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Abstract: Three-dimensional stacks acquired with confocal or two-photon microscopy are
crucial for studying neuroanatomy. However, high-resolution image stacks acquired at multiple
depths are time-consuming and susceptible to photobleaching. In vivo microscopy is further
prone to motion artifacts. In this work, we suggest that deep neural networks with sine
activation functions encoding implicit neural representations (SIRENS) are suitable for predicting
intermediate planes and correcting motion artifacts, addressing the aforementioned shortcomings.
We show that we can accurately estimate intermediate planes across multiple micrometers and
fully automatically and unsupervised estimate a motion-corrected denoised picture. We show that
noise statistics can be affected by SIRENs, however, rescued by a downstream denoising neural
network, shown exemplarily with the recovery of dendritic spines. We believe that the application
of these technologies will facilitate more efficient acquisition and superior post-processing in the
future.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Light microscopy is an integral part of neuroscientific research. The visualization of individual
neurons and their related sub-anatomy, such as dendritic spines, is essential for studying
connectivity, memory, and learning. Dendritic spines are small protrusions found on dendrites,
constituting the postsynaptic component of the majority of excitatory synapses in the brain. It has
been proposed that dendritic spines act as the fundamental units of neuronal integration in the
brain [1] as well as being the seat of information storage [2]. In terms of their structure, dendritic
spines are characterized by a rounded head, which is connected to the dendrite by a slender spine
neck [3].

Ideally, these imaging studies are performed in awake, behaving animals, to uncover activity-
related or time-variant anatomical changes. However, the living organism not only constrains the
experimenter in optical setups but also induces motion artifacts that confound the image quality
and therefore affect the downstream analysis.

The use of artificial intelligence, especially deep learning methodologies, has seen huge
attention in biomedical imaging recently [4,5]. For many applications, deep neural networks
largely outperform classical algorithms for computer vision and image reconstruction. Weigert et
al. are using a convolutional neural network to alleviate the issue of severe anisotropy in axial
versus lateral resolution of 3D fluorescence microscopy images [6]. While other techniques and
deconvolution methods addressing this problem suffer from high time consumption or limitations
in their ability to reduce anisotropy, their network is able to effectively learn to restore the full
isotropic resolution. Wu et al. proposed a deep neural network in fluorescence microscopy,
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which virtually refocuses a 2D image onto user-defined 3D surfaces within the sample [7]. This
approach is able to correct tilt, sample drift, and other aberrations. Their method can potentially
replace other scanning and non-scanning methods, which are limited by imaging speed and
throughput, phototoxicity, and photobleaching.

However, these solutions have a drawback from the depletion of high-frequency details and are
limited in adjacent frame interpolation. Recently, deep neural networks that incorporate Fourier
features show superior performance especially in recovering high-frequency details [8,9].

Implicit neural representations aim to parameterize discrete signals as continuous functions
within neural networks. These networks are trained to model this continuous function by mapping
the domain of the input signal to the target outputs. Sinusoidal representation networks (SIRENs)
[9] are capable of representing high-frequency natural signals and their derivatives. This is
a fundamental requirement for our work, because of the fine texture of the neural anatomy in
the microscopic images we are analyzing. For our tasks, the SIRENs were trained to map the
pixel grid of a microscopic image stack to the corresponding pixel values of the image stack.
Effectively, our image stacks are a discrete R® — R' mapping from a 3D coordinate space to
a 1D grayscale value. SIRENS are utilized to model this mapping as a continuous function ®
taking the pixel coordinates as inputs and returning the corresponding grayscale values. Simply
put, we use SIRENSs as an alternative way of representing our image stacks. Therefore, each
SIREN implicitly represents exactly one image stack. Modeling fine details with the function @
is then not limited by the grid resolution anymore but by the network architecture capacity.

