S1, and S2); (2) fixed per-SNP heri-

tability, strong negative selection, r = 0.8 (Figures S3 and S4);

(3) fixed per-SNP heritability, strong negative selection, with

a weaker between-ancestry genetic correlation, r = 0.6

(Figures S5 and S6); (4) fixed common SNP heritability, no nega-

tive selection, r = 0.8 (Figures S7 and S8); and (5) fixed common
ell Genomics 4, 100539, April 10, 2024 3



Table 1. Overview of the methods implemented for PRS development

Method Required training data sourcea Features Tuning parameters

Single-ancestry

C + T target ancestry model-free pt (p value threshold)

LDpred2 target ancestry Bayesian (spike-and-slab prior) p (causal SNP proportion), h2 (heritability)

EUR C + T EUR model-free pt (p value threshold)

EUR LDpred2 EUR Bayesian (spike-and-slab prior) p (causal SNP proportion), h2 (heritability)

Multi-ancestry

weighted LDpred2 ancestry-specific data from

each available ancestry

Bayesian (spike-and-slab prior),

linear combination strategy

p;H2, weight of each ancestry-specific

PRS in the final model

PRS-CSx ancestry-specific data from

each available ancestry

Bayesian (Strawderman-Berger prior),

linear combination strategy

4 (global shrinkage parameter), weight of

each ancestry-specific PRS in the final model

XPASSb ancestry-specific data from

each available ancestry

Bayesian (bivariate normal prior),

infinitesimal model

–

PolyPred+b ancestry-specific data from

each available ancestry

Bayesian, functional annotation,

linear combination of SBayesR

and PolyFun

parameters in SBayesR and PolyFun,

weight of SBayesR PRS and

PolyFun PRS in the final model

CT-SLEB ancestry-specific data from

each available ancestry

empirical Bayes, EL via SL pt (p value threshold), d (genetic distance)

for C + T step, parameters in the SL

MUSSEL ancestry-specific data from

each available ancestry

Bayesian (multivariate spike-and-

slab prior), EL via SL

Pr ðd1;.;dKÞ;rk1k2 ;1% k1 < k2 %K,

parameters in the SL
aAll methods require three datasets to train the PRS model: (1) discovery GWAS summary data, (2) LD reference data, and (3) tuning data.
bResults from PolyPred+ and XPASS on all simulated and real datasets (except for PAGE + UKBB + BBJ) were reported in Zhang et al.13
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SNP heritability, mild negative selection, r = 0.8 (Figures S9

and S10).

Simulation results
The multi-ancestry methods tend to outperform the single-

ancestry methods, except for weighted C + T, which performs

worse than LDpred2 when GWAS sample size of the non-EUR

target population becomes adequately large (Figures 2 and

S1–S10). When the discovery GWAS sample size of the target

non-EUR population is relatively small (N = 15,000) compared

to EUR GWAS (N = 100,000), EUR PRS tends to outperform

the generated PRS based on training data from the target non-

EUR population; but as the GWAS sample size of the target

non-EUR population increases, the prediction R2 of LDpred2

eventually becomes substantially higher than that of EUR C + T

and EUR LDpred2. Among the existing multi-ancestry methods,

weighted LDpred2, PRS-CSx, and CT-SLEB perform similarly

but show advantages over others in different settings: weighted

LDpred2 performs well in the scenario of a large causal SNP pro-

portion, while CT-SLEB performs similarly to PRS-CSx but

shows some advantages when there is a small causal SNP pro-

portion (0.05%) andwhenGWAS sample size for target non-EUR

population is small. Overall, the proposed method MUSSEL out-

performs these existingmethods in almost all settings. This is ex-

pected, given that the SNP effect sizes were simulated under a

multivariate spike-and-slab distribution as assumed in the

MUSS model. The proposed EL step (in MUSSEL) and the alter-

native linear combination step (in weighted MUSS) only provide

minimal improvement in R2 on top of MUSS (Figures S1–S10).

This may be because when the specified distribution of SNP ef-

fect sizes approximates the true distribution well, the best PRS

trained for each ancestry by MUSS can already provide a high
4 Cell Genomics 4, 100539, April 10, 2024
predictive power, and an additional step of combining PRSs

across tuning-parameter settings and ancestry groups is

unnecessary.

We also checked the computation intensity of MUSSEL in

comparison to PRS-CSx (Table S6). A comparison of computa-

tion time between PRS-CSx and CT-SLEB on the same simula-

tion dataset was reported in Zhang et al.13 With AMD EPYC 7702

64-core processors running at 2.0 GHz using a single core, on

chromosome 22 and with a total of 53 (K + 1) tuning-parameter

settings, MUSSEL has an average runtime of approximately

75.9 min combining K = 3 ancestry groups with a total of

17,192 SNPs, 127.2 min combining K = 4 ancestry groups with

17,721 SNPs, and 237.4 min across K = 5 ancestry groups

with 17,722 SNPs. Although not as fast as simpler methods

such as CT-SLEB and XPASS, MUSSEL is computationally

more efficient than PRS-CSx (K = 3: 3.8-fold; K = 4: 3.2-fold;

K = 5: 2.5-fold) and thus is easier to implement than PRS-CSx,

especially when four or more training populations are available

to be combined.

To examine whether the performance of MUSSEL is sensitive

to mis-specification of the LD matrix, we conduct a sensitivity

analysis, whereby we estimate LD for each ancestry group

based on a slightly mis-specified LD reference sample that con-

tains 800 individuals from the same ancestry group and 50 indi-

viduals from each of the other four ancestry groups, totaling 200

(20%) individuals with ancestry mismatch. We repeat our anal-

ysis under the setting of having fixed common SNP heritability,

a strong negative selection, and a genetic correlation of 0.8

across all pairs of ancestry groups, based on the mis-specified

LD reference samples. We also apply LDpred2, EUR LDpred2,

and weighted LDpred2, which may also be sensitive to ancestry

mismatch between the discovery GWAS samples and LD
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reference samples. Compared to the results assuming no

ancestry mismatch between the discovery GWAS and LD refer-

ence data, the R2 of LDpred2, EUR LDpred2, weighted LDpred2,

and MUSSEL PRS are on average 3.3%, 5.7%, 15.1%, and

10.4% lower, respectively (Figures S14 and S15; Table S7).

The amount of power loss appears to increase as the underlying

causal SNP proportion decreases.

PAGE + UKBB + BBJ data analysis with validation on
non-EUR individuals from PAGE
Weevaluate theperformanceof the variousmethodsonpredicting

the polygenic risk of inverse-rank normal transformed body mass

index (IRNT BMI), high-density lipoprotein (HDL), and low-density

lipoprotein (LDL) separately for AFR, AMR, and EAS.We collected

ancestry-specific trainingGWAS summary data for AFR and AMR

from PAGE, GWAS summary data for EAS from BBJ, and EUR

GWAS summary data from UKBB. The PRSs developed by the

various methods are evaluated on validation individuals of AFR,

AMR, and EAS populations from PAGE. We use genotype data

for 498 EUR, 659 AFR, 347 AMR, 503 EAS, and 487 SAS individ-

uals from the 1000 Genomes Project as the LD reference data.24

In this set of analyses, we observe that the multi-ancestry

methods tend to outperform single-ancestry methods for EUR,

AFR, and AMR (Figures 3 and S11; Tables S8 and S9). For

EAS, LDpred2 can reach an R2 similar to or higher than that of

EUR LDpred2 and multi-ancestry methods, which is possibly

because the BBJ GWAS sample sizes for EAS are relatively large

(N = 70,657–158,284). For the proposed method MUSSEL, we

observe potential improvement in R2 from both the Bayesian

modeling step (MUSS versus LDpred2) and the SL step

(MUSSEL versus MUSS). The linear combination strategy

(weighted MUSS, Figure S11) provides a smaller or similar gain

in R2 compared to our SL strategy (MUSSEL). The relative perfor-

mance of the various multi-ancestry methods varies by trait and

ancestry, and nomethod is uniformly better than others. In some

settings, MUSSEL PRS gives a lower R2 than the PRS trained by

weighted LDpred2 and PRS-CSx in some settings, such as for

BMI on AFR and LDL on EAS. In general, however, the

MUSSEL PRS has the best overall performance, with an average

increase of 3.6% and 19.6% in R2 compared to PRS-CSx and

CT-SLEB, respectively, on non-EUR ancestries.

GLGC data analysis with validation on UKBB individuals
We apply the various methods to develop ancestry-specific PRS

for four blood lipid traits, namely HDL, LDL, total cholesterol (TC),

and log of triglycerides (logTG),25 based on ancestry-specific

GWAS summary data for EUR, AFR, AMR, EAS, and SAS, from

the GLGC. We validate the performance of the various methods
Figure 2. Simulation results showing performance of the PRS trained

A fixed common SNP heritability (0.4) is assumed across all ancestries under a str

allele frequency. The genetic correlation in SNP effect size is set to 0.8 across all p

1.0%, 0.1%, or 0.05% (�192K, 19.2K, or 9.6K causal SNPs). We generate data for

analyses only on the �2.0 million SNPs in HapMap 3 + MEGA. The PRS-CSx soft

we report the performance of PRS-CSx PRSs based only on the HapMap 3 SNPs.

EUR ancestry, and 100,000 for EUR. A tuning set consisting of 10,000 individuals i

linear combination model in weighted C + T, weighted LDpred2, and PRS-CSx. Th

based on an independent testing set of 10,000 individuals for each ancestry gro

6 Cell Genomics 4, 100539, April 10, 2024
on UKBB individuals of AFR, EAS, and SAS origin separately,

where the ancestry information of the UKBB validation individ-

uals was determined based on an ancestry genetic component

analysis (supplemental information).

We first use genotype data of the unrelated 1000 Genomes

samples as the LD reference data.24 We observe that the

MUSSEL PRS performs the best or similarly to the best PRS

(Figures 4A and S12A; Tables S10 and S11). We see a notable

gain in R2 on comparing MUSSEL PRS to weighted LDpred2

PRS (average increase: 50.7%). MUSSEL outperforms CT-

SLEB in most cases (average increase in R2: 27.1%). Although

the relative performance between MUSSEL and PRS-CSx varies

by ancestry and trait, MUSSEL PRS has a better overall perfor-

mance, with an average increase of 19.9% in R2 compared to

PRS-CSx PRS. Similar to the results from PAGE + UKBB + BBJ

analysis, MUSSEL improves on top of LDpred2 by both the

Bayesian modeling step (MUSS versus LDpred2, Figure S12A)

and the SL step (MUSSEL versus MUSS, Figure S12A). The

PRS generated by the alternative linear combination strategy

has a similar or lower R2 than the PRS generated by our proposed

EL strategy (weighted MUSS versus MUSSEL, Figure S12A).

