Skip to main content
. 2024 Mar 4;15(4):2014–2047. doi: 10.1364/BOE.514079

Table 5. Performance of machine learning models in OVCAR-4 MCTS classifications with 25 µM drug treatments. DT, decision tree. GB, gradient boosting. kNN, k nearest neighbor. LG, logistics. NB, naïve bayes. SVM, support vector machine. AH, agglomerative hierarchical. BC, birch. GM, Gaussian mixture. KM, k means. MBK, mini batch k-means. ST, spectral.

Supervised Unsupervised

Models DT GB kNN LG NB SVM AH BC GM KM MBK ST
Cross_Statistical

Accuracy 0.91 0.98 0.91 0.99 0.78 1.00 0.65 0.65 0.53 0.61 0.50 0.42
Precision 0.91 0.98 0.92 0.99 0.80 1.00 / / / / / /
Recall 0.91 0.98 0.91 0.99 0.78 1.00 / / / / / /
F1-score 0.91 0.98 0.91 0.99 0.77 1.00 / / / / / /
Silhouette / / / / / / 0.15 0.15 0.14 0.15 0.13 0.04
Homogeneity / / / / / / 0.40 0.40 0.26 0.35 0.27 0.10
Completeness / / / / / / 0.51 0.51 0.35 0.44 0.37 0.16
V_meaure / / / / / / 0.45 0.45 0.30 0.39 0.31 0.12

Cross_Screening

Accuracy 0.95 0.99 0.94 0.90 0.87 0.94 0.77 0.77 0.73 0.67 0.67 0.54
Precision 0.95 0.99 0.95 0.91 0.89 0.94 / / / / / /
Recall 0.95 0.99 0.94 0.90 0.87 0.94 / / / / / /
F1-score 0.95 0.99 0.94 0.90 0.87 0.94 / / / / / /
Silhouette / / / / / / 0.18 0.18 0.19 0.22 0.22 0.19
Homogeneity / / / / / / 0.65 0.65 0.50 0.45 0.48 0.39
Completeness / / / / / / 0.66 0.66 0.52 0.58 0.62 0.70
V_meaure / / / / / / 0.66 0.66 0.51 0.51 0.54 0.50

Composite_Hyperparameter

Accuracy 0.90 0.95 0.93 0.81 0.88 0.93 0.71 0.71 0.69 0.69 0.68 0.63
Precision 0.91 0.96 0.94 0.81 0.89 0.93 / / / / / /
Recall 0.90 0.95 0.93 0.81 0.88 0.93 / / / / / /
F1-score 0.90 0.95 0.93 0.81 0.88 0.93 / / / / / /
Silhouette / / / / / / 0.26 0.26 0.23 0.23 0.19 0.21
Homogeneity / / / / / / 0.58 0.58 0.48 0.48 0.45 0.45
Completeness / / / / / / 0.78 0.78 0.62 0.62 0.46 0.48
V_meaure / / / / / / 0.67 0.67 0.54 0.54 0.46 0.46