Implicit neural representations based on SIRENs were already used successfully by Lei et
al. [10] for photon propagation in a monolithic neutrino detector to model individual photon
propagation. Since SIRENSs are able to learn an underlying functional shape, they are scalable to
larger detectors, which is poorly feasible with traditional methods. Furthermore, recent works
have illuminated promising advancements in the realm of microscopic data analysis. Wiesner
et al. [11] represent living cell shapes in a 3D+time domain as level sets of signed distance
functions utilizing SIRENs. This technique allows for the generation of new datasets crucial
for training deep learning models for reliable and accurate segmentation. Their models are able
to accurately reproduce biological processes like mitosis, cell growth, and branching of cells.
Byra et al. [12] leverage SIRENS for the registration of 2D microscopy in situ hybridization gene
expression images of the marmoset brain. They pairwise register images with similar anatomical
structures, where one image contains additional features, which are not contained in the other
image. Their method outperformed all other methods with which they have compared themselves
in four out of five brain regions. Additionally, their method offers the advantage of extracting
microscopy artifacts and therefore reduces their impact on image registration.

In this study, we investigated novel potential applications of SIRENs within the realm of
light microscopy. Specifically, we evaluated if SIRENs are suited to predict intermediate planes
(interplanes) of microscopic image stacks and thereby increase the spatial resolution along the
z-axis. We further hypothesize that implicit neural representations are capable of deciphering
consistent, stable data from variant, motion-afflicted data. The key innovations of this research
comprise a non-biased and unsupervised approach designed to eliminate motion artifacts in
microscopic images. Additionally, both the time requirements and negative side effects associated
with data acquisition are potentially reduced, as only every n-th plane needs to be acquired and
the intermediate planes are reconstructed by the SIRENS.

2. Methods

2.1.  Two-photon microscopy and data generation

Dendritic spine data was acquired as described in [13] by using a Bruker Ultima IV microscope
and a 25x water immersion objective (Olympus XLPlan N 25x/1.00 SVMP). To excite eGFP we
used a pulsed infrared laser tuned to 920 nm. To image dendritic spines, we acquired z-stacks
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(48.18-um? single section area, 1-um z-step, 5-70 z-steps, zoom 10x, 28.6- to 115.5-mW laser
power at the sample) of the dendrite of interest using a resonant scanner at each time point. We
acquired each z-plane four times before moving to the next plane.

2.2. SIRENs

We are using a multilayer perceptron (MLP) architecture with periodic sine activation functions
as our SIREN implementation [9]:

Q(X) = Wn(¢n—1 o¢pnp0...0 ¢0)(X) +b, (1)
¢i(x;) = sin(wo - Wix; + by). 2

#; : RMi s RNi is the i layer of the SIREN. Every layer consists of an affine transformation
defined by a weight matrix W; € RV>*Mi and biases b; € RYi, which are applied on the input
x; € RMi| The frequency tuning is determined by wg. On each component of the resulting
vector, the sine linearity is applied. Using the above architecture, a continuous function ® can be
obtained, parameterizing the input signal.

Prior to the training of the SIRENS, the microscopic image stacks were normalized with a
percentile normalizer as follows:

Ynormalizea = #ﬁj-{-é 3
where y are the pixel values of the image stack, P, is the second percentile of y, Pgg g is the
99.9th percentile of y and ¥,,ormaiizea are the normalized pixel values. We use € = 1x10720 to
ensure, the denominator is always greater than zero. The input data was further preprocessed
depending on the task. For the motion correction task, we used four samples of one image
stack with an unknown component of motion artifacts. To preprocess these stacks in order to
correct the motion artifacts, we investigated two main approaches. The first one was to use
all repetitions of the plane samples. Their corresponding grids were stacked in the same way
and used as the input data while the grayscale values served as ground truth. For the second
approach, we built a new image stack by randomly sampling pixel values from all repetitions.
The values of this stack and the corresponding grid were then used as ground truth labels and
input data respectively. By learning the implicit representations modeling the underlying signal
with SIRENSs, uncorrelated motion artifacts can be eliminated. We compared our approach using
SIRENS with a state-of-the-art convolutional neural network (CNN) to correct motion artifacts
proposed by [14]. This supervised network essentially consists of three convolution layers. The
first two layers contain 64 filters and a ReLU activation function, and the last layer has one filter
and no activation function. The kernel size of all layers is 5x5. We trained the network with
stochastic gradient descent with a learning rate of 0.01 and mean-squared error loss similar to
[14]. As training data, we used 114 image planes from 3 image stacks and 20 image planes from
one image stack as test data. To create ground truth images, we manually selected the repetitions
without motion artifacts and averaged them.