It has been observed that LDpred2 sometimes has suboptimal

performance based on the widely implemented 1000 Genomes

LD reference data,26,27 which may be due to convergence issue

in the presence of inadequate LD reference sample size and/or

ancestry mismatch between 1000 Genomes samples and the

target population.26 Implemented by an MCMC algorithm that

utilizes computational tricks similar to those of LDpred2,

MUSSEL may likewise underperform with the 1000 Genomes

reference data. We therefore conduct a sensitivity analysis

whereby we estimate LD based on UKBB tuning samples

(10,000 EUR, 4,585 AFR, 687 AMR, 1,010 EAS, and 5,427

SAS) instead of the 1000 Genomes samples. We observe that

the R2 of MUSSEL PRS improves notably compared to using

1000 Genomes LD reference (Figure 4B; Tables S10 and S11),

especially on AFR (average increase: 33.8%). The R2 of PRS-

CSx PRS has also increased but not as much as the R2 of

MUSSEL PRS. This is particularly noteworthy because PRS-

CSx by default uses amuch larger number of UKBB LD reference

samples (375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and

8,412 SAS), which also overlap with our UKBB testing samples

and thus lead to potentially inflated R2 estimates. The advantage

of MUSSEL now becomes more obvious: it outperforms the ex-

isting methods in all scenarios except for HDL in EAS, where it

performs slightly worse than PRS-CSx PRS. MUSSEL shows

themost notable advantage on AFR, for which PRSs are typically

not powerful and difficult to improve (average R2 increase

compared to the best existing method: 38.6%). Interestingly,
by MUSSEL and various existing methods

ong negative selection model for the relationship between SNP effect size and

airs of populations. The causal SNP proportion (degree of polygenicity) is set to

�19million common SNPs (MAFR 1%) across the five ancestries but conduct

ware only considers approximately 1.2 million HapMap 3 SNPs and, therefore,

The discovery GWAS sample size is set to (A) 15,000 or (B) 80,000 for each non-

s used for parameter tuning and training the SL in CT-SLEB andMUSSEL or the

e reported R2 values and the corresponding 95% bootstrap CIs are calculated

up.



Figure 3. PredictionR2of thePRStrainedbasedonGWASsummarydata fromPAGE+UKBB+BBJonnon-EURvalidation individuals fromPAGE

Discovery GWASs include GWAS from PAGE (AFR NGWAS = 7,775–13,699, AMR NGWAS = 13,894–17,558), BBJ (EAS NGWAS = 70,657–158,284), and UKBB (EUR

NGWAS = 315,133–355,983). The validation dataset consists of individuals of EUR (N = 17,457–19,030), AFR (N = 7,954–8,598), EAS (N = 1,752–1,921), or SAS (N

= 9,385–10,288) origin in UKBB. We used genotype data from the 1000 Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, and 487 SAS) as the LD

reference dataset. All methods were evaluated on the�2.0 million SNPs that are available in HapMap 3 + MEGA, except for PRS-CSx, which is evaluated based

on the HapMap 3 SNPs only, as implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number of SNPs included, and validation sample

sizes are summarized in Table S7. A random half of the validation individuals is used as the tuning set to tunemodel parameters as well as train the SL in CT-SLEB

andMUSSEL or the linear combination model in weighted C + T, weighted LDpred2, and PRS-CSx. The other half of the validation set is used as the testing set to

report R2 values and the corresponding 95% bootstrap CIs for PRSs on each ancestry, after adjusting for whether the sample is from BioMe and the top ten

genetic principal components for BMI, and additionally the age at lipid measurement and sex. Detailed results are reported in Table S17.
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the alternative weighted MUSS approach has a similar or slightly

lower R2 than MUSSEL, but it still outperforms PRS-CSx, which

utilizes the same linear combination strategy, for almost all traits

and ancestry groups (Figure S12B).

AoU data analysis with validation on UKBB individuals
We also apply the various methods to develop ancestry-specific

PRSs for height and BMI based on the GWAS summary data

we generated from AoU for EUR, AFR, and AMR. The perfor-

mance of the derived PRS is evaluated on UKBB validation sam-

ples of AFR ancestry. As in the GLGC data analysis, we first use

genotype data of the unrelated 1000 Genomes samples as the
LD reference data24 (Figure 5A; Tables S12 and S13). Although

no method is uniformly the best on all traits and ancestry groups,

MUSSELPRS on average has anR2 that is 67.5%higher than that

of the PRS-CSx PRS and 53.4% higher than that of the CT-SLEB

PRS. MUSSEL PRS improves on top of the single-ancestry

method by both the Bayesian modeling step (MUSS versus

LDpred2, Figure 5A) and the SL step (MUSSEL versusMUSS, Fig-

ure S13A). The weightedMUSSPRS utilizing a linear combination

strategy gives a lower R2 than the MUSSEL PRS utilizing the EL

strategy (weighted MUSS versus MUSSEL, Figure S13A).

Similar to the GLGC data analysis, we also conduct a sensi-

tivity analysis whereby we estimate LD using the UKBB tuning
Cell Genomics 4, 100539, April 10, 2024 7



Figure 4. Prediction R2 of the PRS trained based on GWAS summary data from GLGC on non-EUR validation individuals from UKBB

Discovery GWASs from GLGC include GWAS on EUR (NGWAS = 842,660–930,671), AFR or admixed AFR (NGWAS = 87,760–92,555), Hispanic/Latino (NGWAS =

46,040–49,582), EAS (NGWAS = 82,587–146,492), and SAS (NGWAS = 33,658–34,135). The validation dataset consists of individuals of EUR (N = 17,457–19,030),

AFR (N = 7,954–8,598), EAS (N = 1,752–1,921), or SAS (N = 9,385–10,288) origin in UKBB. The LD reference data are from either (A) the 1000 Genomes Project

(498 EUR, 659 AFR, 347 AMR, 503 EAS, and 487 SAS), or (B) UKBB data (PRS-CSx: default UKBB LD reference data which overlap with our testing samples

including 375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 8,412 SAS; all other methods: UKBB tuning samples including 10,000 EUR, 4,585 AFR, 1,010 EAS,

and 5,427 SAS). The ancestry of UKBB individuals was determined by a genetic ancestry prediction approach (supplemental information). Due to the low

prediction accuracy of genetic component analysis and extremely small validation sample size of UKBB AMR, prediction R2 on UKBB AMR is unreliable and thus

is not reported here. All methods were evaluated on the�2.0million SNPs that are available in HapMap 3 +MEGA, except for PRS-CSx, which is evaluated based

on the HapMap 3 SNPs only, as implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number of SNPs included, and validation sample

sizes are summarized in Table S10. A random half of the validation individuals is used as the tuning set to tune model parameters as well as train the SL in CT-

SLEB and MUSSEL or the linear combination model in weighted LDpred2, PRS-CSx, and weighted MUSS. The other half of the validation set is used as the

testing set to report R2 values and the corresponding 95% bootstrap CIs for each ancestry, after adjusting for age, sex, and the top ten genetic principal

components. In (B), PRS-CSx and other methods do not have a fair comparison because the UKBB LD reference data provided by the PRS-CSx software

(UKBBPRS-CSx) is much larger than that for other methods, and thus the R2 of PRS-CSx PRSmay be inflated due to a large overlap between UKBBPRS-CSx and the

UKBB testing sample. Detailed results are reported in Table S17.
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samples (10,000 EUR, 4,585 AFR, 1,010 EAS, and 5,427 SAS)

instead of the 1000 Genomes data. Different from the results

from GLGC data analysis, no PRS has noticeably improved pre-

dictive power, even though there is a better ancestry match be-

tween the LD reference population and the target population

(Figures 5B and S13B). Such results from the GLGC data anal-

ysis and the AoU data analysis suggest that for MUSSEL, the

1000 Genomes LD reference dataset may be adequate for build-

ing PRS models with relatively small discovery GWAS, such as

the AoU GWAS (N = 15,364–48,332), but not so with much larger

discovery GWAS, such as the GLGC GWAS (N up to 0.89

million). In other words, the ratio of the sample size of the LD

reference dataset to the GWAS sample size may matter more

than the sample size of the LD reference dataset itself or the pop-

ulation/ancestry match between datasets.

23andMe data analysis
We have collaborated with 23andMe (Sunnyvale, CA) to develop

and validate PRSs for seven traits for EUR, African American

(AFR), Latino (AMR), EAS, and SAS based on a large-scale data-

set from 23andMe. We analyze two continuous traits, (1) heart
8 Cell Genomics 4, 100539, April 10, 2024
metabolic disease burden and (2) height, and five binary traits,

(3) any cardiovascular disease (CVD), (4) depression, (5) migraine

diagnosis, (6) morning person, and (7) sing back musical note

(SBMN). Results are summarized in Figure 6 and Tables S14

and S15. For the two continuous traits, MUSSEL shows a major

advantage over the existing methods on AFR and AMR: for

example, MUSSEL has a remarkable improvement over two

recently proposed advanced methods that perform the best

among the existing methods, PRS-CSx (average increase in

R2: 49.8%) and CT-SLEB (average increase in R2: 47.5%). For

EAS and SAS, MUSSEL performs better than all existing

methods considered in all scenarios, except for heart metabolic

disease burden in SAS, which has the smallest discovery GWAS

(N = 20,062), where MUSSEL PRS has an R2 value slightly lower

than that of CT-SLEB PRS but higher than the R2 value of all

other PRS.

