Skip to main content
. 2024 Mar 4;15(4):2014–2047. doi: 10.1364/BOE.514079

Table 1. Performance of machine learning models in OVCAR-8 MCTS classifications. DT, decision tree. GB, gradient boosting. kNN, k nearest neighbor. LG, logistics. NB, naïve bayes. SVM, support vector machine. AH, agglomerative hierarchical. BC, birch. GM, Gaussian mixture. KM, k means. MBK, mini batch k-means. ST, spectral.

Supervised Unsupervised

Models DT GB kNN LG NB SVM AH BC GM KM MBK ST
Cross_Statistical

Accuracy 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.52
Precision 1.00 1.00 1.00 1.00 0.94 1.00 / / / / / /
Recall 1.00 1.00 1.00 1.00 0.93 1.00 / / / / / /
F1-score 1.00 1.00 1.00 1.00 0.93 1.00 / / / / / /
Silhouette / / / / / / 0.44 0.44 0.44 0.44 0.44 0.05
Homogeneity / / / / / / 1.00 1.00 1.00 1.00 1.00 0.03
Completeness / / / / / / 1.00 1.00 1.00 1.00 1.00 0.15
V_meaure / / / / / / 1.00 1.00 1.00 1.00 1.00 0.04

Cross_Screening

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Precision 1.00 1.00 1.00 1.00 1.00 1.00 / / / / / /
Recall 1.00 1.00 1.00 1.00 1.00 1.00 / / / / / /
F1-score 1.00 1.00 1.00 1.00 1.00 1.00 / / / / / /
Silhouette / / / / / / 0.70 0.70 0.70 0.70 0.70 0.70
Homogeneity / / / / / / 1.00 1.00 1.00 1.00 1.00 1.00
Completeness / / / / / / 1.00 1.00 1.00 1.00 1.00 1.00
V_meaure / / / / / / 1.00 1.00 1.00 1.00 1.00 1.00

Composite_Hyperparameter

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Precision 1.00 1.00 1.00 1.00 1.00 1.00 / / / / / /
Recall 1.00 1.00 1.00 1.00 1.00 1.00 / / / / / /
F1-score 1.00 1.00 1.00 1.00 1.00 1.00 / / / / / /
Silhouette / / / / / / 0.72 0.72 0.72 0.72 0.72 0.72
Homogeneity / / / / / / 1.00 1.00 1.00 1.00 1.00 1.00
Completeness / / / / / / 1.00 1.00 1.00 1.00 1.00 1.00
V_meaure / / / / / / 1.00 1.00 1.00 1.00 1.00 1.00