To train the SIRENs for interplane prediction, we used the following procedure. First, we
systematically selected specific planes to be used as training data. After the SIREN learned the
implicit representation of this training image stack, the grayscale values at the pixel coordinates
of the omitted planes were predicted by the SIREN. These predicted values were then evaluated
by comparing them to the original grayscale values. To progressively challenge the model’s
performance, we gradually increased the number of omitted planes with each iteration. In the
initial run, every second image plane was utilized for training, while the skipped planes were
reconstructed using the SIREN. In the subsequent run, every third plane was employed for
training, with the intermediate planes being predicted by the SIREN. This iterative procedure
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was repeated until only every eighth plane was used for training, while the remaining seven
planes in between were excluded and subsequently predicted by the SIREN. A visualization of
this procedure is shown in Fig. 3(d). Additionally, we compared our approach of reconstructing
interplanes with an alternative method. Therefore we have chosen linear interpolation.

Deep Neural Networks were set up in TensorFlow v2.10 using the high-level Keras package.
Our SIREN MLPs contain three hidden layers with 128 units each. Weights were randomly
initialized and drawn from a uniform distribution such as w; ~ (LI(—\/%, \/6/_n), where n is the
number of inputs to the hidden layer. The hyperparameter wg was set to 32 for the input layer
and 34 for the hidden layers. The outermost layer has no activation functions. We optimized the
weights using the Adam optimizer with a constant learning rate of 0.001 together with the mean
squared error (MSE) loss. For every 3D microscopic image stack, a SIREN was trained for 1500
steps. In each step, the input data (the pixel grid of the image stack) and corresponding labels (the
pixel values) were first shuffled and then the network was fit to this data in one epoch with the
whole dataset in one batch. The networks were trained on an NVIDIA GeForce RTX 3090 GPU.

We computed the mean squared error, the structural similarity index measure (SSIM, [15]),
and the peak-signal-to-noise ratio (PSNR) to evaluate how close our prediction is compared to
the respective reference image.

2.3. Spine recovery

To improve the spine recovery of the predictions, we use a custom denoising encoder-decoder
network inspired by the U-Net architecture introduced by Ronneberger et al. [16]. This network
was trained with SIREN representations of 1545 microscopic images from 38 image stacks as
training data and the corresponding originally acquired images as ground truth to model the
noise statistics of the original microscopy stacks. In this way, the SIREN predicted images are
corrected to resemble more closely real microscopic images. Similar to the U-Net [16] we use a
filter scaling approach of 64 filters in layer 1, 128 in layer 2, etc. However, we used a filter size
and a kernel size of 1 in the output layer. The weights were optimized using the Adam optimizer
with a constant learning rate of 0.01 and the MSE loss. The model was trained for 100 epochs
with a batch size of 10 images.

We evaluated the spine recovery with the DeepD3 framework, a dedicated tool for the detection
of dendritic spines and dendrites [17]. DeepD3 assigns a probability to every pixel for being
a spine or dendrite respectively. To fine-tune the spine identification algorithm and count the
number of spines in each image plane, we used the DeepD3 graphical user interface (GUI). We

[ Motion Correction | [ Interplane Prediction and Denoising |

a Denoiser g

=y =

SIREN Spine Recovery

Fig. 1. Processing pipeline. STRENSs will be used to create a motion-corrected and denoised
microscopy stack from multiple repetitions of the same area. Subsequently, interplanes
can be predicted with another SIREN model. Input data for the SIRENs are the spatial
coordinates (X, y, z) of the image stacks, output values are the corresponding intensity values.
SIREN-derived image quality is optionally further processed by a downstream denoiser
network to improve spine recovery.
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utilized a pre-trained DeepD3 model with 32 base filters to count the spines in each slice of a
predicted stack and compared it to the number of spines in the original image stack. To evaluate
the performance of the denoiser network we computed the mean absolute error and standard
deviation of the spines in the SIREN predictions and compared them to the SIREN predictions
which were corrected by the denoiser network.