For the five binary traits, we observe a pattern similar to that

of continuous traits, where MUSSEL generally performs

better than or similarly to the best of the existing methods, and

it shows the biggest improvement in residual area under the

curve (AUC � 0.5) over existing methods on AFR (average



Figure 5. Prediction R2 of the PRS trained based on GWAS summary data from AoU on non-EUR validation individuals from UKBB

Discovery GWASs fromAoU include GWAS on EUR (NGWAS = 48,229–48,332), AFR (NGWAS = 21,514–21,550), and Hispanic/Latino (NGWAS = 15,364–15,413). The

validation dataset consists of individuals of AFR origin in UKBB (N = 9,026–9,042). The LD reference data are from either (A) the 1000 Genomes Project (498 EUR,

659 AFR, 347 AMR, 503 EAS, and 487 SAS) or (B) UKBB data (PRS-CSx: default UKBB LD reference data, which overlap with our testing samples including

375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 8,412 SAS; all other methods: UKBB tuning samples including 10,000 EUR, 4,585 AFR, 1,010 EAS, and 5,427

SAS). The ancestry of UKBB individuals was determined by a genetic ancestry prediction approach (supplemental information). Due to the low prediction ac-

curacy of genetic component analysis and extremely small validation sample size of UKBB AMR, prediction R2 on UKBB AMR is unreliable and thus is not

reported here. All methodswere evaluated on the�2.0million SNPs that are available in HapMap3 +MEGA, except for PRS-CSx, which is evaluated based on the

HapMap 3 SNPs only, as implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number of SNPs included, and validation sample sizes

are summarized in Table S11. A random half of the validation individuals is used as the tuning set to tunemodel parameters as well as train the SL in CT-SLEB and

MUSSEL or the linear combination model in weighted LDpred2, PRS-CSx, and weighted MUSS. The other half of the validation set is used as the testing set to

report R2 values for each ancestry, after adjusting for age, sex, and the top ten genetic principal components. Detailed 95% bootstrap CIs are reported in

Table S17. In (B), PRS-CSx and other methods do not have a fair comparison because the UKBB LD reference data provided by the PRS-CSx software

(UKBBPRS-CSx) is much larger than that for other methods, and thus the R2 of PRS-CSx may be inflated due to a large overlap between UKBBPRS-CSx and the

UKBB testing sample.
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improvement: 14.4%, Figure 6B; Tables S14 and S15). Averaged

across all five traits and four non-EUR ancestry groups,MUSSEL

PRS gives an (AUC � 0.5) that is 13.8% higher than that of the

PRS-CSx PRS and 9.0% higher than that of the CT-SLEB PRS.

To examine the overall performance of the different methods,

we further calculate the average R2 and the corresponding 95%

bootstrap CIs across all available traits in the PAGE + UKBB +

BBJ, GLGC, and AoU data analyses for each ancestry group

(Figure S16; Table S17). Overall, MUSSEL shows a significantly

higher average R2 than all existing methods on EUR (p =

3.22 3 10�4 for improvement compared to the second-best

method) and AFR (p = 7.10 3 10�8), and a marginally significant

increase in average R2 for EAS (p = 5.18 3 10�2) and SAS (p =

8.52 3 10�2), while for AMR it has an average R2 (p = 0.616)

similar to that of the existing multi-ancestry methods. One of

the reasons MUSSEL shows the most significant improvement

on EUR and AFR is that the average R2 for these two ancestry

groups are calculated across all nine traits, with the largest total

validation sample sizes that naturally lead to narrowCIs, while for

EAS/SAS and AMR the average R2 values are calculated across
only seven traits and three traits, respectively. Nevertheless, we

can observe a significant improvement in the average R2 of

MUSSEL for EUR and AFR and a potentially significant improve-

ment for EAS and SAS as the number of traits and sample sizes

increase, suggesting the promising gain in predictive power of

MUSSEL compared to existing methods.

DISCUSSION

We propose MUSSEL, a powerful method for developing

enhanced ancestry-specific PRSs integrating information from

GWAS summary statistics and LD reference data acrossmultiple

ancestry groups. Based on an extension of spike-and-slab type

prior,14 MUSSEL enhances the ancestry-specific polygenic pre-

diction by (1) borrowing information from GWAS of other ances-

tries via specification of a between-ancestry covariance struc-

ture in SNP effect sizes, (2) incorporating heterogeneity in LD

andMAF distribution across ancestries, and (3) using an SL algo-

rithm combining ancestry-specific PRS developed under various

possible genetic architectures of the trait. We benchmark our
Cell Genomics 4, 100539, April 10, 2024 9



Figure 6. Prediction results on 23andMe validation individuals based on discovery GWAS from 23andMe on EUR, AFR, AMR, EAS, and SAS

The performance of the variousmethods is evaluated by (A) residual R2 for two continuous traits, heart metabolic disease burden and height, and (B) residual AUC

for five binary traits, any CVD, depression, migraine diagnosis, morning person, and SBMN, with LD reference data from the 1000 Genomes Project. The dataset

is randomly split into 70%, 20%, and 10% for training GWAS, model tuning (tuning model parameters and training the SL in CT-SLEB and MUSSEL or the linear

combination model in weighted LDpred2 and PRS-CSx), and testing (to report residual R2 or AUC values after adjusting for the top five genetic principal

components, sex, and age), respectively. All methods were evaluated on the �2.0 million SNPs that are available in HapMap3 + MEGA, except for PRS-CSx,

which is evaluated based on HapMap 3 SNPs only, as implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number of SNPs included,

and validation sample sizes are summarized in Table S14.
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method against a wide variety of alternatives, including multiple

state-of-the-art multi-ancestry methods,8,9,13 using extensive

simulation studies and data analyses. Results show that while

no method is uniformly the best, MUSSEL is generally a robust

method that shows close to optimal performance across a

wide range of scenarios and has the potential to notably improve

PRS performance in the AFR population compared to the alter-

native methods. While the 95% bootstrap CIs for PRS perfor-

mance in individual settings can be wide and, thus, one cannot

often claim superiority of one method over another with statisti-

cal significance, when we look at results across traits and

studies, we observe that MUSSEL on average outperforms ex-

isting methods for optimal PRS development in the EUR, AFR,

EAS, and SAS populations (Figure S16).

One important observation from the data applications is that

the advantage of MUSSEL over existing methods tends to be

more notable with larger GWASs accompanied by larger LD

reference datasets. In the GLGC and 23andMe data analyses

where the discovery GWAS sample sizes are relatively large,

especially for the non-EUR populations, we can clearly observe

that MUSSEL performs almost uniformly better than the existing

methods. In contrast, in the PAGE + UKBB + BBJ data analysis,

where the GWAS sample sizes for AFR and AMR are relatively

small, MUSSEL sometimes shows a suboptimal performance.

Such a trend of having more notable advantages with larger

GWAS sample sizes and larger LD reference datasets exists

not only when comparing MUSSEL to existing methods but

also when comparing the more advanced methods, such as
10 Cell Genomics 4, 100539, April 10, 2024
MUSSEL and PRS-CSx, to simpler alternatives, such as the

weighted PRS method.

One key factor in implementing MUSSEL is the LD reference

data. The analyses of the GLGC and AoU datasets illustrates

that the sample size of the LD reference data should be suffi-

ciently large relative to the discovery GWAS sample size to

give MUSSEL an optimal performance (Figure 4; Tables S10

and S11). The performance of MUSSEL depends on estimated

causal SNP proportion parameters from single-ancestry

LDpred2 analysis. LDpred2 has previously been shown to under-

perform sometimes when using 1000 Genomes LD reference

data27 and thus could in turn affect the performance of

MUSSEL. Thus, as sample sizes of the training GWAS increase,

building a larger LD reference dataset than the widely used

1000 Genomes reference dataset will lead to more optimal

performance.

The performance of MUSSEL is robust to modest ancestry

mismatch between the discovery GWAS samples, LD reference

samples, and validation samples, such as EUR in the United

States (US) versus EUR in the United Kingdom (UK), as shown

in the AoU data analysis. In our simulation study, we conducted

a sensitivity analysis on the performance of MUSSEL given 20%

ancestry mismatch between the discovery GWAS samples and

LD reference samples. While the power loss of MUSSEL, as

well as the LDpred-basedmethods, is within a reasonable range,

an interesting finding is that the amount of power loss appears

to increase as the underlying causal SNP proportion de-

creases. This suggests that, for MUSSEL and the LDpred-based
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methods, ancestry mismatch between samples may be a more

severe issue for those traits affected by a small number of

large-effect SNPs. Ideally, the populations should be matched

as closely as possible between GWAS samples, LD reference

samples, and validation samples to ensure optimal performance

ofMUSSEL. However, if there is slight LDmis-specification, e.g.,

using samples from White population in the UK to estimate LD

among theWhite population in the US, our analyses on the simu-

lated and real datasets suggest that the power of MUSSEL may

be slightly worse but still comparable.

There are several practical considerations regarding the im-

plementation of MUSSEL and other multi-ancestry methods.

First, the SL step in MUSSEL and CT-SLEB needs to be imple-

mented with caution. We have shown by our data examples

that the SL algorithm combining PRS models across various

tuning parameter settings could yield additional improvement

in predictive power. With a limited tuning sample, however,

the SL might be overfitted in the presence of a large number

of tuning-parameter settings, ultimately leading to low predic-

tive power in an independent sample. Our analysis of the

simulated data suggests that the performance of SL

combining 30 different PRS models is typically stable when

the effective sample size of the tuning dataset is no less

than 1,000 for continuous traits. The required tuning sample

size will also increase as the number of PRS models included

in SL increases. Second, the advanced multi-ancestry

methods, such as PRS-CSx, CT-SLEB, and MUSSEL, may

not yield higher predictive power if the training GWAS sample

size is too small. We expect the advanced multi-ancestry

methods to outperform simpler methods when the GWAS

sample size is relatively large (e.g., over 15,000 per ancestry

group as in the AoU data analysis). When discovery GWAS

for the target non-EUR ancestry group is relatively small

(several thousand samples or fewer), a single-ancestry PRS

model trained on the basis of the much larger EUR GWAS

may outperform the multi-ancestry methods.

We have compared MUSSEL with a series of recent multi-

ancestry methods including PRS-CSx and CT-SLEB, but there

are other recently proposed methods that are worth investi-

gating. In fact, we have implemented two other multi-ancestry

methods named XPASS and PolyPred+ in our simulation study

as well as GLGC, AoU, and 23andMe data analyses, with

detailed results reported in Zhang et al.13 Although computation-

ally super-fast, XPASS, which uses a bivariate normal prior under

an infinitesimal model, can only combine up to two ancestry

groups, and it is always outperformed by MUSSEL (Tables S8,

S9, S10, S11, S12, S13, S14, and S15). This shows the impor-

tance of including sparsity components in modeling effect-size

distribution for Bayesian polygenic prediction. PolyPred+ imple-

ments a linear combination of SBayesR28 trained separately on

EUR and the target population and a PolyFun29 PRS on EUR

that additionally incorporates information from external func-

tional annotations, and thus it is not directly comparable to the

other methods. Even so, it performs worse than MUSSEL most

of the time (Tables S8, S9, S10, S11, S12, S13, S14, and S15).

