Table 5. Performance of machine learning models in OVCAR-4 MCTS classifications with 25 µM drug treatments. DT, decision tree. GB, gradient boosting. kNN, k nearest neighbor. LG, logistics. NB, naïve bayes. SVM, support vector machine. AH, agglomerative hierarchical. BC, birch. GM, Gaussian mixture. KM, k means. MBK, mini batch k-means. ST, spectral.
Supervised | Unsupervised | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||
Models | DT | GB | kNN | LG | NB | SVM | AH | BC | GM | KM | MBK | ST |
Cross_Statistical | ||||||||||||
| ||||||||||||
Accuracy | 0.91 | 0.98 | 0.91 | 0.99 | 0.78 | 1.00 | 0.65 | 0.65 | 0.53 | 0.61 | 0.50 | 0.42 |
Precision | 0.91 | 0.98 | 0.92 | 0.99 | 0.80 | 1.00 | / | / | / | / | / | / |
Recall | 0.91 | 0.98 | 0.91 | 0.99 | 0.78 | 1.00 | / | / | / | / | / | / |
F1-score | 0.91 | 0.98 | 0.91 | 0.99 | 0.77 | 1.00 | / | / | / | / | / | / |
Silhouette | / | / | / | / | / | / | 0.15 | 0.15 | 0.14 | 0.15 | 0.13 | 0.04 |
Homogeneity | / | / | / | / | / | / | 0.40 | 0.40 | 0.26 | 0.35 | 0.27 | 0.10 |
Completeness | / | / | / | / | / | / | 0.51 | 0.51 | 0.35 | 0.44 | 0.37 | 0.16 |
V_meaure | / | / | / | / | / | / | 0.45 | 0.45 | 0.30 | 0.39 | 0.31 | 0.12 |
| ||||||||||||
Cross_Screening | ||||||||||||
| ||||||||||||
Accuracy | 0.95 | 0.99 | 0.94 | 0.90 | 0.87 | 0.94 | 0.77 | 0.77 | 0.73 | 0.67 | 0.67 | 0.54 |
Precision | 0.95 | 0.99 | 0.95 | 0.91 | 0.89 | 0.94 | / | / | / | / | / | / |
Recall | 0.95 | 0.99 | 0.94 | 0.90 | 0.87 | 0.94 | / | / | / | / | / | / |
F1-score | 0.95 | 0.99 | 0.94 | 0.90 | 0.87 | 0.94 | / | / | / | / | / | / |
Silhouette | / | / | / | / | / | / | 0.18 | 0.18 | 0.19 | 0.22 | 0.22 | 0.19 |
Homogeneity | / | / | / | / | / | / | 0.65 | 0.65 | 0.50 | 0.45 | 0.48 | 0.39 |
Completeness | / | / | / | / | / | / | 0.66 | 0.66 | 0.52 | 0.58 | 0.62 | 0.70 |
V_meaure | / | / | / | / | / | / | 0.66 | 0.66 | 0.51 | 0.51 | 0.54 | 0.50 |
| ||||||||||||
Composite_Hyperparameter | ||||||||||||
| ||||||||||||
Accuracy | 0.90 | 0.95 | 0.93 | 0.81 | 0.88 | 0.93 | 0.71 | 0.71 | 0.69 | 0.69 | 0.68 | 0.63 |
Precision | 0.91 | 0.96 | 0.94 | 0.81 | 0.89 | 0.93 | / | / | / | / | / | / |
Recall | 0.90 | 0.95 | 0.93 | 0.81 | 0.88 | 0.93 | / | / | / | / | / | / |
F1-score | 0.90 | 0.95 | 0.93 | 0.81 | 0.88 | 0.93 | / | / | / | / | / | / |
Silhouette | / | / | / | / | / | / | 0.26 | 0.26 | 0.23 | 0.23 | 0.19 | 0.21 |
Homogeneity | / | / | / | / | / | / | 0.58 | 0.58 | 0.48 | 0.48 | 0.45 | 0.45 |
Completeness | / | / | / | / | / | / | 0.78 | 0.78 | 0.62 | 0.62 | 0.46 | 0.48 |
V_meaure | / | / | / | / | / | / | 0.67 | 0.67 | 0.54 | 0.54 | 0.46 | 0.46 |