The whole processing pipeline is shown in Fig. 1. In the first part, one image stack is predicted
by a SIREN from several repetitions. In this step, motion artifacts are corrected. The resulting
stack is then again implicitly represented by a SIREN and an individually chosen number of
interplanes can be predicted. These predictions can be optimized in a postprocessing step by
a denoiser network. In this way, we are able to create an image stack with corrected motion
artifacts and an increased resolution in the z-direction.

3. Results
3.1. Motion correction

In vivo acquisition of microscopic data is prone to motion artifacts. Multiple acquisitions of
the same plane and subsequent averaging are common approaches to cope with motion and
acquisition noise. However, even through averaging motion artifacts mathematically contribute
to the resulting data and may impact downstream data analysis. A supervised approach that
manually removes planes with motion artifacts is also cumbersome and in large-scale data
analysis not feasible. Therefore, we propose a non-biased and unsupervised method to allow
for the elimination of motion artifacts for large amounts of data. We hypothesize that deep
neural networks could utilize implicit representations to model the underlying signal and avoid
uncorrelated motion artifacts.

Figure 2(a) shows four repetitions of the same image plane, where the first repetition is affected
by a motion artifact. To the right of the repetitions, the result of averaging the repetitions can be
seen, next to the SIREN prediction for correcting the motion artifact, and then the result of the
correction with the baseline CNN. The motion artifact is still visible in the averaged stack and the
stack corrected with the baseline CNN, whereas it is no longer visible in the SIREN-predicted
image.

We investigated two main approaches to train the SIRENSs in order to correct motion artifacts.
For the first approach, we used all four plane samples in the training paradigm as ground truth. For
the second approach, we built a new image stack by randomly sampling pixels from the different
repetitions and trained the SIRENs with this stack. We evaluated these methods by manually
selecting the repetitions without motion artifacts, averaging them, and using this averaged stack
as the ground truth. Both methods performed almost equally concerning mean squared error,
structural similarity index measure, and peak-signal-to-noise ratio. However, the training in the
second approach was substantially faster with a training time of about 9 minutes compared to
using all repeated image stacks completely, which took 38 minutes to train. This shows a linear
correlation between the amount of training data and the required training time.

To evaluate our predictions and compare these to the results of averaging the repetitions and
the predictions of the baseline model, we computed the Fourier spectrum of the images. As
ground truth, we used the average of the repetitions without motion artifacts. We compared the
Fourier spectra of the different methods to the ground truth by calculating the MSE for every
plane. The MSE of the SIREN predictions was slightly lower than for the averaged images with
103.84 + 10.08 compared to 104.27 + 8.69. It is important to note, that averaging performs
worse from a visual perspective since the motion artifacts can still be seen in the output images.
The low MSE can be justified by the fact, that motion artifacts typically impact only parts of
the image. The not-impacted parts are nearly equal to the ground truth when averaging the
repetitions. Both methods outperformed the baseline CNN, which shows an MSE of 192.06 +
62.12. The Fourier transform for one example image plane is shown in Fig. 2(b).
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Repetition 1 Repetition 2 Averaged SIREN Corrected Correction with baseline CNN model
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b FFT Ground Truth, MSE=0.00, std=0.00 FFT Averaged, MSE=104.27, std=8.69 FFT SIREN, MSE=103.84, std=10.08 FFT Baseline CNN, MSE=192.06, std=62.12
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Fig. 2. Quantitative and qualitative evaluation of motion correction performed by
SIRENSs. a, Four repetitions of one image plane, where repetition one is affected by a
motion artifact. The average of all repetitions, the SIREN prediction of the image plane,
and the prediction of the baseline CNN (from left to right). b, The Fourier transform of
the ground truth, the averaged repetitions, the SIREN corrected image, and the baseline
CNN for the example image shown in a.¢, Using only a limited amount of pixels for training.
Predictions of one image plane for 10% to 100% used pixels (top). Predictions get noisier
with decreasing usage of pixels during training. The training time increases with the number
of used pixels in an approximately linear way (bottom). Times were measured for an image
stack with 20 planes randomly sampled from all repetitions as ground truth. d-f, Using only
a limited amount of pixels for training. Evaluation of the MSE (d), SSIM (e), and PSNR(f)
of the respective predictions compared to using all pixels during training.