In our data examples, different methods show advantages in

different scenarios in terms of GWAS sample size, LD reference

data, the type of trait, and target ancestry. It is thus natural to
consider extending our EL step from combining a series of

PRSs trained within a specific type of method, such as MUSS,

to those generated across different methods. MUSSEL can

also be modified to enhance the performance of the PRS by

borrowing information simultaneously across traits and geneti-

cally correlated traits. Two recent studies, both using simple

weighting methods, have shown significant potential for cross-

trait borrowing to improve PRS performance for individual

traits.30,31 There is, however, likely to be scope for additional

improvement by developing formal Bayesian methods that can

utilize flexible models for effect-size distribution simultaneously

across ancestries and traits.

In summary, we propose a powerful method for constructing

enhanced ancestry-specific PRSs combining GWAS summary

data and LD reference data across multiple ancestry groups.

As sample sizes of the multi-ancestry GWAS and LD reference

datasets continue to increase, more advanced methods, such

as MUSSEL and PRS-CSx,9 are expected to show more and

more advantages over simpler alternatives, such as the

weighted methods.8 Our large-scale simulation study and

four unique data examples illustrate the relative performance

of a variety of single- and multi-ancestry methods across

various settings of ancestry groups, GWAS sample sizes, ge-

netic architecture of the trait, and LD reference panel, which

can serve as guidance for method implementation in future

applications.

Limitations of the study
Our study has several limitations. First, the MUSS step requires

two sets of tuning parameters, namely causal SNP proportion in

each ancestry and between-ancestry correlation in effect sizes,

the specification of which is relatively complex compared to

other methods such as PRS-CSx. In the default setting of

MUSS, the candidate values for genetic correlation between a

pair of ancestry groups only lie between 0.7 and 0.95, while for

some traits the estimated correlation can be lower.9,25 However,

given the high computational scalability of MUSS, when the

number of ancestry groups is not too large (K%5), prior informa-

tion on genetic correlation can used to specify additional genetic

correlation parameter settings to cover a wider range of potential

genetic architectures of the trait. Second, all our analyses are

based on a set of approximately 2.0 million SNPs selected on

the basis of the combined content of HapMap 3 and the

MEGA SNP array. While this SNP set is considered very informa-

tive for multi-ancestry genetic studies, we have previously

shown that it is possible to increase PRS performance, espe-

cially in the AFR populations, by including much larger SNP con-

tents. Future research is needed to improve scalability of the

methods such as PRS-CSx and MUSSEL to datasets with larger

SNP contents.

The spike-and-slab type prior in MUSSEL can be suboptimal

for effect-size distribution of some traits. For example, in

GLGC GWAS, we detect several top SNPs with extremely large

association coefficients for all four blood lipid traits, each

contributing to 0.6%–3.9% of the estimated total heritability. In

this case, the Bayesian step in MUSSEL induces the same

amount of shrinking on all SNPs, resulting in over-shrinkage on

the few large-effect SNPs. We have considered a simple
Cell Genomics 4, 100539, April 10, 2024 11
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alternative approach to compensate such overshrinkage,32,33

whereby for each target ancestry group we first construct a

‘‘top-SNP PRS’’ using GWAS association coefficients of the

few top SNPs for the ancestry, then combine it with the

MUSSEL PRS constructed on the basis of the remaining

SNPs. This approach, however, does not provide a more power-

ful PRS. PRS-CSx, which allows a heavy-tail Strawderman-

Berger prior, while theoretically expected to be advantageous

for handling such large-effect SNPs, does not show much

advantage either. In the future, other heavy-tail type priors,

such as the Bayesian Lasso (i.e., Laplacian),34 Horseshoe,35

and Bayesian Bridge,36 are worth investigating. Another poten-

tial limitation of the method originates in the SL step: when the

tuning sample is small (e.g., <1,000), the prediction algorithms

utilized in SLmay be overfitted in the presence of a large number

of tuning parameters, ultimately leading to low predictive power

in an independent sample.
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15. Privé, F., Vilhjálmsson, B.J., Aschard, H., and Blum,M.G.B. (2019). Making

theMost of Clumping and Thresholding for Polygenic Scores. Am. J. Hum.

Genet. 105, 1213–1221. https://doi.org/10.1016/j.ajhg.2019.11.001.

16. van der Laan, M.J., Polley, E.C., and Hubbard, A.E. (2007). Super learner.

Stat. Appl. Genet. Mol. Biol. 6, Article25. https://doi.org/10.2202/1544-

6115.1309.

17. Zou, H., andHastie, T. (2005). Regularization and Variable Selection via the

Elastic Net. J. Roy. Stat. Soc. B 67, 301–320.

18. Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for

Generalized Linear Models via Coordinate Descent. J. Stat. Software 33,

1–22. https://doi.org/10.18637/jss.v033.i01.

19. Weissbrod, O., Kanai, M., Shi, H., Gazal, S., Peyrot, W.J., Khera, A.V.,

Okada, Y., Biobank Japan Project; Martin, A.R., Finucane, H.K., and Price,

A.L. (2022). Leveraging fine-mapping and multipopulation training data to

improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458.

https://doi.org/10.1038/s41588-022-01036-9.

20. International HapMap 3 Consortium (2010). Integrating common and rare

genetic variation in diverse human populations. Nature 467, 52–58. https://

doi.org/10.1038/nature09298.

21. Bien, S.A., Wojcik, G.L., Zubair, N., Gignoux, C.R., Martin, A.R., Kocarnik,

J.M., Martin, L.W., Buyske, S., Haessler, J., Walker, R.W., et al. (2016).

Strategies for Enriching Variant Coverage in Candidate Disease Loci on

a Multiethnic Genotyping Array. PLoS One 11, e0167758. https://doi.

org/10.1371/journal.pone.0167758.

22. DiCiccio, T.J., and Efron, B. (1996). Bootstrap Confidence Intervals. Stat.

Sci. 11, 189–212. https://doi.org/10.1214/ss/1032280214.

23. Canty, A.J. (2002). Resampling methods in R: the boot package. https://

journal.r-project.org/articles/RN-2002-017/RN-2002-017.pdf.

24. Siva, N. (2008). 1000 Genomes project. Nat. Biotechnol. 26, 256. https://

doi.org/10.1038/nbt0308-256b.

25. Graham, S.E., Clarke, S.L., Wu, K.H.H., Kanoni, S., Zajac, G.J.M.,

Ramdas, S., Surakka, I., Ntalla, I., Vedantam, S., Winkler, T.W.,

et al. (2021). The power of genetic diversity in genome-wide associa-

tion studies of lipids. Nature 600, 675–679. https://doi.org/10.1038/

s41586-021-04064-3.
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TC, and logTG stratified for

EUR, AFR, AMR, EAS, and SAS

Graham et al.25 https://csg.sph.umich.edu/willer/public/glgc-lipids2021/

results/ancestry_specific/

GWAS summary data from All of Us for

BMI and height stratified for

EUR, AFR, and AMR

This paper Harvard Dataverse: https://dataverse.harvard.edu/dataset.

xhtml?persistentId=doi:10.7910/DVN/FAWEQK

LD information used in MUSSEL for EUR,

AFR, AMR, EAS, and SAS

This paper Zenodo: https://doi.org/10.5281/zenodo.10816301

1000 Genome Phase 3 Siva24 https://mathgen.stats.ox.ac.uk/impute/

1000GP_Phase3.html

Software and algorithms

PLINK 1.9 Chang et al.41 https://www.cog-genomics.org/plink

PLINK 2.0 Purcelland Chang42 https://www.cog-genomics.org/plink/2.0/

LDpred2 Privé et al.14 https://privefl.github.io/bigsnpr/articles/LDpred2.html

PRS-CSx Ruan et al.9 https://github.com/getian107/PRScsx

CT-SLEB Zhang et al.13 https://github.com/andrewhaoyu/CTSLEB

LDSC Bulik-Sullivan et al.43 https://github.com/bulik/ldsc
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and code should be directed to and will be fulfilled by the lead contact, Jin Jin (jin.jin@

pennmedicine.upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The simulated genotype and phenotype data for 600K subjects of EUR, AFR, AMR, EAS, or SAS ancestry, as well as

GWAS summary statistics, and SNP information can be accessed at https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/COXHAP. The EUR GWAS summary data for BMI,37 HDL,38 and LDL38 based on UKBB sam-

ples (GWAS round 2) published by the Neale Lab can be downloaded at http://www.nealelab.is/uk-biobank. The EAS GWAS

summary data from BBJ for BMI,40 HDL,39 and LDL39 were downloaded from http://jenger.riken.jp/en/result. Split GWAS sum-

mary data generated based on 80%of individuals from PAGE for BMI, HDL, and LDL stratified for AFR and AMR, as used in the

training sets in our data analysis, are deposited to Zenodo (https://doi.org/10.5281/zenodo.10800703) and are available

upon request (email to Jin.Jin@Pennmedicine.upenn.edu). Stratified GWAS summary data from PAGE for BMI, HDL and

LDL for AFR and AMR (not split for training/validation sets) is available on LDHub (https://ldsc.broadinstitute.org). GWAS

summary data from GLGC for HDL, LDL, TC, and logTG stratified for EUR, AFR, AMR, EAS, and SAS can be downloaded

MUSSEL This paper Zenodo: https://doi.org/10.5281/zenodo.10800738
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at http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific/. GWAS summary data from AoU for

BMI and height stratified for EUR, AFR, and AMR are available at https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/FAWEQK. GWAS summary data from 23andMe Inc. for top 10,000 genetic markers associated

with height, morning person, and SBMN across five ancestry groups has been made available at https://dataverse.harvard.

edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3NBNCV. The full GWAS summary statistics for these three traits (height,

morning person, and SBMN) are available through 23andMe to qualified researchers under an agreement with 23andMe

Inc. that protects the privacy of the 23andMe participants. Please visit https://research.23andme.com/collaborate/

#dataset-access/for more information and to request data access. GWAS summary statistics for the other four traits (any

CVD, heart metabolic disease burden, depression, and migraine) will not be made available because of 23andMe business re-

quirements. Participants included in our 23andMe data analysis provided informed consent and participated in the research

online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent Review Services. 1000 Ge-

nomes Phase 3 reference data can be downloaded from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html. Our

estimated LD block matrices and other LD information used in MUSSEL for EUR, AFR, AMR, EAS, and SAS for approximately

2.0 million SNPs in HapMap 3 plus MEGA based on 1000 Genomes LD reference panel or UKBB reference panel can be down-

loaded from Zenodo (DOI) or on Github at https://github.com/Jin93/MUSSEL. LD block information, including the start and end

positions of each block, are extracted from the ‘‘lassosum’’ R package and can be downloaded from https://github.com/

tshmak/lassosum. Original data source for Figures 2, 3, 4, 5, and 6 in the paper is available in Tables S1, S8, S10, S12, and

S14, respectively.

d PLINK 1.9: https://www.cog-genomics.org/plink. PLINK 2.0: https://www.cog-genomics.org/plink/2.0/. LDpred2: https://

privefl.github.io/bigsnpr/articles/LDpred2.html. The R package ‘‘bigsnpr’’ (1.6.1) used in the LDpred2 pipeline is available for

download on Github at https://github.com/privefl/bigsnpr. PRS-CSx: https://github.com/getian107/PRScsx. CT-SLEB:

https://github.com/andrewhaoyu/CTSLEB. LD score regression: https://github.com/bulik/ldsc.

d TheMUSSEL software, along with the code for conducting simulation studies and data analyses in this paper can be accessed

at https://github.com/Jin93/MUSSEL and on Zenodo (https://doi.org/10.5281/zenodo.10800738).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

METHOD DETAILS

Details of MUSSEL step 1: MUSS
MUSS conducts Bayesian modeling to generate ancestry-specific MUSS PRS models through joint modeling of GWAS summary

data across all available ancestry groups. This step models the genetic correlation structure in SNP effect size across ancestry

groups while accounting for ancestry-specific LD and allele frequency information.