Additionally, we evaluated, how well the SIRENs perform with a limited amount of pixels as
training data. We systematically varied the relative amount of the total available data to investigate
which amount is sufficient to reconstruct accurately the 3D image stack. Figure 2(c) (upper part)
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shows qualitative results for different pixel percentages. Already with only 10% of the pixels used
to train the SIREN, the general structure of the neuroanatomy can be reconstructed. With the
increasing usage of the data, the predictions exhibit less noise. Already half of the data provides
qualitatively good results with only a small amount of noise, and no severe differences to using the
full training data can be visually identified. Using a reduced percentage of data points for training
results in shorter training times, which is important for time-critical applications. The training
times increase approximately linear with the number of pixels used and therefore the amount of
data processed during training, as shown in Fig. 2(c) (lower part). Times were measured for an
image stack with 20 planes and the preprocessing approach of creating a randomly sampled stack
of the four sample repetitions as training data. This confirms the finding when comparing the
two different approaches to training SIRENS to correct motion artifacts. Training time increases
linearly with the amount of training data. We additionally quantitatively evaluated how well
SIRENSs can cope with the reduced data amount relative to SIRENS trained on the full data using
the MSE, SSIM, and PSNR metrics. The results are shown in Fig. 2(d)-(f). We observe that using
only 60% of the data can already provide predictions that are really close to the results acquired
by using the full data. When using even fewer data, the scores of all previously mentioned metrics
get worse exponentially.

3.2. Interplane prediction

In the next step, we trained SIRENS to predict intermediate planes of the motion-corrected image
stack. In the preprocessing, planes are selected for training and prediction. During training,
the SIREN learns an implicit representation of the 3D stack using the x-, y-, and z-coordinates
of the training planes as input values and the corresponding intensity values as ground truth.
Subsequently, the network predicts the intensity values of a grid corresponding to the planes
selected for the prediction. These predictions are then further improved by a denoiser network.
Figure 3(d) visualizes the process of acquiring planes for training the SIRENs and predicting
interplanes.

We evaluated the interplane prediction for the first 20 layers, i.e. 20 wm, of ten different
two-photon microscopy stacks. Figure 3(a) and (b) show the MSE and SSIM respectively for
different numbers of skipped planes for the pure SIREN predictions (gray), the same predictions
subsequently corrected by our denoiser network (blue), and interplanes reconstructed with linear
interpolation. SSIM, MSE, and PSNR are nearly equal for one and two skipped planes when
using SIRENSs (green). With an increasing offset between the training planes, the SSIM drops
from about 70% to 30%. The MSE increases from about 0.7 for pure SIRENs and one or
two skipped planes to 4.4 with seven planes skipped. We found that by adding the denoiser
network in the postprocessing step, all configurations consistently performed better (Fig. 3(a)-(c)).
The difference in the SSIM between pure SIREN predictions and denoised SIREN predictions
becomes smaller with an increasing offset. This is not the case for the MSE. Here, an increasing
offset leads to an increased difference between pure SIREN predictions and denoised SIREN
predictions. Linear interpolation performs better in all cases regarding MSE and SSIM. This is
not surprising, since linear interpolation is a naive approach to sample between two adjacent and
very similar planes. MSE and SSIM evaluate the general consistency between two images but do
not necessarily show, how reliably details are reconstructed.

To evaluate the reconstruction of fine details, fundamental for the research conducted with the
microscopic images, we evaluated how many dendritic spines of the original image stack can be
recovered in the interplanes. Figure 3(c) shows an exemplary evaluation of the first twenty image
planes of a single microscopy stack. We compared the number of spines of the planes from
the original stack to the number of spines in the SIREN predicted stack, the denoised SIREN
prediction, and the interplanes constructed by linear interpolation. The results were normalized
to the number of spines in the original image stack. In the pure SIREN prediction, 76% of the
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Fig. 3. Qualitative and quantitative evaluation of interplane prediction. a, Mean
squared error between pure SIREN predictions and original images (gray), denoised SIREN
predictions and original images (blue), and linear interpolation and original images (green)
for different numbers of skipped planes. b, Structural similarity index measure between pure
SIREN predictions and original images (gray), denoised SIREN predictions and original
images (blue) for different numbers of skipped planes, and linear interpolation and original
images (green). ¢, Exemplary evaluation of spine recovery for one image stack. The number
of spines in each image stack was predicted by a pre-trained DeepD3 model. The difference
in the number of spines was calculated for different numbers of skipped planes for pure
SIREN predictions (gray), denoised SIREN predictions (blue), and linear interpolation
(green). Results were normalized with respect to the number of spines in the original image
stack. d, Top: Visualization, how planes are selected. Gray planes are used for training
and blue planes get predicted and therefore are skipped during training. The predicted
planes were evaluated by comparing them to the corresponding planes of the originally
acquired stack, which were skipped during training. Bottom left: Original image slice
with annotations (pink: dendrites, green: spines) from DeepD3 model. Bottom right: pure
SIREN predictions and denoised SIREN predictions for different numbers of skipped planes
with annotations (pink: dendrites, green: spines) from the DeepD3 model.

spines could be reconstructed if only one layer is skipped. This value decreases down to 29% if
seven layers are skipped. In combination with the denoiser network, an average of about 85% of
the spines can be recovered for up to 3 omitted planes and even if 7 planes are skipped, more
than 50% of spines can be recovered. Similarly to the reconstruction error, the percentage of
recovered spines decreases with an increasing offset between the training planes. In comparison
to spine reconstruction using linearly interpolated planes, the error of the SIREN predictions is
lower or about equally low for up to 5 skipped planes. However, as the number of skipped planes
increases, the error rate of SIREN predictions rises while that of linear interpolation decreases.

Figures 3(a)-(c) indicate that there is still an error between directly acquiring image planes
and predicting intermediate planes with SIRENs. Acquiring only every n-th image plane and
predicting the intermediate planes with SIRENs benefits from a shorter acquisition time and
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fewer negative effects such as photobleaching. The disadvantage is the lower quality of the
predictions compared to originally acquired image stacks.

Figure 3(d) shows the DeepD3 segmentation results for the different numbers of omitted
planes and compares the results of the pure SIREN predictions and denoised SIREN predictions
exemplarily and qualitatively. Both are largely consistent with the originally acquired image
if only one or two planes are skipped. With an increasing offset, the pure SIREN predictions
introduce an increasing noise level and fewer spines can be identified. However, the SIREN
predictions can be efficiently denoised and the spine identification can be improved, which can
be evaluated by comparing the pure SIREN predictions with the denoised predictions.

3.3. Spine recovery

Interestingly, the spine reconstruction of the predicted image planes was about 20% to 40%
with pure SIRENs. By mining our full pipeline, we found that using percentile normalizer in
the preprocessing step (see section 2.2) and a custom denoiser network for postprocessing, as
described in section 2.3, improve the spine recovery based on the segmentation of the DeepD3
framework.