Suppose we are interested in predicting the polygenic risk of some trait Y based on genotype fGj; j = 1;.;Mkg, for an individual

of ancestry k = 1; 2;.;K, with Mk denoting the number of SNPs with a minor allele frequency (MAF) > 0.01 in ancestry k. For

demonstration purposes, we assume the trait is continuous, but the results can be directly applied to GWAS summary-level asso-

ciation statistics for discrete traits in the same manner. We assume all SNPs included are biallelic, i.e., each SNP only

has two alleles observed in the population. For each ancestry group k, we assume a true additive model for genetic variation,

Yk =
PMk

j = 1Gjb
ðJÞ
kj + ek , where b

ðJÞ
kj denotes the underlying joint effect size of Gj; j = 1; 2;.;Mk , i.e., effect size after adjusting for

the effect of other SNPs, for an individual of ancestry k, and ek denotes a zero-mean random error term that includes effects of

risk factors other than SNPs. Suppose we have ancestry-specific GWAS summary data, fðbbkj; bs2
kjÞ; j = 1; 2;.;Mk ; k = 1; 2;.;

Kg, specifically, the marginal effect sizes of the SNPs (bbkj s) and their corresponding standard errors (bs2
kj s) from one-SNP-at-a-

time regressions, yki = Gjibkj + yki; i = 1;.;Nk , for j = 1;.;Mk and k = 1;.;K. Here, i; j and k are the indices of GWAS sample,

SNP, and ancestry, respectively, yki denotes a zero-mean random error term that includes effects of other risk factors and all other

SNPs, bkj;Mk andNk are the true marginal SNP effect sizes, total number of SNPs, and GWAS sample size, respectively, for ancestry

k. Our goal is to obtain an estimate of the joint SNP effect sizes, cbkj ðJÞ s, to construct polygenic risk model PR Sk =
PMk

j = 1Gj
cbkj ðJÞ for

each ancestry group k.

Our analysis is conducted on the standardized scale, where Gkj s are assumed to be standardized to have a zero mean and

unit variance and Yk s are assumed to have a unit variance (for continuous traits). This is reflected by rescaling the GWAS

summary statistics so that the variance is equal to the inverse of the GWAS sample size. For computational scalability,

we divide the whole genome into a series of independent LD blocks,44 each containing hundreds of (up to �2900) SNPs,

and only consider the between-SNP correlation within each LD block. Such a block structure for LD matrices is considered

because it yields similar predictive power as the banded-structure LD matrices accounting for LD within a 3cM genetic dis-

tance suggested by LDpred2,14 but it is computationally more efficient and requires less memory. We estimate LD matrices

for SNPs within each LD block using PLINK 2.042 based on LD block segmentation in Berisa and Pickrell.44 LD block infor-

mation was extracted from the R package ‘‘lassosum.’’45 Note that the LD block information is available for EUR (1747

blocks, median number of SNPs per block: 816), AFR (2626 blocks, median number of SNPs per block: 716), and EAS
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(1489 blocks, median number of SNPs per block: 815), but not currently available for AMR and SAS, and thus we apply the

EUR LD information on AMR and SAS for now.

We denote by b
ðJÞ
lk

and bb lk the vector of true joint effect sizes and marginal effect sizes estimated from GWAS, respectively, for

SNPs within a specific LD block lk in ancestry k = 1;2;.;K. To conduct analyses on the standardized scale, we first divide each

raw effect size estimate bbkj by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nkjbs2

kj+
bb2
kj

q
. We can then write down the likelihood of the GWAS summary statistics, bb lk �

NðRlkb
ðJÞ
lk
;N

1=2
lk

RlkN
1=2
lk

Þ;where Rlk denotes the LD matrix of the SNPs within the LD block lk , and Nlk is a diagonal matrix with diagonal

entries being the corresponding GWAS sample sizes for SNPs within the LD block. For population-specific SNPs, i.e., SNPs with an

MAF > 0.01 in only one ancestry k, we assume a spike-and-slab prior as in LDpred2, b
ðJÞ
kj � Nð0;dkjh2kÞ;dkj � BerðpkÞ;where h2k denotes

the per-SNP heritability, dkj is the indicator of whether SNP j is causal in ancestry k, i.e., dkj = 1 if b
ðJÞ
lkj
s0 and 0 otherwise, and pk is the

proportion of causal SNPs in ancestry k. For SNPs that haveMAF > 0.01 in all ancestry groups, we induce a prior correlation structure

between b
ðJÞ
kj and b

ðJÞ
k0 j for k;k

0 ˛ f1;2;.;Kg. The prior distribution of the joint effect size b
ðJÞ
kj s given dkj s is then specified as follows,0

BBBB@
b
ðJÞ
1j

.

b
ðJÞ
Kj

1
CCCCA
��d1j;.; dKj � Nð0;DjUj DjÞ;

whereDj = diagðd1j;.;dKjÞ, and ðUjÞk;k0 = rk;k0hkhk0 , with rk;k0 denoting the genetic correlation between ancestry groups k and k0. For
SNPs that have an MAF > 0.01 in only a subset of ancestries A3f1;.;Kg, similar prior distributions can be specified for SNP effect

sizes within the set of ancestry groups A.

Recall that we introduce variables fpk = Prðdkj = 1Þ;cj; k = 1;.;Kg to denote ancestry-specific causal SNP proportions, and for

ancestry-specific SNPs, we assume dkj � BerðpkÞ. Now we generalize this Bernoulli prior to a multinomial prior on ðd1j;.; dKjÞT for

SNPs that exist in a subset of ancestry groups A3f1;.;Kg, with probabilities fPrðd1j;j˛Sj
= 1; d1j;j;Sj

= 0Þ;Sj 3Ag being defined

as functions of pk ; k = 1;.;K. We first focus on SNPs that only exist in two ancestry groups A = fk1; k2g: we set Prðdk1 j = 1;

dk2 j = 1Þ = minðpk1 ; pk2 Þ, which reflects our assumption that if an SNP is causal in one ancestry group, it is also causal in

another. We can then obtain Prðdk1 j = 1; dk2 j = 0Þ = pk1 � minðpk1 ; pk2 Þ; Prðdk1 j = 0; dk2 j = 1Þ = pk2 � minðpk1 ; pk2 Þ, and
Prðdk1 j = 0;dk2 j = 0Þ = 1 � pk1 � pk2 +minðpk1 ;pk2 Þ. After constructing Prðdk1 j; dk2 jÞ s, we then construct priors for SNPs that exist

in three ancestry groups: by specifying Prðdk1 j = 1;dk2 j = 1;dk3 j = 1Þ = minðpk1 ;pk2 ;pk3 Þ, we can obtain the rest of the probabilities

ffPrðdk1 j = a1; dk2 j = a2; dk3 j = a3Þ; a1; a2; a3 ˛ f0;1g;1% k1 < k2 < k3 %Kgg: Such specifications can be easily extended to apply to

SNPs that exist in four ancestry groups, five ancestry groups, etc.

We estimate cbkj ðJÞ s based on MCMC with an approximation strategy previously implemented in the LDpred2 algorithm,14 which

substantially reduces computation time of the algorithm. There are two sets of tuning parameters which will be estimated by grid

search using a tuning dataset independent from the testing samples on which we report R2: (1) the ancestry-specific causal SNP

proportions ðp1;.;pKÞ: we fix ðp1;.;pKÞ to either ð~p1;.; ~pKÞ, the estimated ancestry-specific causal SNP proportions obtained

from LDpred2 separately on GWAS summary data of each ancestry, or ð~ps;.; ~psÞ; s = 1;.;K, i.e., the values of all pk s are set

to the LDpred2 estimate of the causal SNP proportion in ancestry s; (2) the between-ancestry correlation parameters rkk0 s: we

consider two settings, i.e., either set rkk0 s to all equal to r = 0.7, 0.8, 0.9, or 0.95, or set rkk0 to 0.75 for any pair of ancestry groups

that include AFR and 0.9 otherwise, given that correlation with AFR tends to be weaker than that among other ancestry groups. Prior

to the implementation of MCMC, we further estimate the ancestry-specific heritability H2
k s based on GWAS summary data and LD

reference data using LD score regression43 (Table S16).