We observed some interesting behaviors regarding the improvement of spine reconstruction by
the denoiser network. As long as there is only a low or medium number of spines in one image
plane, the spines lost in the SIREN reconstruction can be reliably recovered by the denoiser.
But if the number of spines exceeds a specific level, the impact of the denoiser decreases and
the number of spines, which DeepD3 can segment, does not change or is even reduced in the
denoised SIREN prediction compared to the pure SIREN prediction. With our data, image planes

Pure SIREN Prediction Denoised SIREN Prediction

Original

Fig. 4. Spine Recovery. Comparison of the dendritic spine and dendrite segmentation by
DeepD3 of the originally acquired image (left), the pure SIREN prediction (middle), and
the denoised SIREN predictions (right). Green pixel intensities denote the probability of
being a spine. Green pixel areas with white borders were annotated as a spine. Orange
arrowheads point to pixel areas, which have a medium or low probability of being a spine
and are therefore not annotated as a spine in the originally acquired image (and the pure
SIREN prediction), but have an increased probability of being a spine and are therefore
annotated as a spine in the denoised SIREN predictions. The blue arrowhead points to
spines identified in the denoised SIREN predictions, which had zero probability of being a
spine in the originally acquired image. The effect of a higher number of annotated spines
in the denoised SIREN predictions than in the originally acquired image occurs if the pure
SIREN prediction already has a low noise level, which is further reduced by the denoiser
network and falls below the noise level of the originally acquired image. All reconstructed
planes including the annotations from DeepD3 are shown in the video Visualization 1 in the
supplementary material, comparing pure SIREN predictions, denoised SIREN predictions,
and linear interpolation.
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with more than about 40 spines had mainly an equal or worse spine reconstruction in the denoised
prediction compared to the pure SIREN prediction. These effects occur if the processed images
have a medium or high noise level with respect to the training data of the denoiser network.
For images with a rather low noise level, we observed another interesting effect in the denoised
SIREN predictions. The denoiser reduces noise in the SIREN predictions. If an input image
has already only low noise, the SIREN prediction will also have only a low noise level. In these
cases, the spine recovery of the pure SIREN prediction is already really good. We analyzed an
image stack with 70 image planes, where we observed an average of 84% recovered spines with a
standard deviation of 2.4 spines per image plane in the pure SIREN prediction. As this noise
level is further reduced by the denoiser, the noise in the denoised SIREN prediction is lower than
in the originally acquired image. In these images, more spines are identified by DeepD3 than in
the input image and SIREN predictions, probably because structures are more clearly visible due
to the lower noise level. In the denoised image stack, DeepD3 segmented about 50% more spines
than in the originally acquired image stack. In most cases, areas, that already had a medium
probability of being a spine, but were not annotated as a spine in the original image due to the
user settings in the DeepD3 GUI had an increased probability of being a spine in the denoised
image planes, and were therefore after the correction step segmented as spines. This results in an
increased number of spines in the denoised image planes. This effect is shown in Fig. 4.

4. Discussion

Unsupervised motion correction is a novel application of implicit neural representations that
avoids manual effort in selecting planes without motion artifacts and incorporates the maximum
knowledge available through scanning repetitions. Our method is able to outperform a state-of-
the-art CNN for motion correction. Additionally, our model is unsupervised, which means there
is no need for additional data besides the acquired images of the stack that should be corrected.
To train the baseline model a training dataset containing multiple image stacks is necessary.

However, to correct motion artifacts with SIRENSs, a network has to be trained for each stack.
To reduce the training time of the SIRENs, we gradually decreased the pixels of the training
data, which led to a proportional decrease in the training time. Recent works show additional
modifications, which lead to a further improved speed. For instance, [18] accelerate the training
and inference speed of implicit neural representations by splitting the initial layers of the MLP to
learn each input dimension independently. Subsequently, the last layers merge the intermediate
features to generate the learned signal at each corresponding coordinate point. This approach
yields a speedup of up to 2.92x while maintaining comparable accuracy levels to the baseline
model.

Our interplane prediction approach was inspired by the ability of SIRENS to perform inpainting
[9], which allows the reconstruction of missing pixels according to adjacent information. As
implicit neural representations model the underlying shape of a signal, analyzing this signal is
not limited to the acquisition grid anymore, but signals can be analyzed at arbitrary positions.
Therefore intermediate planes of an image stack can be predicted, which allows for higher offsets
between acquisition planes and a finer resolution between the acquired planes. The predicted
interplanes preserve important neuroanatomic structures as long as the offset between the initially
acquired planes is not too large. A potential reason for this limitation is, that some structures are
smaller than the offset between the training planes, and the information about these structures
gets lost.

When comparing our approach to linear interpolation between image planes, we found that
linear interpolation performs better than our approach with respect to MSE and SSIM. We
hypothesize that linear interpolation directly uses the originally acquired planes and adjacent
planes contain highly repetitive information. But when comparing the number of spines in
interpolated and SIREN reconstructed images, it is higher or almost equal in interpolated planes
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for up to 5 skipped planes. We believe that in the interpolated plane, spines are derived from
information in both adjacent planes, resulting in the identification of numerous additional spines
compared to the originally acquired planes. This effect decreases when more intermediate planes
are predicted between two images since spines are more weighted to one or the other plane.
Therefore we assume, that SIRENs are capable of assigning spines to specific planes, which
linear interpolation can do only partially.

We counted the number of spines of different image stacks with the deep learning framework
DeepD3 and observed some interesting effects. By correcting the pure SIREN predictions with a
denoiser network, special behavior can be observed depending on the input characteristics. For
image stacks with an average to high noise level and a medium number of spines, the denoised
predictions turn out as intended. If the number of spines exceeds a specific level (about 40
spines in our case), an equal or lower number of spines can be identified in the denoised SIREN
predictions compared to the originally acquired image and the SIREN prediction. Potentially this
effect could occur because the denoiser network has problems differentiating between noise and
many spines close to each other, such that some spines get removed. Another effect occurs if
the noise level of the input data is rather low compared to the noise in the training data of the
denoiser network. In this case, the probability of being a spine of some pixel areas increases in
the denoised SIREN predictions. Therefore more spines are identified in the denoised SIREN
predictions than in the originally acquired image and the pure SIREN prediction.

Dendritic spine quantification is, in general, an error-prone process with high inter-rater
reliability (82.2+6.4%) [17]. We have determined, that the number of spines quantified in our
final predictions depends on the noise level of the training data of our denoiser network, which
then influences the number of identified spines. Therefore we come to the assumption, that we
can control the confidence in predicting a spine, by the training data we use for our denoiser
network. We assume that training a denoiser network with data impacted by a rather high noise
level as input data and data with a low noise level as ground truth leads to predictions with lower
noise than in the ground truth for input images with an already low noise level. Future work
should evaluate if this could potentially make dendritic spine quantification easier than in the
originally acquired microscopic image stacks, by not only generating an implicit reconstruction
but further improving its quality.

In our work, we utilized the capability of SIRENS to decipher stable data from motion-affected
data and applied it to predict coordinate values independently of the original acquisition grid
of microscopic images. It is worth noting that these characteristics extend beyond the scope of
our work and can be effectively employed across a diverse field of data types that contend with
motion artifacts or are challenging to acquire. This broader applicability is particularly relevant
for large-scale data, where manual identification of artifacts is not feasible or data acquisition
processes are characterized by significant time and financial investments, as well as associated
risks.

5. Conclusion

In this study, we have shown that SIRENs are a powerful architecture in retaining and processing
microscopy image stacks. Especially in combination with carefully set preprocessing steps
and deep neural networks that denoise the SIREN predictions while preserving the relevant
neuroanatomic structures in the postprocessing, we can show with relevant neuroscientific metrics,
such as dendritic spine recovery, that implicit neural representations will play a relevant part in
the future of biomedical image processing. We are able to create motion-corrected microscopic
image stacks from multiple acquisitions of the same stack with unknown components of motion.
Our method is superior to the common approach of averaging the acquired stacks, where motion
artifacts mathematically still contribute to the resulting data. Our method can also replace the
cumbersome process of manually removing motion-afflicted data. Additionally, we are able to
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predict intermediate planes that reliably reconstruct relevant neuroanatomic structures. With
our methods planes can be acquired with a higher offset, which accelerates the acquisition and
reduces negative effects like photobleaching. Additionally, the implicit neural representations by
SIRENSs allow for analyzing the sample at arbitrary positions.
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