We now describe the detailed MCMC algorithm and estimation procedure. For SNPs that only exist (MAF > 0.01) in one ancestry

group, the Gibbs sampler in Vilhjálmsson et al.46 was implemented. For each SNP j that exists in all K ancestry groups, we sample

dj = ðd1j;.; dKjÞT and bj = ðb1j;.; bKjÞT from

f
�
bj; dj

��bb;b� j

�
zf

�
dj
��bb j;b� j

�
f
�
bj

��dj; bb j;b� j

�
;

where b� j denotes the joint effect sizes for the SNPs within the LD block which SNP j is in, lkj;k˛ f1;.;Kg.
We first sample dj from fðdj

��bb j;b� jÞ. Here note that obtaining fðdj
��bb;b� jÞ analytically is hard, and thus we approximate it by fðdj

��bb j;

b� jÞ. For a realization of dj; r = ðr1;.; rKÞT where rk ˛ f0;1g;ck, we first derive

f
�
dj = r

��bb j;b� j

�
=

f
�bb j

��dj = r;b� j

�
Prðdj = rÞP

r0

�bb j

��dj = r 0;b� j

�
Prðdj = r 0Þ

:

We denote the numerator by Jr = fðbb j

��dj = r;b� jÞPrðdj = rÞ, which can be derived as follows:

Jr = Prðdj = rÞ
Z

f
�bb j

��dj = r;b� j;bj

�
f
�
bj

��dj = r
�
dbj
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= Prðd1j = r1;.; dKj = rKÞ
Z

N

0
BB@bb j

��������

0
BB@

X
j0sj;j0 ˛ l1j

Rl1j ;jj0b1j0 + b1j r1

.X
j0sj;j0 ˛ lKj

RlKj ;jj0bKj0 + bKjrK

1
CCA;diag

�
1

N1j

;.;
1

NKj

�1CCAN

0
B@
0
B@ b1j r1

.

bKjrK

1
CA
�������0;DjUj Dj

1
CAdbj
= Prðd1j = r1;.; dKj = rKÞ3N

��
~b1j;r0 ;.; ~bKj;r0

�T
;diag

�
1

N1j

;.;
1

NKj

�
+ Dj;r0Uj Dj;r0

�
;

where

~bkj;r0 = bbkj �
X

j0sj;j0 ˛ lkj

Rlkj ;jj0bkj0 + bkjrk ;

Rlkj ;jj0 denotes the entry inRlkj that corresponds to the correlation between SNPs j and j0; Ia = 1 if as0 and 0 otherwise, Dj;r0 = diagðr01;
.; r0KÞ, and ðUjÞk;k0 = rk;k0hkhk0 . After deriving Jr s, we can then sample from fðdj = r

��bb j;b� jÞ = Jr=

�P
r 0
Jr0

�
:

We obtain the marginal posterior mean of bj after integrating out dj:

E
�
bj

��bb j;b� j

�
=

X
r0
E
�
bj

��dj = r0; bb j;b� j

�
Pr
�
dj = r 0

��bb j;b� j

�
;

where

f
�
bj

��dj = r 0; bb j;b� j

�
ff

�bb j

��dj = r0;bj;b� j

�
f
�
bj

��dj = r0
�
:

We can easily derive that bj

��dj = r0; bb j;b� j follows Nðmj;r0 ;V j;r0 Þ, where

V j;r0 =
�
diagðN1j;.;NKjÞ+ðDj;r0Uj Dj;r0 Þ� 1

	� 1

;

mj;r0 = V j;r0

0
@N1j

~b1j;r0

.
N1j

~bKj;r0

1
A:

For SNPs that have anMAF> 0.01 in a subset of ancestry groupsA3f1;.;Kg, similar sampling strategy can be conducted but only

among ancestry groups A. In each MCMC iteration, the prior per-SNP heritability parameter is set to h2k =
H2

k

mk
, wheremk denotes the

number of causal SNPs (
PMk

j = 1dkj) estimated from this iteration. The posterior estimate of bj is obtained by taking the average of

Eðbj

��bb j;b� jÞ obtained from 100(K-1) MCMC iterations after a burn-in stage of 100 iterations.

Existing methods
Single-ancestry methods

LD clumping and thresholding (C + T). C + T first constructs a series of PRS by applying an LD clumping step followed by a p value

filtering step with varying p value cutoffs, then selects the best performing PRS on the tuning dataset. Specifically, an LD clumping

step is first conducted to exclude variants that have an absolute pairwise correlation stronger than r 2 = 0.1 within a genetic distance

(500kb) based on an LD reference dataset. The remaining variants are then filtered by excluding the ones that have a p value larger

than a significance threshold, which, in our analysis, were set to pt = 53 10�8, 13 10�7, 53 10�7, 13 10�6, 53 10�6, 13 10�5, 53

10�5, 13 10�4, 53 10�4, 13 10�3, 53 10�3, 13 10�2, 53 10�2, 13 10�1, 53 10�1, or 1. These 16 scores were created based on

these 16 different significance thresholds pt s by calculating aweighted sum of the number of effect alleles of the selected SNPs, with

weights being the effect size estimates from the discovery GWAS. C + T then selects the score with the ‘‘optimal’’ p value thresholds

via parameter tuning with respect to the residual R2 (for continuous traits) or residual AUC (for binary traits) on a tuning dataset that is

independent of the training and testing samples. C + T was implemented using PLINK 1.90.41

LDpred2. LDpred2 is an LD-based Bayesian modeling approach which leverages information from GWAS summary statistics and

explicitly models LD correlation structure with correlation matrices being estimated based on an external reference panel.14,46

LDpred2 assumes a spike-and-slab prior on SNP effect sizes, i.e., each SNP has a probability p to have a non-zero causal effect

b
ðJÞ
j � Nð0;h2gÞ, and a probability (1 � p) to have no contribution to the phenotypic variation (b

ðJÞ
j = 0). Here p and the total heritability,

H2; are treated as tuning parameters and estimated via grid search on a tuning dataset. In each iteration of MCMC, the per-SNP her-

itability parameter is set to h2g = H2=m, where m is the number of causal SNPs detected in that iteration.
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We ran LDpred2 on each chromosome and GWAS of each ancestry group separately using R packages ‘‘bigsnpr’’ (version 1.6.1).

For our analyses on the simulated datasets, PAGE + UKBB + BBJ datasets, GLGC dataset and AoU dataset, we considered the

‘‘LDpred2 grid’’ model, where two tuning parameters were considered: (1) causal SNP proportion p, with default candidate values

1.0 3 10�4, 1.8 3 10�4, 3.2 3 10�4, 5.6 3 10�4, 1.0 3 10�3, 1.8 3 10�3, 3.2 3 10�3, 5.6 3 10�3, 1.0 3 10�2, 1.8 3 10�2, 3.2 3

10�2, 5.63 10�2, 1.03 10�1, 1.83 10�1, 3.23 10�1, 5.63 10�1, and 1.0; (2) total heritability H2, which is set to the heritability esti-

mated by LDSC43 multiplied by 0.7, 1, or 1.4. The ‘‘sparse’’ option was not considered. In our 23andMe data analysis, we considered

the ‘‘LDpred2 auto’’ model, which estimates p and h2g along with the other model parameters instead of treating them as tuning pa-

rameters and estimating thembased on a grid search. The reasonwe considered the ‘‘auto’’ option instead of the ‘‘grid’’ option is that

the ‘‘grid’’ option gave nonconvergent estimates under all considered tuning parameter settings. This convergence issue of the

LDpred2 grid algorithm may be due to the low ratio between the 1000 Genomes reference sample size and the large discovery sam-

ple size of the 23andMe GWAS. We have discussed this issue in our GLGC data analysis as well. Note that implementation of

LDpred2 in this study follows the 2021-01-11 version of the LDpred2 tutorial using version 1.6.1 of the bigsnpr R package. The

LDpred2 tutorial and the bigsnpr package have been updated since then, and some issues we encountered when running LDpred2

may have been resolved in the latest version of the LDpred2 algorithm.

Multi-ancestry methods

Weighted PRS. A simple multi-ancestry method is weighted PRS, which trains an ‘‘optimal’’ linear combination of the effect size es-

timates obtained based on training data from each single ancestry. Weighted PRS was first proposed in Marquez-Luna et al.8 to

improve the performance of single ancestry C + T PRS. Suppose we have constructed C + T PRS, SEUR; PR SAFR; PR SAMR;

PR SEAS, and PR SSAS, separately based on GWAS and LD reference panel of each corresponding ancestry group. The weighted

C + T PRS is then constructed as PR SwP+T = a1 PR SEUR +a2 PR SAFR +a3 PR SAMR +a4 PR SEAS +a5 PR SSAS where ak s are ob-

tained by fitting a regression model on the tuning dataset. Here we apply the weighted PRS approach on either C + T (‘‘weighted

C + T’’) or LDpred2 (‘‘weighted LDpred2’’).

PRS-CSx. ‘‘PRS-CSx’’9 is proposed as the multi-ancestry version of PRS-CS27 which conducts Bayesian modeling followed by an

additional step of constructing a linear combination of the best performing PRS trained for each ancestry. PRS-CSx assumes a

continuous shrinkage prior named Strawderman-Berger prior on the ancestry-specific effect sizes. For SNPs available in more

than one population, this prior induces information sharing across ancestry groups. After the Bayesian modeling step, PRS-CSx

further trains a linear combination of the ancestry-specific PRS obtained from the previous step based on the tuning dataset. In

all our analyses, we ran PRS-CSx with the default candidate values for the tuning parameter 4 (1.0, 10�2, 10�4, and 10�6), which

is the global shrinkage parameter shared by all SNPs and all ancestries that controls the overall causal SNP proportion. The PRS-

CSx software only considers approximately 1.2 million HapMap 3 SNPs and therefore we only report the performance of PRS-

CSx PRS based on the HapMap 3 SNPs. We have also tried to apply PRS-CSx to HapMap 3 SNPs plus an additional 0.8 million

MEGA SNPs that are also available in the 1000 Genomes reference data. But we found that, on our simulated dataset, the perfor-

mance of PRS-CSx PRS using the extended HapMap 3 + MEGA SNP set is significantly worse than PRS-CSx using the HapMap

3 SNPs, and in our real data analyses, results from PRS-CSx on the two SNP sets are similar. We therefore stick to the default setting

with 1.2 million HapMap 3 SNPs provided by the PRS-CSx software.

CT-SLEB.CT-SLEB is a recently proposedmethod formulti-ancestry PRS construction.13 It first conducts a two-dimensional C + T

between EUR GWAS and GWAS of the target population to select SNPs to be included in the target population PRS, then uses an

Empirical Bayesian approach to account for genetic correlation across populations, and finally implements an SL algorithm to

combine PRS generated under different p value thresholds in the C + T step. In our analyses, we implemented CT-SLEB with the

default setting for p value threshold, pt = 5 3 10�8, 5 3 10�7, 5 3 10�6, 5 3 10�5, 5 3 10�4, 5 3 10�3, 5 3 10�2, 5 3 10�1, or 1,

and a genetic distance d = 50/r2 or 100/ r2, where r2 = 0.01, 0.05, 0.1, 0.2, 0.5, or 0.8.

Detailed simulation setup
We investigated the performance of MUSSEL and a series of existing methods under various simulated scenarios of genetic archi-

tecture for phenotype and GWAS sample sizes across ancestries. This large-scale, multi-ancestry simulated dataset including

600,000 individuals across EUR, AFR, AMR, EAS, and SAS origins has recently been released by our group.47 Specifically, the

genotype data was simulated using HAPGEN2 (version 2.1.2)48 based on the genotype data of 2,504 unrelated individuals from

Phase 3 1000 Genomes Project (503 EUR, 661 AFR, 347 AMR, 504 EAS, and 489 SAS).49 We have checked and confirmed the

consistency between the LD pattern in the original 1000Genomes reference data and the LD pattern in our simulated data.47 Approx-

imately 19.2 million common biallelic SNPs with MAF R 0.01 in at least one ancestry group were included. For phenotype data, ge-

netic architectures were simulated by first selecting a random set of 1.0%, 0.1%, or 0.05% SNPs across the whole genome to

be causal, that is approximately 192K, 19.2K, or 9.6K causal SNPs among 19.2 million SNPs. Under a spike and slab structure,

the nonzero standardized effect sizes for the causal SNPs were then generated under various negative selection models according

to a function of allele frequency, b
ðJÞ
kj ffqkjð1 � qkjÞga: (1) strong negative selection: a = 0, (2) mild negative selection: a = 0:75, or

(3) no negative selection, a = 1. The genetic correlation was set to r = 0.8 or 0.6 between all pairs of ancestries.

Specifically, we first generated nkj � Nð0;H2
k =mkÞ for SNPs only existing in ancestry k, with covðnkj; nk0 jÞ = rHkHk0=mkmk0 for

SNPs shared between ancestries k and k0, where H2
k and mk denote the total heritability and the number of causal SNPs,
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respectively, in ancestry k. To control the total heritability at the predefined level H2
k s, we set the standardized SNP effect sizes to

b
ðJÞ
kj = fqkjð1 � qkjÞgankj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

k=
Pmk

j = 1½fqkjð1 � qkjÞgankj�2
q

. Two heritability settings were considered: (1) a constant common SNP her-

itability 0.4 across all ancestries, and (2) a total heritability of 0.4 across all 19.2 million SNPs with a constant per-SNP heritability

across ancestries, which leads to a common SNP heritability proportional to the number of common SNPs in the corresponding

ancestry.

We simulated 120,000 individuals for each ancestry. For EUR, NGWAS = 100,000 individuals were included in the discovery GWAS,

while the remaining 20,000 individuals were evenly split into a tuning set for parameter tuning and a testing set to report prediction R2

of the methods. For each non-EUR ancestry, NGWAS individuals were included in the discovery GWAS, while two separate sets, each

including 10,000 individuals, were selected randomly from the remaining (120,000 – NGWAS) individuals to construct tuning and

testing dataset. Although currently the non-EUR GWAS sample sizes are typically a lot smaller than EUR GWAS sample sizes,

they are expected to continue growing, as there is an increasing emphasis on health equity. To mimic such real-world scenarios,

we set non-EUR GWAS sample sizes to NGWAS = 15,000, 45,000, 80,000, or 100,000, that gradually increase and eventually reach

a similar level to the EUR GWAS sample size (100,000). For each ancestry group, the genotype data of 1000 randomly selected in-

dividuals in the discovery GWAS were used to estimate the ancestry-specific LD.

Runtimes and memory usage
Wecompare the computation time andmemory usage ofMUSSEL andPRS-CSx on chromosome 22 based on the simulated dataset

(comparison between PRS-CSx and CT-SLEB on the same dataset has been reported in Zhang et al.13). Results from MUSSEL and

PRS-CSx combining three ancestry groups (EUR, AFR, and AMR), four ancestry groups (EUR, AFR, AMR, and EAS), and five

ancestry groups (EUR, AFR, AMR, EAS, and SAS) are summarized in Table S6. The training GWAS sample size is 15,000 for each

non-EUR population and 100,000 for EUR population. The tuning and validation dataset each contains 10,000 individuals. All ana-

lyses were performedwith AMDEPYC 7702 64-Core Processors running at 2.0 GHz. Other than the LDpred2 stepwhich uses parallel

computing with 17 cores, all other analyses were conducted using a single core. The reported computation time and memory usage

are averaged over 10 replicates.

PAGE + UKBB + BBJ data analysis with validation on non-EUR individuals from PAGE
Three traits, including IRNT BMI, HDL, and LDL, that were available across PAGE, UKBB, and BBJ GWAS for EUR, AFR, AMR (His-

panic), and EAS are analyzed. Ancestry- and trait-specific GWAS sample sizes, validation sample sizes, and number of SNPs

analyzed are reported in Table S8. The training GWAS datasets consist of PAGE, contributing data for AFR and AMR, UKBB, contrib-

uting data for EUR, and BBJ, contributing data for EAS. The validation datasets consist of PAGE, contributing data for the three non-

EUR ancestry groups, andUKBB, contributing data for EUR. Specifically, we first collect data for a total of 43,769 PAGE individuals of

AFR (N = 17,127), AMR (N = 21,995), or EAS (N = 4,647) ancestry that have data available for at least one of the three traits. For AFR

and AMR that have relatively large sample sizes in PAGE, we randomly divide the samples within each ancestry group into a training

dataset (80%) for conducting GWAS, a tuning dataset (10%) for tuning model parameters, and training SL in CT-SLEB and MUSSEL

or the linear combination model in weighted PRS and PRS-CSx, and a testing dataset (10%) for evaluating PRS performance. For

EAS which has a limited sample size in PAGE, we use all PAGE samples for external validation (tuning + testing) and obtain

GWAS summary data from BBJ, which has a much larger sample size. To borrow information from large EUR GWAS, we further

collect EUR GWAS summary data from UKBB50 (N = 315,133–360,388) released by the Neale Lab. Finally, to tune the causal

SNP proportion for EUR, which is required for specifying the prior causal probabilities for non-EUR ancestry groups, we further

randomly select a sample of 20,000 random individuals from UKBB that do not overlap with samples in the EUR UKBB GWAS.

Here the ancestry information for individuals from PAGE and UKBB is determined based on self-identified race/ethnicity.

For AFR and AMR, we conduct GWAS on individuals from the PAGE study to obtain the GWAS summary data. Specifically, we first

collect a total of 17,127 AFR and 21,995 AMR fromPAGE, then randomly divide the samples in each ancestry into a training set (80%)

to conduct GWAS and a validation set (20%), of which 10% is used for selecting tuning parameters and training SL (tuning set), and

the other 10% is used for reporting PRS performance (testing set). Therewas no significant difference between training and validation

datasets in the distribution of the covariates adjusted for in GWAS.PAGEGWAS: (1) IRNTBMI. For ancestry-specific GWAS analysis

on AFR and AMR, measurements of BMI outside of 6 standard deviations from the mean (based on sex and race) were removed. We

first created sex-specific residuals for BMI adjusted for age, then inverse normally transformed these residuals. These inverse-nor-

mally-transformed residuals were then used in the final analysis where they were further adjusted for self-identified race/ethnicity,

study, study center (for MEC and SOL only), and the top 10 genetic principal components (PCs). (2) HDL. For ancestry-specific

GWAS analysis on AFR and AMR, untransformed HDL measurements were reported in mg/dL, and were adjusted for each individ-

ual’s medication use by adding a constant based on the type of medication used. Details of the adjustment are described in the Sup-

plementary Information inWojcik et al.3 Finally, models were adjusted by age at lipid measurement, sex, study, study center (for MEC

and SOL only), self-identified race/ethnicity, and top 10 genetic PCs. (3) LDL. For ancestry-specific GWAS analysis on AFR and AMR,

untransformed HDL measurements were calculated using the Friedewald Equation51 and reported in mg/dL. The measurements

were adjusted for individuals’ medication use by adding a constant based on the type of medication used. Details of the calculation

and adjustment are described in the Supplementary Information inWojcik et al.3 Participants whowere pregnant at blood draw or had
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fasted less than 8 h prior to lipid blood draw were excluded. Finally, models were adjusted by age at lipid measurement, sex, study,

study center (for MEC and SOL only), self-identified race/ethnicity, and top 10 genetic PCs.

The PAGE individuals included in our analyses are part of the PAGE participant cohort, which were collected from Hispanic Com-

munity Health Study/Study of Latinos (HCHS/SOL), Women’s Health Initiative (WHI), Multiethnic Cohort (MEC), and the Icahn School

of Medicine at Mount Sinai BioMe biobank in New York City (BioMe).3 Due to the extensive degree of admixture within and between

PAGE self-identified racial/ethnic groups, individuals were not reassigned based on their genetic ancestry but remained categorized

by their self-identified race/ethnicity. However, we have assigned them to ancestry groupings based on an approximation of map-

pings to continental-level regions for consistency with other external studies in this manuscript. Written informed consent was ob-

tained for all participants in this study at the relevant recruitment sites. Due to the extensive degree of admixture within and between

PAGE self-identified racial/ethnic groups, individuals were not reassigned based on their genetic ancestry but remained categorized

by their self-identified race/ethnicity. Detailed information about genotyping, data quality control and imputation, selection of unre-

lated individuals, genetic principal component analysis, and phenotype harmonization are provided in the Supplementary Informa-

tion in Wojcik et al.3

Since PAGE has a limited sample size for EAS (4,647), and thus we further collect publicly available GWAS summary data fromBBJ

(data availability) and use all PAGE individuals for validation on EAS. For BMI, the GWAS analysis included age, age,2 sex, status of a

series of diseases, and the top 10 genetic PCs as covariates.40 For HDL and LDL, the GWAS analyses included age, sex, status of a

series of diseases, and the top 10 genetic PCs as covariates.39

PAGE does not have individuals of EUR ancestry. To borrow information from the much larger EUR GWAS, we further download

publicly available EUR GWAS summary data from UKBB (Data and code availability). For all three traits, the UKBB GWAS analyses

include age, age,2 inferred sex, an interaction term between age and inferred sex, an interaction term between age2 and inferred sex,

and the top 20 genetic PCs as covariates. One thing to note is that for HDL and LDL, measurements are untransformed and reported

in mmol/L in UKBB, untransformed and reported in mg/dL in PAGE, and reported in mg/dL then standardized to Z score in BBJ.

Although not on the same scale, the correlation in SNP effect size estimates remain the same, allowing the various GWAS summary

data to be analyzed jointly. For EUR,we construct a validation dataset of 20,000 independent samples fromUKBB that do not overlap

with the UKBB GWAS samples. Specifically, we use the genotyping plate and well codes, which are published in the file

ukb_sqc_v2.txt by UKBB and are consistent across different project applications, to identify and exclude the individuals included

in the UKBBGWAS analysis by Neale Lab, and then randomly select 20,000 independent individuals from the remaining UKBB sam-

ples to conduct parameter tuning (10,000) and testing (10,000). For each ancestry group, we use unrelated samples of the same

ancestry from 1000 Genomes Project as the LD reference data. For EUR, the reported prediction R2 are adjusted for age, sex,

and top 10 genetic PCs. For AFR, AMR and EAS, the R2 for BMI are adjusted for age, sex, top 10 genetic PCs, and whether the in-

dividual is from the BioMe Biobank, and for HDL and LDL the R2 are adjusted for age at lipid measurement, sex, top 10 genetic PCs,

and whether the individual is from the BioMe Biobank.

We conduct the following quality control steps for the GWAS summary-level association statistics: (1) consistent with the proced-

ure in our simulation study and other data analyses, we restrict our analysis to approximately 1.6 million SNPs in HapMap 3 plus

MEGA that are also available in LD reference panel and validation sample; (2) we remove SNPs that have duplicated positions in

GWAS or LD reference panel; (3) for EUR, we remove SNPs that have alleles ‘‘AT’’, ‘‘TA’’, ‘‘CG’’, or ‘‘GC’’ to avoid undetectable flip-

ping strands when matching with UKBB validation data; (4) for the implementation of single-ancestry methods, we only keep com-

mon SNPs, i.e., SNPs that have ancestry-specific MAF > 0.01 in that ancestry group, and for the implementation of multi-ancestry

methods we keep all SNPs that have ancestry-specific MAF > 0.01 in at least one ancestry group. TheManhattan plots and QQ plots

for GWAS are reported in Figures S17–S19. No inflation is observed based on the genomic inflation factor. We estimate heritability of

the three traits for EUR using LDSC43 based on the 1000 Genomes LD reference data for EUR (Table S16).

GLGC data analysis with validation on UKBB individuals
We obtain GWAS summary data from the Global Lipids Genetics Consortium (GLGC) for four blood lipid traits including HDL, LDL,

TC, and logTG25 on five ancestry groups including EUR (NGWAS = 840,018–927,975), AFR or admixed AFR (NGWAS = 87,759–92,554),

Hispanic (NGWAS = 33,989–48,056), EAS (NGWAS = 80,676–145,512), and SAS (NGWAS = 33,658–34,135). Details of the study design,

genotyping, quality control and GWAS are previously described.25 We validate performance of the various methods on UKBB indi-

viduals. Specifically, we select a random set of 20,000 individuals that are of EUR origin and extracted all individuals that are of AFR

(N = 9,169), EAS (N = 2,019), SAS (N = 10,853), or Hispanic/Latino (N = 785) origin. The origin of theUKBB individuals were determined

by a genetic component analysis (Supplemental Information). We used 50% of the UKBB samples to tune model parameters and

train the SL in CT-SLEB and MUSSEL or the linear combination model in weighted PRS and PRS-CS (tuning set), and the remaining

50% to evaluate PRS performance (testing set). The prediction of the genetic component has a low accuracy for AMR, and given the

small number of identified AMR individuals (N = 785), we do not report prediction R2 on UKBB AMR. We use genotype data of un-

related individuals from 1000 Genomes project or tuning samples fromUKBB as the LD reference data.24 Ancestry- and trait-specific

GWAS sample sizes, validation sample sizes, and number of SNPs analyzed are reported in Table S10. Based on the genomic infla-

tion factor, no inflation is observed for the various ancestry-specific GWAS. TheManhattan plots and QQ plots are reported in Zhang

et al.13 No inflation is observed given the genomic inflation factor. Heritability of the four traits in EUR is estimated using LDSC

(Table S16). All GWAS summary statistics went through the same quality control steps as in PAGE + UKBB + BBJ data analysis
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aswell as onemore step, where we further remove SNPswith a GWAS sample size less than 90%of the total GWAS sample size. The

GWAS summary data fromGLGCdoes not have information on ancestry-specificMAF, and thus we use the 1000Genomes LD refer-

ence genotype data to calculate ancestry-specific MAF for the step where we filter out all SNPs that have MAF < 0.01 in all ancestry

groups. The R2 are adjusted for age, sex, and top 10 genetic PCs.

AoU data analysis with validation on UKBB individuals
The individuals included in our analyses are part of the All of Us participant cohort with information collected according to the All of Us

Research Program Operational Protocol (https://allofus.nih.gov/sites/default/files/aou_operational_protocol_v1.7_mar_2018.pdf).

Detailed information on genotyping, ancestry determination, quality control, removal of related individuals is provided in the All Of

Us Research Program Genomic Research Data Quality Report (https://www.researchallofus.org/wp-content/themes/research-

hub-wordpress-theme/media/2022/06/All%20Of%20Us%20Q2%202022%20Release%20Genomic%20Quality%20Report.pdf).

On the All of Us platform, we conduct GWAS for BMI and height separately on unrelated individuals of three ancestry groups

including EUR (NGWAS = 48,229–48,332), admixed AFR or AFR (NGWAS = 21,514–21,550), and Hispanic/Latino (NGWAS = 15,364–

15,413). The GWAS are adjusted for age, sex, and top 16 genetic PCs. There are only about 0.9 million SNPs in HapMap 3 +

MEGA that are included in our analyses, which is due to the small number of the overlapping samples across the filtered WGS

data, array data, and phenotype data. Similar to the GLGC data analysis, we validate performance of the various methods on

UKBB individuals, i.e., 20,000 EUR individuals and individuals of AFR (N = 9,169) origin that are identified based on a genetic compo-

nent analysis (Supplemental Information). Again, the genetic ancestry prediction accuracy for AMR is low, and considering the small

number of identified AMR (N = 785), we do not report validation results on UKBBAMR.We use genotype data of unrelated individuals

from 1000Genomes project or tuning samples fromUKBBas the LD reference data. Ancestry- and trait-specific GWAS sample sizes,

validation sample sizes, and number of SNPs analyzed are reported in Table S12. Based on the genomic inflation factor, no inflation is

observed other than height for Hispanic/Latino. TheManhattan plots and QQ plots are reported in Zhang et al. (2022).13 Heritability of

the two traits in EUR was estimated using LDSC43 (Table S16). All GWAS summary statistics went through the same quality control

steps as in the GLGC data analysis. The R2 are adjusted for age, sex, and top 10 genetic PCs.

Predicted genetic ancestry for non-EUR individuals in UKBB
We compute genetic ancestry for all UKBB individuals that are not self-reported Whites. To balance between samples of different

ancestry groups, we also include 8,000 unrelated self-reported Whites to form the set of UKBB individuals for genetic ancestry pre-

diction. We use 2,504 unrelated individuals from 1000 Genomes Project, including 498 EUR, 659 AFR, 347 AMR, 503 EAS, and 487

SAS individuals to form the reference data for genetic ancestry prediction. We first compute the top 20 genetic principal components

(PCs) for all UKBB and 1000 Genomes individuals together using PLINK 2.0 command –pca 20 allele-wts.52 We then train a random

forest classifier with 1,500 trees using the R package ‘‘randomForest’’53 based on the genetic PCs of the 1000 Genomes individuals

with their true labels being provided by gnomAD54 that can be used to capture enough ancestral information. Finally, we apply the

trained random forest classifier to predict the genetic ancestry of UKBB individuals based on their genetic PCs.

23andMe data analysis
We develop and validate PRS for seven traits, including (1) heart metabolic disease burden, (2) height, (3) any cardiovascular disease

(any CVD), (4) depression, (5) migraine diagnosis, (6) morning person, and (7) sing back musical note (SBMN) for EUR, African Amer-

ican (AFR), Latino (AMR), EAS, and SAS based on a large-scale dataset from 23andMe, Inc.We first conduct GWAS separately on the

training dataset (70% samples) for each of the five ancestry groups, then apply the various methods to the generated GWAS sum-

mary-level association statistics and LD reference data from the 1000 Genomes Project. Within the remaining 30% of the samples,

we use 20% to tunemodel parameters, train the SL in CT-SLEB andMUSSEL, and the linear combinationmodel in weighted PRS and

PRS-CSx, then validate the predictive performance of the constructed PRS on the remaining 10% samples. We observe from our

analyses on the other three datasets that MUSSEL almost always outperforms the two alternative methods, MUSS and weighted

MUSS, and thus for 23andMe data analysis, we only implement MUSSEL but not the two alternative methods.

All GWAS analyses on the training data from 23andMe, Inc. are performed adjusting for age, sex, and the top 5 genetic PCs.

Genotype data of unrelated individuals from 1000 Genomes project is used to estimate LD matrices. Detailed information on

participant inclusion, genotyping, phenotyping, data imputation and quality control, removing related individuals, ancestry deter-

mination, and GWAS analysis is provided in Zhang et al.13 Ancestry- and trait-specific GWAS sample sizes, validation (tuning +

testing) sample sizes, and the number of SNPs analyzed are reported in Table S14. Based on the genomic inflation factor, no infla-

tion is observed for the various ancestry-specific GWAS. The Manhattan plots and QQ plots are reported in Zhang et al.13 No

inflation is observed given the genomic inflation factor. Heritability of the four traits in EUR is estimated using LDSC.13 All

GWAS summary statistics went through the same quality control steps as in PAGE + UKBB + BBJ data analysis as well as

one more step where we further remove SNPs with a GWAS sample size less than 90% of the total GWAS sample size. The re-

sidual R2 for the two continuous traits are calculated by first regressing each trait on covariates including age, sex, and the top 5

genetic PCs, and then calculating the proportion of variation of the residual explained by the PRS. The residual AUC for the five

binary traits were calculated using the ‘‘roc.binary’’ function in the R package RISCA version 1.0171 adjusting for the same set of

covariates adjusted for the continuous traits.
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Calculation of the 95% bootstrap confidence intervals and p values for comparing R2 between methods
We used bootstrapping to calculate the 95%CIs for the R2 reported in our simulation study, the PAGE + UKBB + BBJ, GLGC, and All

of Us (AoU) data analyses. We employed the R package ‘‘boot’’ with 10,000 sampling replicates on the testing dataset and used the

Bca approach22 to obtain the CIs. The R2s and the corresponding 95% bootstrap CIs are summarized in Tables S1, S2, S3, S4, and

S5 and Figures S1–S10 for simulated data, and Figures 2, 3, 4, 5, Table S17, and Figures S13–S15 for PAGE+UKBB+BBJ, GLGC, and

All of Us data analyses. The 95% bootstrap CIs were not calculated in the 23andMe Inc. data analysis due to data agreement restric-

tions with 23andMe Inc. To compare the overall performance between different methods, we further calculate the average R2 and the

corresponding 95% bootstrap CIs across all available traits in the PAGE + UKBB + BBJ, GLGC, and AoU data analyses for each

method on each ancestry group (Figure S16; Table S17). We observe that the empirical bootstrap distribution of the average R2

values are approximately normal across all methods and all ancestry groups. We therefore calculated the p values of the paired

two-sided test for the equality of average R2 between each pair of methods based on the corresponding 95% bootstrap CI.
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